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FIT ASSESSMENT AND SELECTION BETWEEN COMPETITIVE
MODELS IN SEM

Roberto Di Natale

1. INTRODUCTION

Structural equation models (SEM) with latent variables (Bollen, 1989a; Maru-
yama, 1998) are very often employed by researchers that use nonexperimental and
quasi-experimental data. They are a synthesis of procedures developed in econo-
metrics, sociometrics, and psychometrics. The SEM allows the researcher to study
causal relationships among latent and observed variables. One or more latent
unobserved variables are linked to one or more observed variables to show how
the latent variables are measured (the measurement model). The theory suggests
the links between latent variables. The relationships between variables have the
form of some linear equations and they are simultaneously estimated by the
procedures. The interpretation of relations among the variables is the same as in
path analysis (Wright, 1934; Duncan, 1966), in which the direct and indirect
relationships between variables involved in a causal model are estimated. An
important quality of SEM is the generality of the approach. Well-known statistical
models like the multiple regression, the path analysis, the measurement models,
the confirmatory factor analysis, the “classical” econometric models and others are
all contained in the general framework of SEM as special cases. Some assumptions
of the “classic” SEM can be relaxed and several extensions are available (Bollen,
1989a, cap. 9). Theory and methodology to study three-level data (Yau et al.,
1993), ARMA time series (van Buuren, 1997), the state space model (Oud et al.,
1990) have been proposed.

Covariance structure models, path models, dynamic simultaneous equations
models, reticular action models, latent variable models and LISREL models, refer
to the same class of models. The SEM are implemented in most commercial
computer packages (e.g. Amos, EQS, LISREL, SAS PROC-CALIS, LISCOMP) and
they have become easy to use because they can be run by creating a path diagram
of the model.

The first object of this article is to introduce some problems in model fit as-
sessment and in the selection between competitive models in SEM. The meth-
odological consequences are also considered. The second object is to examine the
behaviour of the fit indices in the framework of selection between alternative
models. To our knowledge, only the recent paper of La Du and Tanaka (1995)
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extensively examines the problem of misspecification in a Monte Carlo study and
their results are not encouraging. In this paper we considered a simple problem in
a ideal situation of sampling distributions and sample size. We also include the
parameter estimates in the rationale of model selection.

The assessment of fit in a model is a typical point of controversy in statistical
analysis. The R2 in regression analysis is an example of this issue in a older
method of analysis than the Structural Equation. In this paper we relied on the
point of consensus in testing models resulting from Bollen’s (1993a) book. The
selection among alternative (or competitive) models theoretically supported by a
substantive theory is a usual problem in applied research.

2.  THE GENERAL MODEL

The SEM, in LISREL formulation, is defined by the following three equations:

ηηηη = ΒΒΒΒ ηηηη + ΓΓΓΓ ξξξξ + ζζζζ (1)

y = ΛΛΛΛ
y
 ηηηη + εεεε (2)

x = ΛΛΛΛ
x
 ξξξξ + δδδδ (3)

where ξξξξ is an n x 1 random vector of latent independent (exogenous) variables, ηηηη
is an m x 1 random vector of latent dependent (endogenous) variables, x and y are
vectors of q x 1 and p x 1 observed variables respectively. δδδδ and εεεε are q x 1 and p x
1 sets of errors of measurement in x and y, respectively and ζζζζ is a m x 1 vector of
equation errors in the relationships among ηηηη  and ξξξξ. Structural relationship be-
tween the latent variables are specified by the ΒΒΒΒ (m x m) and the ΓΓΓΓ (m x n) matri-
ces of coefficients. ΛΛΛΛ

y
 and ΛΛΛΛ

x
 are p x m and q x n regression matrices of y on ηηηη

and of x on ξξξξ. We assume that all the variables are deviation of the mean and that
n ≤ q; m ≤ p. The errors ζζζζ, εεεε, and δδδδ are mutually uncorrelated and the errors of
measurement are assumed to be uncorrelated with the latent variables measured.
The matrix (I - B) is assumed non singular and the following covariance matrices
are specified: ΦΦΦΦ= Ε(ξξξξ ξξξξ’), ΨΨΨΨ=Ε(ζζζζ ζζζζ‘), ΘΘΘΘε =Ε(εεεε εεεε’), ΘΘΘΘδ =Ε(δδδδ δδδδ’).

Equations (2) and (3) show how the latent variables ηηηη  and ξξξξ are measured by
the observed variables y and x respectively. The equation (1) has the structure of
the classical econometric model but ηηηη  and ξξξξ  are allowed the non-observable
variables.

The basic fundamental relation of the SEM is

ΣΣΣΣ = ΣΣΣΣ(θθθθ) (4)

where ΣΣΣΣ is the population covariance matrix of y and x; ΣΣΣΣ(θθθθ) is the implied cova-
riance matrix written as function of the t free model parameters in θθθθ  = (θθθθ1, θθθθ2,
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...,θθθθt). The parameter vector θθθθ varies in the parameter space ΘΘΘΘ ⊂ Rt. The implied
covariance matrix ΣΣΣΣ(θθθθ) is derived from the specified model (see Bollen, 1989a,
323-326). Identification, estimation and assessments of model fit is based on this
relation of ΣΣΣΣ to ΣΣΣΣ (θθθθ). If the structural equation model is correctly specified and
the population parameters are known, then the equation (4) is hold exactly.

Let S be the sample unbiased estimate of the population covariance matrix and

let n be the sample size. We need to form sample estimates θ̂ of the unknown
parameters θθθθ based on sample estimate S of the covariance matrix ΣΣΣΣ. The estima-
tion procedure typically minimise a fitting function F(S, ΣΣΣΣ(θθθθ)) with the following
properties: F(S, ΣΣΣΣ(θθθθ)) is a scalar; F(S, ΣΣΣΣ(θθθθ)) ≥ 0; F(S, ΣΣΣΣ(θθθθ)) = 0 if and only if ΣΣΣΣ(θθθθ)

= S and F(S, ΣΣΣΣ(θθθθ)) is continuous in S and ΣΣΣΣ(θθθθ). Minimising fitting functions with
respect to the free parameters in θθθθ that satisfy these conditions leads to consistent
estimators of θθθθ (Browne, 1984). If the model is correct and if we know the pa-
rameters, the population covariance matrix would be exactly reproduced. To date
the most widely used fitting functions are: the normal theory maximum likeli-
hood FML function (Jöreskog, 1969), the normal theory Generalised Least Squares
FGLS function (Jöreskog and Goldberger, 1972), and the Asymptotic Distribution
Free FADF function which does not depend on distributional assumptions
(Browne, 1984).

3.  THE χ2 TEST STATISTIC

Let be

TML = N ⋅ FML(S, ΣΣΣΣ(θθθθ)) (5)

TGLS = N ⋅ FGLS(S, ΣΣΣΣ(θθθθ)) (6)

TADF = N ⋅ FADF(S, ΣΣΣΣ(θθθθ)) (7)

where N = n - 1 and

Ho: ΣΣΣΣ = ΣΣΣΣ(θθθθ) (8)

is the null hypothesis, that is the model hold. Theoretical results show that given
the null hypothesis is true, the function TML (Jöreskog, 1969), the function TGLS

(Jöreskog, 1972), and the function TADF (Browne, 1984) are asymptotically chi-
squared distributed with df = (1/2) ⋅ (p + q) ⋅ (p + q - 1) - t degrees of freedom.

The asymptotic robustness of normal-theory methods has been extensively
studied and several different conditions were found under which models with
non-normally distributed variables can still be studied by use of methods based on
normal theory (Satorra, 1990). Therefore, in theory we are well equipped to test
the null hypothesis (8). In practice, a series of simulation studies ( Muthen and
Kaplan, 1985, 1992; Hu et al. 1992, Rigdon and Ferguson, 1991; Chou et al.,
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1991) show that these fitting functions performed poorly and the test cannot be
trusted. Normal-theory T statistics are not robust to violation of asymptotic
robustness assumptions (Hu et al., 1992). Nonetheless, the Likelihood Ratio (LR)
test based on the TML function remain by far the most widely used methodologies
in practice (Yuan and Bentler, 1997). The TADF function is asymptotically χ2

distributed only for very large samples. Basically, sample size requirements in-
crease as models become larger and data become more nonnormal (Hu et al.,
1992; Muthen and Kaplan, 1985, 1992). A bootstrap correction of additive bias
on the ADF test statistic has been proposed (Young and Bentler, 1994), it yields a
better tail behaviour as the sample size reaches 500 for a 15-variable 3-factor
confirmatory factor-analytic model.

Several corrected T statistics (based on TML or TGLS or TADF) have been pro-
posed (Yuan and Bentler, 1997) but little is know on the performance of these
new statistics.

Briefly, the χ2 test statistic cannot be trusted in most of practical situations,
since the variables are not normally distributed and the ADF theory request very
large samples that are rarely available in applied research. It does not provide
information regarding the degree of fit because high fit can be obtained simply
with a diminution of the degrees of freedom. In the extreme case in which df = 0

then S = ΣΣΣΣ( θ̂) and F(S, ΣΣΣΣ( θ̂)) = 0. The T statistic indicate a perfect fit and it does
not depend on the proposed model. Furthermore, if the fitting function F(S,

ΣΣΣΣ(θθθθ)) = k, k > 0 (FML or FGLS or FADF ) is constant, as the sample size increases, each
model will be rejected by the asymptotic chi-square test statistic T at any fixed
level of significance. This sample size issue is linked in part to the statistical power
available to test the null hypothesis. In applied research, the Ho:  ΣΣΣΣ = ΣΣΣΣ(θθθθ) does
not hold exactly, thus the chi-square should be compared with a non-central
rather than a central chi-square distribution (see Browne, 1984). To overcome
these problems in fit assessment by χ2 statistic, many fit indices has been pro-
posed.

4.  FIT INDICES

We now examine the problem of the overall fit assessment and the problem of
selection between competitive models using some important indices proposed in
literature. To date, many fit indices has been proposed but none of which has
been endorsed as the “best index” by the majority of researchers. As an illustration
of the proliferation of indices, the computer programs LISREL8 (Jöreskog and
Sörbom, 1996b) and PROC CALIS (SAS Institute, 1989) prints the values of
almost 20 such fit indices. The problem of testing model fit is the subject of
considerable discussion and Bollen’s (1993a) book concentrate on this issue, the
first chapter reports the major points of consensus. Following these points of
consensus, we prefer fit indices that take account of the degrees of freedom (par-
simony) of a model and indices whose means of their sampling distribution are
not or are only weakly related to the sample size.
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Following McDonald and Marsh (1990) the indices examined could be con-
sidered of two sorts: absolute measures and relative measures. Absolute measures
are typically made up on discrepancy between sample covariance matrix S and the
estimated population matrix ΣΣΣΣ(θθθθ). The absolute measures to be considered in this
paper are “badness” of fit measures, in the sense that small values correspond to
good fit and large values correspond to bad fit. In addition, the relative fit indices
require a third matrix that is used as a reference point in assessing fit and they
range from 0 to 1 (indicating the best fit). The model used as a reference point is
often the null model. Usually it is a more restricted nested model in which all
observed variables are uncorrelated. The null model is a statistical baseline of
comparison for the evaluation of fit.

The already examined χ2 statistic is considered between absolute measures of
fit, the use of χ2 statistic as test of the model is rarely appropriate in real data
applications. The LR test is also considered for the selection between competitive
models.

We consider a set of g competing models, models M1, M2,..., Mg. Each involves
a s x s matrix valued function ΣΣΣΣk(θθθθk) of a parameter vector θθθθk with tk elements, k =
1,2, ..., g, where s = p + q is the number of observed variables. We think of the
models Mk as the k-th in a series of increasing complexity. A model ΣΣΣΣl(θθθθl) is a
submodel of ΣΣΣΣk, nested with it, if ΣΣΣΣl can be obtained by placing further restrictions
on θθθθk in ΣΣΣΣk (usually by setting some of the parameters in θθθθk to zero). In brief, the
nested model is a special case of the less restrictive model.

The LR test is not the golden rule in selection between nested competitive
models because empirical results show its inadequacy for nonnormal data (Hu et
al. 1992). The LR test has the following form:

LR = -2 ⋅ [log L( θ̂ l) - log L( θ̂k)]

where θ̂ l and θ̂k are the ML estimator for the restrictive, nested model and the
less restricted model respectively. LR has a limiting χ2 distribution with degrees of
freedom df = dfl - dfk when the restrictive model is valid and the assumptions
underlying the ML estimators are valid. The LR test may be written as

LR = TML
l - TML

k

where TML
l and TML

k are the chi-square statistics in equation (5) for the nested
model and the model without restriction respectively.

Three absolute fit indices are examined in this study: the chi-square statistic,
the Akaike information criteria (AIC: Akaike, 1987;) and the single sample cross-
validation index ECVI (Browne and Cudeck, 1989).

The chi-square statistic T is a fundamental value in the derivation of different
fit indices.

The RMSEAk index (Steigher, 1990) for the k-th model is:

RMSEAk = [max(( Fk /dfk – 1/N), 0)]1/2
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where dfk and Fk are the minimum value of the fit function and the degrees of
freedom for the k-th model respectively. RMSEA is a measure of the discrepancy
per degree of freedom for the model.

The ECVIk index (Browne and Cudeck, 1989) for the k-th model is:

ECVIk = (Tk / N) + 2 ⋅ (tk / N)

where N = (n - 1). The ECVIk is intended to provide guidance for the selection of
a model appropriate for a specified sample size. Underlying the use of this index is
the assumption that none of the models under consideration (excluding the
saturated model) is correct (Browne and Cudeck, 1989).

The ECVI and the AIC (Akaike, 1987) are similar, but AIC is derived from sta-
tistical information theory whereas ECVI is a measure of the discrepancy between
the fitted covariance matrix in the analysed sample and the expected covariance
matrix that would be obtained in another sample of the same size.

The following three relative fit indices are examined: the Comparative Fit In-
dex (CFI; Bentler, 1990), the Incremental Fit Index (IFI; Bollen, 1989b), the
Adjusted Goodness of Fit Index (AGFI; Jöreskog and Sörbom, 1989). The Rela-
tive Noncentrality Index (RNI: McDonald and Marsh, 1990) was excluded from
this study because CFI and RNI are algebraically equivalent in most applications
(Goffin, 1993).

Let Fi and Fk be the minimum value of the fit function for the null model and
the k-th model respectively. Let dfi and dfk be the corresponding degrees of free-
dom.

The IFIk (Bollen, 1989b) for the k-th model is

IFIk = (N ⋅ Fi - N ⋅ Fk) / (N ⋅ Fi - dfk)

The CFIk (Bentler, 1990), has the following form:

CFIk= 1- τk / τi

where τk = max (N⋅Fk - dfk, 0), and τi = max (N⋅ Fi - dfi, N⋅Fk - dfk, 0).
The AGFIk (Jöreskog and Sörbom, 1989) index is

AGFIk = 1 - [s ⋅ (s + 1) / (2 ⋅ dfk)] ⋅ (1 - GFIk)

where s is the number of observed variables and the Goodness of Fit Index GFIk is

GFIk = 1 - [Fk(S, ΣΣΣΣ( θ̂)) / F(S, ΣΣΣΣ(0))]

The numerator is the minimum of the fit function after the model has been
fitted; the denominator is the fit function when all free parameters are set to zero.

The GFI assess the discrepancy between the predicted covariance ΣΣΣΣ( θ̂) and the
observed covariance S. The AGFI adjusts the GFI for the degrees of freedom of a
model relative to the number of variables.
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The LR test can not be used out of a nested sequence of models. The IFI and
CFI are based on the null model logic (Bentler and Bonnet, 1980), they are
appropriate for nested sequence of models (see La Du and Tanaka, 1995).

5.  THE PROBLEM OF MODEL SELECTION

In this work we are specifically interested in the selection of a model between
competitive models on the basis of the analysis of a single set of data. This is a
well know problem in applied research (Di Natale and Saba, 1997; Saba and Di
Natale, 1998).

We agree with the points of consensus identified in Bollen’s (1993a) book on
testing model fit. These points and the recent results of simulation studies
(Muthen and Kaplan, 1985, 1992; Hu et al. 1992, Rigdon and Ferguson, 1991;
Chou et al., 1991; La Du and Tanaka, 1995) are used in subsequent discussion.

It is assumed that each of the identified k alternative (or competitive) models
are theoretically supported by a substantive theory. The models give reasonable
results of signs and magnitudes of coefficient estimates and R2 of equations. If
these assumptions did not occur a model can be eliminated from further consid-
eration. Even under these conditions the problem of model selection would not
be reduced to the selection of the model with the better fit. The strategy of the
addition of parameters primarily to improve model fit may be inappropriate.
Using this strategy we probably will select a very good model for our sample but
this does not mean that this model has a reasonable correspondence to reality.

Figure 1 – Path diagram of the four models.
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In model selection an underlying principle of parsimony is often used (see
Bollen, 1989a, pag. 71). Briefly, the parsimony rule suggests to select the simplest
model between proposed competing models with nearly the same fit to data.

Three simulation study was used to highlight the problems in model selection.
We evaluated the ability in the above indices to distinguish the correct model. A 3
x 4 factorial Monte Carlo approach was used in confirmatory factor analysis
models. The treatment variables were sample size and model specification. Four
different models (fig.1) were analysed in each of the three studies. A study differ
from the others for the know population model. Model A, B, C differ for the
setting of one or two parameters to zero, they form a sequence of nested models.
They are only slightly underparametrized and overparametrized compared with
themselves. We considered it a slightly misspecification. Model D is really differ-
ent from the others and it introduce a misspecification. The dependent variables
in the study were parameter estimates and fit statistics. For each know population
model, 100 replications are performed drawing sample size of n=100, 200, 500.
The classical ML estimator was used under multivariate normality. Under this
assumption, ML and GLS have the same asymptotic properties (Browne, 1974).
For the purposes of this paper only results for fit statistics are showed. The results
of simulation on parameter estimates are examined in subsequent discussion when
the results for fit indices are unsatisfactory. However, in agreement with other
results (Anderson and Gerbing, 1984; Rigdon and Ferguson, 1991), the mean of
AGFI was affected by sample size for the four model under consideration.

The Schrage (1979) uniform random numbers generator was used to produce
the independent normal observations. The misspecified model D (fig.1) is not
nested with the other models, thus the LR test can not be used, the IFI and the
CFI indices are not appropriate. The analyses were carried out using the statistical
packages PRELIS2 and LISREL8.

5.1 Results

In the study 1, A is the know population model. The mean, the standard de-
viation and the extreme values (only for n=200) of the fit indices obtained in the
simulation study 1 for n=100, 200, 500 are listed in table 1. The LR statistic chi-
square estimates are not statistically significant for models B and C in every one of
the situations considered. These additional parameters did not significantly
improve model fit and we select the right model A. In this study only ECVI select
always the real model. The others fit indices select a slightly misspecified model or
are neutral in the problem of model selection. The variability of the RMSEA is
considerably high and in many cases, it decrease to zero that is the best value for
wrong models. All the indices excluded the model misspecified D. For models A,
B and C the changes in the indices are small and it is not difficult to fall into error
in model selection. In this case, the values of parameter estimates can help us in
the selection of the correct model. For model B (n=200), the mean of parameter
estimates of φ12 is 0.003, this value is not significantly different from zero. This
result suggests that we should set the parameter φ12 of model B to zero. The
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parameters estimate are φ12 = -0.006 and λ32 = 0.001 for model C, these improp-
erly added parameters are not significantly different from zero. The parameters
estimate suggests that we should set φ12 and λ32 to zero. Therefore, we are led to
the correct model by the parameters estimate of the models B and C.

TABLE 1

Study 1. Descriptive statistics of fit indices (A=correct model)

n=100 n=200 n=500

chi2 Mean Std.dev. Mean Std.dev. Min. Max. Mean Std.dev.

Mod.A (9df) 9,181 4,121 8,461 3,460 1,836 20,169 7,889 3,576

Mod.B (8df) 8,188 3,846 7,368 3,364 1,327 20,042 6,878 3,245

Mod.C (7df) 6,795 3,488 6,334 2,872 1,000 17,386 5,985 3,128

Mod.D (9df) 137,46 20,82 268,86 31,96 182,45 347,50 667,03 56,21

RMSEA    

Mod.A (9df) 0,026 0,034 0,014 0,021 0,000 0,079 0,008 0,012

Mod.B (8df) 0,028 0,035 0,014 0,021 0,000 0,087 0,008 0,013

Mod.C (7df) 0,026 0,034 0,013 0,021 0,000 0,086 0,008 0,014

Mod.D (9df) 0,378 0,031 0,380 0,023 0,311 0,435 0,382 0,016

ECVI    

Mod.A (9df) 0,335 0,042 0,163 0,017 0,130 0,222 0,064 0,007

Mod.B (8df) 0,345 0,039 0,168 0,017 0,137 0,231 0,066 0,007

Mod.C (7df) 0,351 0,035 0,173 0,014 0,146 0,228 0,068 0,006

Mod.D (9df) 1,631 0,210 1,472 0,161 1,038 1,867 1,385 0,113

AGFI    

Mod.A (9df) 0,933 0,028 0,968 0,013 0,926 0,993 0,988 0,005

Mod.B (8df) 0,932 0,030 0,969 0,014 0,917 0,994 0,988 0,006

Mod.C (7df) 0,935 0,032 0,969 0,014 0,917 0,995 0,988 0,006

Mod.D (9df) 0,271 0,064 0,283 0,048 0,178 0,429 0,287 0,033

CFI    

Mod.A (9df) 0,994 0,011 0,998 0,004 0,979 1,000 0,999 0,001

Mod.B (8df) 0,994 0,010 0,998 0,004 0,978 1,000 0,999 0,001

Mod.C (7df) 0,995 0,009 0,998 0,003 0,981 1,000 0,999 0,001

Mod.D (9df) 0,504 0,059 0,501 0,042 0,390 0,601 0,504 0,030

IFI    

Mod.A (9df) 1,000 0,015 1,001 0,007 0,979 1,015 1,001 0,003

Mod.B (8df) 1,000 0,014 1,001 0,006 0,978 1,014 1,001 0,002

Mod.C (7df) 1,001 0,013 1,001 0,005 0,981 1,013 1,001 0,002

Mod.D (9df) 0,516 0,057 0,507 0,041 0,398 0,606 0,506 0,030

In the study 2, D is the know population model. The mean, the standard de-
viation and the extreme values (only for n=200) of the fit indices obtained in the
simulation study 2 for n=100, 200, 500 are listed in table 2. The ECVI select the
correct model D for all the sample sizes. The RMSEA select the correct model
only for n=500 and it is equal to zero for wrong models. The other fit indices are
often neutral in the selection between the correct model D and the misspecified
models B and C. Only the model A is always excluded by the indices. The pa-
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rameter estimate of φ12 ≅ 1 for models B and C, therefore it suggest the real model
D.

TABLE 2

Study 2. Descriptive statistics of fit indices (D=correct model)

n=100 n=200 n=500

chi2 Mean Std.dev. Mean Std.dev. Min. Max. Mean Std.dev.

Mod.D (9df) 10,232 4,693 10,191 4,528 1,754 32,382 8,403 4,438

Mod.A (9df) 140,81 17,68 273,41 23,89 226,09 347,54 664,32 32,37

Mod.B (8df) 9,002 4,383 9,033 4,581 1,279 31,155 7,527 4,026

Mod.C (7df) * 7,46 3,67 7,56 3,40 1,27 17,16 6,60 3,31

RMSEA    

Mod.D (9df) 0,036 0,039 0,025 0,026 0,000 0,114 0,009 0,015

Mod.A (9df) 0,384 0,026 0,384 0,017 0,348 0,435 0,382 0,009

Mod.B (8df) 0,034 0,040 0,025 0,028 0,000 0,121 0,010 0,016

Mod.C (7df) * 0,030 0,038 0,023 0,025 0,000 0,085 0,010 0,015

ECVI    

Mod.D (9df) 0,346 0,047 0,172 0,023 0,129 0,283 0,065 0,009

Mod.A (9df) 1,665 0,179 1,495 0,120 1,257 1,867 1,379 0,065

Mod.B (8df) 0,354 0,044 0,176 0,023 0,137 0,287 0,067 0,008

Mod.C (7df) * 0,358 0,037 0,179 0,017 0,147 0,227 0,069 0,007

AGFI    

Mod.D (9df) 0,925 0,033 0,962 0,017 0,877 0,993 0,987 0,007

Mod.A (9df) 0,516 0,026 0,528 0,016 0,483 0,565 0,538 0,009

Mod.B (8df) 0,925 0,035 0,962 0,019 0,864 0,994 0,987 0,007

Mod.C (7df) * 0,928 0,034 0,963 0,016 0,918 0,994 0,987 0,007

CFI    

Mod.D (9df) 0,994 0,009 0,997 0,004 0,973 1,000 0,999 0,002

Mod.A (9df) 0,667 0,032 0,666 0,022 0,619 0,721 0,667 0,013

Mod.B (8df) 0,995 0,008 0,997 0,004 0,973 1,000 0,999 0,001

Mod.C (7df) * 0,996 0,007 0,998 0,003 0,987 1,007 0,999 0,001

IFI    

Mod.D (9df) 0,997 0,012 0,999 0,006 0,973 1,010 1,000 0,002

Mod.A (9df) 0,672 0,032 0,668 0,022 0,622 0,723 0,668 0,013

Mod.B (8df) 0,998 0,011 0,999 0,006 0,973 1,009 1,000 0,002

Mod.C (7df) * 0,999 0,009 0,999 0,004 0,987 1,007 1,000 0,002

* Values based on the convergement estimates only.

In the study 3, B is the know population model. The mean, the standard de-
viation and the extreme values (only for n=200) of the fit indices obtained in the
simulation study 3 for n=100, 200, 500 are listed in table 3. Also in this study,
ECVI select the correct model for all the sample sizes. The RMSEA is equal to zero
for wrong models. All the indices exclude models A and D. The relative measures
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and RMSEA are inadequate to the choice between model B and C. In this case
the parameters estimate of λ32 ≅ 0 for model C suggest the correct model B.

TABLE 3

Study 3. Descriptive statistics of fit indices (B=correct model)

n=100  n=200 n=500

chi2 Mean Std.dev. Mean Std.dev. Min. Max. Mean Max.

Mod.B (8df) 8,068 3,757 7,313 3,547 1,422 17,067 7,109 18,269

Mod.A (9df) 41,99 10,56 75,24 14,72 38,17 112,32 173,12 238,30

Mod.C (7df) 6,828 3,545 6,331 3,356 1,338 15,306 6,229 18,208

Mod.D (9df) 93,95 20,44 181,92 30,11 104,80 258,92 462,65 587,53

RMSEA    

Mod.B (8df) 0,026 0,035 0,015 0,022 0,000 0,075 0,009 0,051

Mod.A (9df) 0,190 0,031 0,191 0,022 0,128 0,240 0,191 0,226

Mod.C (7df) 0,026 0,036 0,015 0,024 0,000 0,077 0,009 0,057

Mod.D (9df) 0,307 0,037 0,310 0,027 0,231 0,374 0,317 0,359

ECVI    

Mod.B (8df) 0,344 0,038 0,167 0,018 0,138 0,216 0,066 0,089

Mod.A (9df) 0,667 0,107 0,499 0,074 0,312 0,685 0,395 0,526

Mod.C (7df) 0,349 0,050 0,173 0,017 0,147 0,218 0,069 0,093

Mod.D (9df) 1,191 0,206 1,035 0,151 0,647 1,422 0,975 1,225

AGFI    

Mod.B (8df) 0,932 0,031 0,969 0,015 0,931 0,994 0,988 0,998

Mod.A (9df) 0,755 0,045 0,777 0,033 0,704 0,871 0,792 0,844

Mod.C (7df) 0,924 0,099 0,969 0,016 0,928 0,993 0,988 0,998

Mod.D (9df) 0,364 0,088 0,357 0,069 0,135 0,565 0,338 0,480

CFI    

Mod.B (8df) 0,996 0,007 0,998 0,003 0,987 1,000 0,999 1,000

Mod.A (9df) 0,905 0,026 0,905 0,019 0,857 0,956 0,907 0,935

Mod.C (7df) 0,986 0,100 0,998 0,003 0,988 1,000 0,999 1,000

Mod.D (9df) 0,753 0,056 0,751 0,041 0,650 0,852 0,742 0,824

IFI    

Mod.B (8df) 1,000 0,011 1,001 0,005 0,987 1,011 1,001 1,004

Mod.A (9df) 0,907 0,026 0,906 0,018 0,859 0,956 0,907 0,935

Mod.C (7df) 0,990 0,101 1,001 0,005 0,989 1,009 1,000 1,003

Mod.D (9df) 0,757 0,055 0,753 0,040 0,653 0,853 0,743 0,825

In the three simulation studies we have the following common results. In some
samples the RMSEA is equal to zero for wrong models. All the means of fit indices
depend on sample size except for IFI. Only ECVI select on the average the correct
model. All the fit indices examined exclude the severe misspecified model. For
small specification errors, the parameters estimate always suggest the correct
model.
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6.  CONCLUSION

A wide variety of fit indices has been proposed and many are available on soft-
ware packages. The effect of estimation methods, sample size, nonnormal data on
fit indices has been the object of many studies (see Gerbing and Anderson, 1993)
but little is know about the sensitivity of the fit measures to detect misspecifica-
tion.

To date there is not an index considered as the best index in fit assessment and
there are not threshold values accepted to distinguish between a “correct” and an
“incorrect” model. However, there are some points of consensus in overall fit
controversy, they are listed in Bollen and Long (1993b). It is important to under-
line that several different measures of overall fit should be used and the fit of the
components of a model should not be ignored.

In this study, the distribution of the data is normal and the replication reduce
the effect of sampling variability. Thus, we examine the behaviour of fit indices in
a nearly ideal situation of research. Notwithstanding, in the three studies only
ECVI select on the average the correct model for all the sample sizes. The others
fit indices do not seem sensitive in detection of slightly misspecification and
RMSEA is equal to zero in some samples for wrong models. All the fit indices
examined exclude the severe misspecified model. For small specification errors,
the parameters estimate always suggest the correct model. Further researches are
necessary for a better understanding of the sensitivity of the fit measures to detect
misspecification. The overall fit indices are only one of the available statistical
tools in model selection. In our example, the parameter estimate were the princi-
pal tool in the selection of the correct model among slightly misspecified models.
Other empirical tools in model selection are the analysis of residuals between
fitted and observed covariances, the t-values of parameter estimates, the modifi-
cation indices, but the study of these empirical tools are not the purpose of this
paper.

In applied research the sample variability, the quality of the measurements and
the nonnormal distribution of the variables are other potential source of errors in
model selection. In SEM, as in many other statistical models, the choice of a
model among competitive models with nearly the same fit to the data is often a
subjective matter instead of a statistical problem.
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SUMMARY

Fit assessment and selection between competitive models in SEM

This paper outlines some issues in fit assessment and in selection between competitive
models in Structural Equation Models (SEM). The theory on chi-square statistic and the
results of some simulation studies are reviewed and the methodological consequences are
discussed. Several goodnees-of-fit indices are discussed and their employment in fit
assessment and in the selection between competitive models are taken into consideration.
A Monte Carlo study was used to point out the difficulties connected with model selec-
tion in SEM under misspecification.

Keywords: structural equation models, LISREL, fit assessment, competitive models,
misspecification.

RIASSUNTO

Modelli ad equazioni strutturali: la valutazione dell’adattamento e la selezione tra modelli
competitivi.

In questo lavoro si evidenziano alcuni problemi nella valutazione dell’adattamento del
modello ai dati e nella selezione di modelli competitivi nel contesto dei modelli ad equa-
zioni strutturali formalizzati secondo il modello LISREL. La teoria sulla statistica del chi-
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quadrato è riesaminata sulla base dei risultati di alcune recenti simulazioni e si individua-
no le conseguenze metodologiche di tali risultati empirici. Si discutono quindi i principali
indici di adattamento proposti e il loro utilizzo nell’ambito della selezione tra modelli
competitivi. Uno studio di tipo Monte Carlo è utilizzato al fine di sottolineare le difficoltà
connesse alla selezione di modelli competitivi con errori di specificazione.


