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1. INTRODUCTION

In order to adapt to a changing climate, policymakers need information about what to
expect for the climate system. In particular, they need local information about changes
in extreme weather. Such information typically comes from regional climate models
(Rummukainen, 2010). A regional climate model is a downscaled global climate model,
a mathematical model that describes, using partial differential equations, the temporal
evolution of climate, oceans, atmosphere, ice, and land-use processes over a gridded spa-
tial domain of interest. An important issue is how well the regional models reproduce
observed extreme climate variables. There are several statistical problems associated
with such comparisons. Models typically produce output on grids in space and time,
while data are collected at various time scales at synoptic weather stations. Standard
geostatistical methodology can be used to upscale station data to grid squares (Berro-
cal et al., 2012), but there are no geostatistical tools that can be directly used to upscale
station extremes to grid square extremes.

From a statistical point of view it is natural to view climate as the statistical distribu-
tion of the variables of interest. In this paper we will consider minimum temperatures
in south central Sweden. Most climate models indicate that we should expect increases
in minima in this region (Solomon et al., 2007). Such increases can be critical for forests
when the intensities and areas of occurrence of pest species change (e.g., Kocmánková
et al., 2010; Marini et al., 2012).

In this article we will compare the distribution of seasonal minimum daily mean
temperatures as simulated by the Swedish regional model RCA3, driven by a European
reanalysis, to the distribution of seasonal minimum temperatures at 17 synoptic stations
in south central Sweden consisting of 12–48 years of data. We use the minima of the
daily means (rather than the daily minima), because this is more comparable with the
regional climate model output. (The regional model produces separate calculations of
daily minimum temperature, based on the time step used for the spatial resolution, but
for this analysis we did not have access to these model data.) Zwiers et al. (2011) used
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the annual maxima and minima of daily mean temperatures from climate models, but
compared them to annual maxima and minima of measured daily maxima and minima,
averaged over grid squares which were substantially larger than ours. The comparisons
between models and data in this paper are based on the same variable, and carried out on
a much smaller scale, in time (we compare seasonal temperatures) and in space (we have
smaller grid boxes). We emphasize that our comparisons are made upon the parameters
of the marginal extreme value distribution of the minima. In the discussion, we discuss
extensions to multivariate extremes.

We describe the details of the data sets used in Section 2. The methodology is pre-
sented in Section 3, while results can be found in Section 4. Finally, we discuss some
technical issues, our findings, and some of their consequences in Section 5.

2. DATA

The observations are downloaded from the Swedish Meteorological and Hydrological
Institute (SMHI) website, and consists of synoptic observations from 17 sites in an area
of south central Sweden, delineated by 57 to 63◦N and 12 to 19◦E. The longest of the
station series have data from March 1, 1961, through May 31, 2008. In this analysis
we will use daily mean temperature, as calculated by the Ekholm-Modén formula (see
Ma and Guttorp, 2013). We calculate seasonal minima of these values for each station
(In sequence, the minimum in December, January, February (DJF); March, April, May
(MAM); June, July, August (JJA); and September, October, November (SON)). A sum-
mary of the locations and the time series of the seasonal minima are shown in Figure 1.
We can see that there are 10 long records, a single medium length record, and 6 short
records. As expected, the time series of the seasonal minima have a strong yearly period-
icity, and by inspection correlate strongly over space. We further discuss the distribution
of the observed seasonal minima series below.

The regional model output consists of a control model of the SMHI regional model
RCA3 (Samuelsson et al., 2011), run using boundary conditions given by the ERA40
reanalysis (Uppala et al., 2005) in the earlier years, and the ERA-INTERIM reanaly-
sis (Uppala et al., 2008) in the later years. Based on a model temporal resolution of 7.5
minutes, the 2 meter temperature model values are calculated daily on a 12.5×12.5 km2

grid over the same region and the same time period as the longest station records. To be
comparable with the station temperatures, we restrict our analysis to the 2 meter tem-
perature given for the open land and snow land covers. (Other land types such as forest,
lakes and sea water, lakes and sea ice are available from the computer model output but
were not used in this analysis.) A map of the centroids of the 1989 grid squares contain-
ing open land or snow are shown in Figure 2. For the climate model output we calculate
seasonal minima for each grid square in the same fashion as for the station data.

3. METHODS

We use extreme value theory to analyze and model the seasonal minima that we have
calculated for both the station data and the regional climate model output. Below we
present the model for the observed seasonal minima. We fit the same type of model to
the seasonal minima from the regional climate model.
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Figure 1 – The left panel shows the location of the 17 synoptic observation sites in south central
Sweden. The right panel shows time series of the seasonal minima for these 17 locations.
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Figure 2 – The location of the centroids of the grid squares for open land and snow in the control
model run of the SMHI regional model RCA3.
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As each season can be considered to contain roughly a block of 91 days, we use a
block minima approach (see, e.g., Coles, 2001, for a summary of modeling block min-
ima, as well as other statistical methods for extremes). Suppose we are modeling the
station data. At each spatial location s ∈ D in our spatial domain of interest D (south
central Sweden), let Zt (s) denote the minima in year yt (s) at season dt (s) (taking on
values 1: DJF; 2: MAM; 3: JJA; 4: SON), for time index t = 1, . . . ,N (s). Here, N (s)
denotes the number of values at each spatial location. Then, under certain regularity
conditions, the negative of the minima series at each spatial location asymptotically fol-
low a generalized extreme value (GEV) distribution (Coles, 2001, Section 3.2). For each
time t and spatial location s , let Mt (s) = −Zt (s) denote the negative of the minima.
Then

Mt (s) ∼ GEV(eµt (s),σt (s),ξt (s)), (1)

conditionally independent over s and t . In this GEV distribution eµt (s) ∈ R is the lo-
cation parameter indicating values which the distribution of the negative minima are
concentrated around. Correspondingly let µt (s) = −eµt (s) be the location parameter
for the minima. In (1), σt (s)> 0 is the scale parameter defining the spread of the distri-
bution, and ξt (s) is the shape parameter. The tails of the GEV distributions are heavier
for higher values of the shape parameter (A negative shape parameter leads to bounded
tails; otherwise the tails of the distribution are unbounded.)

We think of the parameters of the GEV distribution as describing the climate, with
the changes in the parameters indicating seasonal differences and possible trends. Given
the climate, the model technically assumes that weather at different stations is condi-
tionally independent. This is an oversimplification, since typically events of extremely
cold air arise from arctic air moving south during a high pressure situation. So given
that one station is extremely cold, it is more likely that another is. We comment further
on this in the Discussion section.

In our model for the station data we assume the following spatio-temporal model for
the location parameters, {µt (s)}:

µt (s) = β0(s)+β1(s)(yt (s)− 1960)+
4∑

d=2

βd (s)I (dt (s) = d ), (2)

where s ∈ D, t = 1, . . . ,N (s) and I (·) is the indicator function. This model is an ex-
tension of a model defined in Mannshardt et al. (2013) to allow for seasonally varying
effects. In the model (2), β0(s) is a spatially varying intercept term for the DJF sea-
son, β1(s) is a spatially-varying yearly trend term, and βd (s) (d = 2, . . . , 4) defines the
spatially-varying seasonal effects for MAM, JJA, and SON, relative to DJF. To allow for
heterogeneity over space, we assume for each j = 0, . . . , 4 that each {β j (s)} is a Gaussian
geostatistical process with mean λ j and isotropic covariance, cov(β j (s),β j (s + h)) =

τ j exp(−||h||/φ j ), where τ j > 0 is the (partial) sill parameter, φ j > 0 is the range pa-
rameter, and ||·|| denotes the Euclidean norm. We assume mutual independence of these
Gaussian processes {β j (s)} over j .

In our model we further assume that the scale parameters vary over space, but are
constant in time; i.e., σt (s) = σ(s) for all t and s , and that the shape parameter, ξ ,
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TABLE 1
The prior distributions for the hyperparameters in the model for the minima for the station data. The

index j ranges over 0 to 4.

Parameter Prior distribution
λ j Normal with mean 0 and variance 10
τ j Inverse gamma with shape 0.01 and rate 0.01
φ j Gamma with shape 10 and rate 1

λσ Normal with mean 0 and variance 10
τσ Inverse gamma with shape 0.01 and rate 0.01
φσ Gamma with shape 10 and rate 1

ξ Normal with mean 0 and variance 0.5

is constant. This is an approximation, but simplifies the computation somewhat. In-
deed, the assumption of a constant shape parameter is reasonable in a number of dif-
ferent applications (e.g., Cooley et al., 2007; Sang and Gelfand, 2010). We suppose
{logσ(s)} is a Gaussian geostatistical process with mean λσ and isotropic covariance
cov(logσ(s), logσ(s+h)) = τσ exp(−||h||/φσ ). We assess this assumption in Section 4.

Let {sk : k = 1, . . . ,K} denote the locations of the K = 17 synoptic observation sites
in south central Sweden. Our parameters of interest are

θ =
�
{β j (s) : s ∈D, j = 0, . . . , 4},{logσ(s) : s ∈ D},ξ

{λ j : j = 0, . . . , 4},{τ j },{φ j },λσ ,τσ ,φσ
�T

.

Assuming independence of the hyperparameters, Table 1 summarizes the marginal prior
distributions used for this model. With the exception of the hyperparameters for the
shape parameter ξ and the spatial range parameters, we assume vague priors. For the
range parameter we use the gamma prior choice of Craigmile and Guttorp (2011), who
modeled daily mean temperature from the same synoptic stations. The results are robust
to minor changes in this choice of prior distribution. Let z denote the realized (Zt (sk ) :
k = 1, . . . ,K , t = 1, . . . ,N (sk ))

T vector. Let R(φ) denote the correlation matrix with
(k , k ′) element exp(−||sk − sk ′ ||/φ), β j = (β j (sk ) : k = 1, . . . ,K)T , and κ= (logσ(sk ) :
k = 1, . . . ,K)T . Then the posterior distribution is

π(θ|z ) ∝




K∏

k=1

N (s k )∏

t=1

f (zt (s)|eµt (sk ),σ(sk ),ξ )


×




4∏

j=0

nK (β j |λ j ,τ j R(φ j ))π(λ j )π(τ j )π(φ j )


×

�
|J | nK (κ|λσ ,τσR(φσ )) π(λσ )π(τσ)π(φσ )

�
π(ξ ). (3)

In the above expression f (z|eµ,σ ,ξ ) is the GEV density function evaluated at z with
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location eµ, scale σ , and shape ξ , nK (·|λ j 1,τ j R j (φ j )) is the density function for a K -
variate normal distribution with mean λ j 1 and covariance matrix τ j R j (φ j ) (here 1 is a
vector of ones), and J is the Jacobian of the transformation in transforming from σ(sk )
to logσ(sk) at all locations sk , k = 1, . . . ,K .

The posterior distribution described by equation (3) is not available in closed form.
In order to fit this model to the station data we use a Markov chain Monte Carlo (MCMC)
algorithm to sample from the posterior distribution. The algorithm used in this paper
is adapted from the algorithm given in the supplemental material of Mannshardt et al.
(2013), which allows for sampling more than two spatially varying Gaussian processes.

In order to compare distributions, we use Doksum’s shift function (Doksum, 1974).
The idea is to find a shift function∆(x) such that for random variables X and Y we have
X +∆(X )∼ Y . Empirically, if Gm is the empirical distribution function of a sample of
size m from Y and Fn is the empirical distribution function of a sample of size n from
X we estimate∆ by

∆̂(x) =G−1
m (Fn(x))− x.

Using Kolmogorov-Smirnov results enables construction of simultaneous confidence
bands for∆ (Doksum and Sievers, 1976).
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Figure 3 – Seasonal minima of the observed daily means plotted against the season minima of
observed daily minima. The solid line, with an intercept of zero and a unit slope, is used as a
guide to compare these two distributions.

4. RESULTS

The seasonal minimum daily mean temperature, which is what we use in this paper,
is of course somewhat higher than the seasonal daily minimum temperature. Figure 3
demonstrates this effect by season, for the stations used in our analysis. For remainder
of the paper we consider the seasonal minimum daily mean temperature.

We compare the seasonal minima of the regional model output to the seasonal min-
ima of the daily mean temperatures at the 17 locations in south central Sweden in two
different ways. First we look at the distribution of minimum temperature over the
grid square containing the station, comparing the distributions using GEV models and
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Figure 4 – Seasonal minima calculated for the regional climate model RCA3 plotted against the
seasonal minima for the observed daily mean temperatures. The solid line, with an intercept of
zero and a unit slope, is used as a guide to compare these two distributions.

Doksum’s shift function. Second, we fit our hierarchical Bayesian GEV model to the
observed minima and the regional climate model minima, to make comparisons with
the regional climate model over the entire spatial region. All data management and
computing was carried out in R (R Development Core Team, 2007). Maximum likeli-
hood based estimation of the GEV model parameters was obtained using the ismev R
library (http://www.ral.uar.edu/~erig/softextreme.php).

4.1. Comparing the seasonal minima for the climate model with station data

We compare the observations at each station with the regional climate model obser-
vations in the grid cell containing that station. We make these comparisons without
regard to spatial or temporal effects that may be present. Figure 4 compares, by season,
the seasonal minima for the station data with the seasonal minima for the RCA3 re-
gional climate model. We use the solid line on each panel, with an intercept of zero and
a unit slope, as a guide to compare these two distributions. The seasonal minima for the
station data and the climate model agree best in the autumn (SON). In the winter (DJF)
and spring (MAM), the observed minima tend to be slightly higher than is observed for
the regional climate model. For the summer (JJA), this relationship is reversed – we
observe cooler minima than is predicted by the model.

For each season we fit a GEV model to the negative of the observed seasonal min-
ima using a model for the location parameter that is a linear function of the years since
1960. For each season we assume the scale and shape parameters are constant over the
stations. The results are shown in Table 2. We summarize the negative of the intercept
and slope parameters to make our comparisons on the original scale of the observed
seasonal minima. Assuming independence, the table shows a significant intercept ef-
fect, and a positive slope in most seasons, indicating that the distribution of minima are
strongly seasonal and tend to be warmer as the years progress. There is a suggestion
that the scale parameter may be smaller in the summer (we discuss this point later in the
paper), and that the shape parameters may differ (although there is strong correlation
between the estimates of the scale and shape).
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TABLE 2
The estimated GEV model parameter estimates fit to the observed seasonal minima, using the year as

a predictor. A different model is fit to each season. The numbers in parentheses are the standard
errors, assuming independence.

DJF MAM JJA SON
Intercept -16.90 ( 0.64 ) -6.87 ( 0.43 ) 9.10 ( 0.19 ) -5.49 ( 0.45 )
Years after 1960 0.09 ( 0.02 ) 0.03 ( 0.01 ) 0.00 ( 0.01 ) 0.03 ( 0.01 )
Scale 6.12 ( 0.20 ) 4.22 ( 0.15 ) 1.89 ( 0.06 ) 4.46 ( 0.15 )
Shape -0.16 ( 0.03 ) -0.07 ( 0.03 ) -0.16 ( 0.02 ) -0.02 ( 0.03 )

TABLE 3
As in Table 2, but for GEV models fit to the regional climate model minima, by season, in the grid

boxes containing the observed station data

.

DJF MAM JJA SON
Intercept -20.55 ( 0.45 ) -9.18 ( 0.45 ) 10.15 ( 0.12 ) -6.08 ( 0.30 )
Years after 1960 0.10 ( 0.02 ) 0.03 ( 0.02 ) 0.00 ( 0.00 ) 0.04 ( 0.01 )
Scale 6.18 ( 0.16 ) 5.78 ( 0.16 ) 1.63 ( 0.05 ) 4.20 ( 0.12 )
Shape -0.20 ( 0.02 ) -0.15 ( 0.03 ) -0.01 ( 0.02 ) -0.01 ( 0.03 )

Table 3 shows the corresponding summary of the GEV model fits by season to the
regional climate model minima for the grid boxes containing an observed site. With the
exception of the estimates of the shape parameters, the direction of effects are quite sim-
ilar between the two models, indicating preliminary evidence of a concordance between
the climate model output minima and the observed minima over south central Sweden.
However, we should be cautious in interpreting too much from this non-spatial analy-
sis. In Sections 4.2 and 4.3 we use spatially varying parameter models to more carefully
examine spatial effects, choosing to allow location and scale parameters to vary in space,
but keeping the shape parameter constant.

Bias correction methods for regional model output relative to data in the litera-
ture (e.g., Bordoy and Burlando, 2013) tend to focus on location rather than scale. In
order to reduce the variability of model output to that of the data, using Doksum’s shift
function method (Doksum and Sievers, 1976), we can transform each model output to
the distribution of the data. For an example, see Figure 5. This figure demonstrates
anomalous behavior of the regional climate model around 0◦C. The climate model pro-
duces no minimum open air temperatures in an area around freezing temperatures (for
example, for the grid square containing Station 1 there are no RCA minima between
about -2 and 5◦C, but there are observed minima in that range of values). Part of the
reason for this is the strong seasonal relationships that we see in the minima, but also
there may be clustering effects from the reanalysis model that drives the regional model
(see Kharins and Zwiers (2000), p. 3764). Examining Figure 4 again we that minima
around 0◦C for the regional climate model are most likely in the autumn (SON). They
are less likely for the spring (MAM) and summer, and unlikely in the winter (DJF).

The difficulty in extending this approach further is to develop a spatial model for the
shift functions. This requires more observational data than we have available. Nikulin
et al. (2011) use gridded data from E-OBS (Haylock et al., 2008), but these have the disad-
vantage that the gridding approach smooths the original data, and thus does not preserve
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Figure 5 – Estimates of the Doksum shift function, as a function of the seasonal RCA3 minimum
value along with simultaneous 95% confidence intervals.
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extremes.

4.2. Fitting the hierarchical Bayesian GEV model to the observed seasonal minima

We fit the hierarchical Bayesian GEV model described in Section 3 to the observed sea-
sonal minima using Markov chain Monte Carlo. We assessed convergence of the Markov
chains by inspecting trace plots from two parallel chains, started from different starting
conditions. For each chain we removed the first 2,000 draws as burn-in. Our results are
based on running each of the two chains for 50,000 further draws, thinning every 10.
This gave us 10,000 samples from the posterior.

The second and third columns of Table 4 displays marginal summaries of the poste-
rior distributions of the hyperparameters in the model. In agreement with the models
presented earlier in this section there is strong evidence that the shape parameter is nega-
tive, and hence the distribution of seasonal minima is bounded. The posterior summary
for the parameter λ1 (the mean of the geostatistical process for {β1(s)}, the spatially-
varying process for a yearly trend in the location parameter) indicates weak evidence of
warming of the minima. The posterior mean value corresponds to an increase of 0.05
degrees celsius per year. The parameters λ2, λ3 and λ4 are positive indicating that the
non-winter minima are warmer. From this parameter alone there is suggestion the SON
effect is the larger than the MAM and JJA effect. However this does not account for the
larger spatial variability in the parameters for the MAM and JJA seasons.

Figure 6 displays summaries of the spatially varying parameters at each regional cli-
mate model grid box centroid, based on producing samples of the process conditional on
the posterior distribution of the parameters. For the spatially varying seasonal effects,
we choose to summarize the intercepts for each season (DJF:β0 (s); MAM:β0(s)+β2(s);
JJA: β0(s)+β3(s); SON: β0(s)+β4(s)). Given the form of the model, these spatially-
varying intercepts correspond to the posterior location parameter for the four seasons
in 1960. There are strong spatial trends in these four seasonal spatially-varying inter-
cepts. Regardless of the season, the minima are colder in the north and toward the center
(which also tends to be at a higher elevation), and warmer to the south east. Comparing
the seasons we can see that the spatial patterns do differ, and that the seasonal effects
are asymmetric (the MAM and SON effect are not identical). As expected the minima
tend to be warmer in the summer, JJA. The spatially-varying slopes characterizing the
year effect (relative to 1960) in the location parameter of the GEV distribution also has
a distinctive spatial pattern. It is strongest (the location parameter increases by around
0.10◦C per year on average) in the center of the north of the region of interest, and weak-
est (the location parameter increases around 0.04◦C per year on average) in the south and
west.

4.2.1. Model verification
Quantile plots (see, e.g., Coles, 2001, Section 6.2.3) were used to assess the distributional
assumptions made by the GEV model on a site-by-site basis. The quantile plots for the
model fit to the observational data, shown in Figure 7, indicate excellent goodness of fit
at all locations (the majority of the values are within the simultaneous 95% confidence
limits). The goodness of fit of this model is improved over the fit of a model in which the
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TABLE 4
Posterior means and associated 95% credible intervals (CIs) for the GEV model parameters fit to the

observed seasonal minima, and the regional climate model seasonal minima.

Observed stations RCM
Parameter Post. mean 95% CI Post. mean 95% CI
λ0 -4.09 (-9.98, 2.05) -17.86 (-20.24, -11.74)
τ0 62.60 (25.15, 141.67) 9.84 (4.43, 44.81)
φ0 6.67 (3.84, 10.37) 14.92 (9.53, 19.30)

λ1 0.05 (-0.05, 0.16) 0.04 (0.02, 0.06)
τ1 0.00 (0.00, 0.01) 0.00 (0.00, 0.00)
φ1 6.09 (3.14, 9.90) 15.88 (1.01, 21.80)

λ2 5.52 (0.99, 8.95) 9.77 (9.07, 10.40)
τ2 8.97 (2.58, 23.48) 0.65 (0.32, 1.78)
φ2 5.50 (2.81, 9.15) 7.07 (1.77, 11.06)

λ3 4.57 (-1.85, 10.87) 26.51 (24.16, 28.56)
τ3 78.90 (31.74, 171.40) 5.15 (2.89, 19.29)
φ3 7.60 (4.62, 11.41) 12.91 (1.01, 17.50)

λ4 8.72 (6.75, 9.92) 12.70 (11.59, 13.65)
τ4 0.84 (0.02, 3.37) 1.49 (0.78, 4.56)
φ4 5.29 (2.58, 8.87) 8.44 (0.92, 12.05)

λσ 1.22 (0.90, 1.52) 1.28 (1.23, 1.34)
τσ 0.04 (0.01, 0.11) 0.01 (0.00, 0.02)
φσ 5.18 (2.60, 8.65) 7.76 (0.11, 11.63)

ξ -0.18 (-0.21, -0.15) -0.14 (-0.15, -0.14)
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Figure 6 – Posterior means and standard deviations of the spatially varying parameters in the hi-
erarchical Bayesian GEV model for the observed seasonal minima.
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Figure 7 – Site-by-site quantile plots to assess the goodness of fit of the hierarchical Bayesian GEV
model fit to observed seasonal minima.
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Figure 8 – By season, time series plots of the observed Borlänge seasonal minima are shown in
black. The gray limits show pointwise 95% predictive intervals, generated from the hierarchical
GEV model fit to the observed seasonal minima.

scale parameter of the GEV model was held fixed over spatial locations. This indicates
the utility of using a hierarchical Bayesian model that borrows strength in estimating
the GEV parameters over spatial locations.

To further examine the quality of the marginal GEV model fit we use the observed
series at Borlänge which is located at 15◦ 30’ E and 60◦ 25’ N, at an elevation of 152
meters. This station has been moved twice, and has long stretches of missing data, and
was not included in the GEV model fit. Let sB denote the spatial location of the Borlänge
station. At this location seasonal minima were simulated from a GEV distribution,
using the posterior spatially-varying parameters for the location, {β j (sB )}, and the scale
σ(sB ), along with posterior distribution for the scale parameter ξ . Based on calculating
pointwise 95% prediction intervals for the seasonal minima, we found that 99% of the
105 observed seasonal minima at this station were included in these prediction intervals.
Time series plots of these prediction intervals by season (in gray) are shown in Figure 8.
Comparing to the observed time series (shown in black) we can see that the lack of fit is
due to underestimating the variation of the seasonal minima in the summer. We discuss
the need to investigate this further in Section 5.

4.3. Fitting the hierarchical Bayesian GEV model to the regional climate model seasonal
minima; making comparisons

We next fit the hierarchical Bayesian GEV model described in Section 3 to the RCA
regional climate model output seasonal minima using Markov chain Monte Carlo. To
be able to fit such a large model to the minima series at 1989 spatial locations, we made
two approximations. Firstly, in updating the spatially varying GEV parameters, we cal-
culated the acceptance ratios for Metropolis updates at each spatial location using the 15
nearest neighbors, rather than all the spatial locations. Experiments showed very little
effect upon the results by increasing this number above 15. In updating the hyperpa-
rameters in the spatial models, we broke the spatial field up into 4 independent regions
(northwest, northeast, southwest, and southeast). This sped up the inversions required,
but again had little effect on the results. To ensure that our chains were mixing we com-
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pared the results of fitting the Bayesian model to the entire dataset with results from
fitting our model to smaller, randomly selected, subsets of the regional climate output.
Except for an increase in the uncertainty estimates when smaller fractions of the data
were used, our results were robust.

As for the observational data model, we assessed the goodness of fit of the hierarchi-
cal GEV model fit to the seasonal minima in the RCM output using quantile plots (not
shown). The goodness of fit was even better than the fit for the observational minima.

The right two columns of Table 4 displays marginal summaries of the posterior dis-
tributions of the hyperparameters in the GEV model for the seasonal RCM minima, and
Figure 9 shows posterior summaries of the corresponding spatially varying parameters.
While the intensity scales of the posterior standard deviations differ in Figure 9 relative
to Figure 6, reflective of the increase in the certainly of the spatially varying parameters
in the regional climate output, we have fixed the intensity scales of the posterior means
in Figures 9 and 6 to be the same for the two models. This aids in the comparison of the
spatial fields.

Before discussing these spatial fields, we outline a number of conclusions made from
comparing the posterior distributions of the GEV model hyperparameters for the ob-
served minimal and the RCM minima. The uncertainty of the spatial fields (as measured
by {τ j } and τσ ) is smaller for the RCM model over the observed station model. This
decrease in the variance of the spatial field for the RCM model versus the station model
is associated with increased spatial range parameters in the RCM model, as well as spatial
mean values that are larger in magnitude for the RCM model. Comparing the 95% pos-
terior credible intervals, there is evidence from Table 4 that the yearly linear slope in the
location parameters for the GEV model for the RCM minima is significantly positive
(a 95% credible interval of between 0.02 and 0.06 does not contain zero), however this
slope in the location parameter may not be as large as that posited for the station model.
From the marginal summaries the scale parameters may be quite similar between to the
two models, but the shape parameter is larger for the RCM model versus the observed
model (−0.14 versus −0.18). The could be an effect of data length, or could be due to
the parameterization of the regional climate model. Exploring the spatial distributions
of the location parameters and scale parameters in more detail, we can see that except for
the yearly slope location effect the spatial patterns are quite similar. The biggest differ-
ence spatially is the yearly slope parameter, which the observed minima model estimates
to be much higher in the north than for the RCM model. A possible reason could be
that a closer comparison of Figure 6 and 9 indicates that the seasonal spatial patterns are
more negative in the north for the regional climate model, possibly suggesting that the
seasonal patterns are changing over time. Given the limited spatial and temporal cov-
erage of station data in the northwest (site 2 is a very short record) it would be worth
obtaining more station data for the northwest region to confirm the warming trend in
this region.

5. DISCUSSION

This article demonstrates an extreme value analysis that allows us to compare the distri-
bution of the extremes of the observations with the distribution of extremes of the cli-
mate model output. There are number of ways that we can extend our analysis. We can
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Figure 9 – Posterior means and standard deviations of the spatially varying parameters in the hi-
erarchical Bayesian GEV model for the RCM seasonal minima.
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consider more general models to compare the extreme value distributions. For example
we could allow for nonlinear trends in the location parameter (see, e.g., the discussion in
Gaetan and Grigoletto, 2007), and allow for more general models for the scale and shape
parameters. In particular, our analysis points towards allowing the scale parameter in
the GEV distribution to additionally vary by season.

It is possible to replace the block maxima approach with exceedance analysis. While
this may seem to include more data, the temporal dependence in the daily data would
tend to require declustering of exceedances, thereby reducing the potential advantage of
exceedance analysis.

Another issue that we have not yet tackled is the change of support question. For
the climate model output, what does the seasonal minimum calculated for a grid box
represent? Is it the minimum over the grid box region, or does it represent the value
of the minimum at the centroid of the grid box? We could answer these questions by
simulating minima (based on the observation model) at a finer spatial scale than the
regional climate model output, and then changing support by calculating minima at the
grid box level. Answering this question, however, may require the use of multivariate
models for extremes, which we introduce below.

In this article we have modeled the marginal distribution of extremes, assuming con-
ditional independence of the extremes in space and time. We used a block minima ap-
proach. A competing marginal modeling approach would be to compare the distribu-
tions of the station data and the regional climate model output below a range of different
thresholds. While threshold methods retain more values for analysis, care is required in
the presence of clustering in space and in time (see, e.g., Coles, 2001). In future work
we will look at modeling the dependent extreme values in space and in time. There are
a number of approaches for modeling multivariate extremes. We can either take a con-
ditional modeling approach (e.g., Ledford and Tawn, 1996; Heffernan and Tawn, 2004),
a max-stable approach (see, e.g., Davison et al., 2012), or a copula-based approach (e.g.,
Ghosh and Mallick, 2011). In practice methods of multivariate extreme value inference
can be computationally demanding (e.g., Ribatet et al., 2012).
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SUMMARY

Can a regional climate model reproduce observed extreme temperatures?

Using output from a regional Swedish climate model and observations from the Swedish synop-
tic observational network, we compare seasonal minimum temperatures from model output and
observations using marginal extreme value modeling techniques. We make seasonal comparisons
using generalized extreme value models and empirically estimate the shift in the distribution as
a function of the regional climate model values, using the Doksum shift function. Spatial and
temporal comparisons over south central Sweden are made by building hierarchical Bayesian gen-
eralized extreme value models for the observed minima and regional climate model output. Gen-
erally speaking the regional model is surprisingly well calibrated for minimum temperatures. We
do detect a problem in the regional model to produce minimum temperatures close to 0◦C. The
seasonal spatial effects are quite similar between data and regional model. The observations in-
dicate relatively strong warming, especially in the northern region. This signal is present in the
regional model, but is not as strong.


