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1. INTRODUCTION

In the Mediterrean Sea population parameters of demersal resources fluctuate over spa-
tial and temporal scales due to the variability of abiotic and biotic factors as well as to
human activities. Many changes in the environmental conditions occurred in the Io-
nian Sea at the end of 1980, due to the Eastern Mediterranean Transient (EMT) and to
an internal process occurring between Adriatic and Ionian water masses on a decadal
scale called Bimodal Adriatic-Ionian Oscillations (BiOS) (Gac̆ić et al., 2010). The EMT-
BiOS related regime shift recorded in the early 1990s involved sea surface temperature,
sea level pressure, surface and deep circulation of water masses, salinity and nutrient
changes, affecting several marine ecosystem components encompassing more trophic
levels and different Mediterranean basins (Civitarese et al., 2010; Conversi et al., 2010).

The changes in abundance observed in some demersal resources in the North-Western
Ionian Sea were identified to be linked to both changes in physical environment and
those due to fishing (D’Onghia et al., 2012). These changes were only detected during
time when no spatial analyses were carried out. Indeed, the North-Western Ionian Sea,
along the Italian coasts, covers a geographic area of about 3◦ 50’ in latitude and 3◦ in
longitude. In this area, the deep-water shrimps Parapenaeus longirostris (deep-water rose
shrimp, Lucas, 1846) and Aristaeomorpha foliacea (giant red shrimp, Risso, 1816) rep-
resent two demersal resources of primary importance. P. longirostris is widespread at
depths between 18 and 711 m (Maiorano et al., 2010) and mostly on continental shelf
and shelf edge (D’Onghia et al., 1998b), preferring waters with high temperature and
salinity (14-15 ◦C and 38 psu, respectively) (Ghidalia and Bourgois, 1961; Ungaro and
Gramolini, 2006). Though A. foliacea is found at depths between 127 and 1145 m (Maio-
rano et al., 2010) it is preferentially distributed on the upper slope (350-700 m), showing
a shallower distribution in the winter-spring and a deeper one during summer-autumn
(Tobar and Sardá, 2010; D’Onghia et al., 1998a). The giant red shrimp seems to prefer
high values of the water temperature (approximately 13.5◦C) and salinity (38.5 psu) that
are typical characteristics of Levantine Intermediate Water (LIW) (Ghidalia and Bour-
gois, 1961).
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The aim of the present study is to evaluate the relationships between the spatio-
temporal distribution of these two shrimps and environmental variables in the North-
Western Ionian Sea. Data from trawl surveys have been analyzed in a spatio-temporal
domain from 10 down to 800 m and between years 1995 and 2006. Here the main
modelling issue refers to accounting for spatio-temporal dependencies of zero-inflated
continuous responses. Previous proposals include the use of Zero Inflated Generalized
Additive Models (ZIGAM’s) proposed by Liu and Chan (2008). This approach consists
in assuming the existence of two data generating processes: one process regarding the
zeroes and another one for non-zero values. In many cases, the two processes are influ-
enced by common factors and we can presume that they are bound by a proportionality
constraint. In this case we talk about COnstrained Zero-Inflated Generalized Addi-
tive Models (COZIGAM’s). As an alternative we propose to use Generalised Additive
Models with a particular distributional assumption allowing for zero-inflation. While
subsection 2.1 contains a detailed description of the sampling method and data set, in
2.2 we introduce spatio-temporal Generalized Additive Models and a specific class of dis-
tributions suitable to model zero-inflated abundance data. In Section 3 we summarize
the main results achieved and discuss their relevance in connection with factors affect-
ing the fauna distribution in the marine ecosystem. Finally Section 4 is dedicated to
some concluding remarks and the illustration of possible further developments of the
research.

2. MATERIALS AND METHODS

2.1. Data collection

Fishery data were collected during experimental trawl surveys conducted from 1995
to 2006 in the North-Western Ionian Sea as part of the international project MED-
ITS (MEDiterranean International Trawl Surveys). The study area runs from Capo
d’Otranto (LE) (40◦ 06’ N - 18◦ 31’ E) to Capo Passero (SR) (36◦ 41’ N - 15◦ 10’ E) for a
total surface of 16,350 km2 at depths between 10 and 800 m. This Geographical region
was divided into three sub-areas: Apulia; North-Calabria and South-Calabria (Figure 1).

The sampling design adopted was random-stratified by depth. With regard to each
depth range, the allocation of hauls was defined proportionally to the extension of the
corresponding stratum. During each experimental haul, a Scanmar Sonar System (Fioren-
tini et al., 1994) was placed on the trawl net in order to provide information about its
proper functioning and horizontal opening, the latter being used to standardize abun-
dance data to the swept surface unit. This standardization provides density (N/km2)
and biomass (kg/km2) indices for each species and survey at every haul location. Fi-
nally the median carapace length to the nearest mm was obtained for individuals of the
two species sampled at every haul. Data for P. longirostris regards 247 trawl hauls carried
out between 100 and 500 m while those for A. foliacea includes 369 trawl hauls from 500
down to 800 m.

Density and biomass indices, and carapace length (mm) of the two species were con-
sidered as population features (or population variables in what follows) influenced by
environmental factors. Temperature might be one of the primary factors producing
changes in the mentioned population variables. Sea surface temperature (SST) data for
the three areas and 12 years were obtained using the AVHRR satellite data (Advanced
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Figure 1 – Map of the study region divided into three sub-areas with bathyal curves and haul
locations (P. longirostris in pink, A. foliacea in red).

Very High Resolution Radiometer, http://podaa
.jpl.nasa.gov/). Precipitation
values (expressed in mm) for the three areas and 12 years were recorded from meteo-
rological archives on the web (www.ilmeteo.it). Fluctuations in the difference of at-
mospheric pressure between Iceland and the Azores contribute to the so called North
Atlantic Oscillation (NAO). Variations of the NAO influence the weather on a large
scale over the North Atlantic and Europe and have a strong impact on the oceanic con-
ditions, including the Mediterranean region. The normalized difference in pressure be-
tween Algiers and Cairo is known as the Mediterranean Oscillation Index (MO). Val-
ues of the two barometric indices for the selected time period were obtained on the
web (http://www.
gd.u
ar.edu/) and considered for their influence on demersal re-
sources. The depth of the experimental trawling hauls was also considered as an en-
vironmental factor influencing the species distribution. Finally, as an anthropogenic
influence on the fishing resources, a proxy measure of the fishing effort was obtained
as the number of potential working days according to weather and sea conditions, pub-
lic holidays, required temporary closures of fishing activities and technical stops. This
proxy was evaluated for every geographical area and every year involved in the analysis.

2.2. Spatio-temporal modelling

A high proportion of zero counts occurs in the two species (30% of 369 catches for the
giant red shrimp, and 15% of 247 catches for the deep-water rose shrimp), causing zero-
inflated distributions for density and biomass data (zero counts correspond to NA’s in
the median carapace length, which has thus a non-zero-inflated distribution for both
species): such zeroes are structural depending on the adaptation of the species to the
variable environmental conditions in the Mediterranean basin. Fishery trawl survey
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data often contain a large number of zero catches, due to the fact that fishes swim in
schools influenced by food availability and irregular current patterns (Ciannelli et al.,
2007). Zero-inflated data abound in ecological studies as well as in other scientific and
quantitative fields, where the data contain an excess of zero responses. Statistical meth-
ods for zero-inflated data find application in a wide range of studies including the count
of rare species (Cunningham and Lindenmayer, 2005), the distribution of fish eggs and
larvae (Fox et al., 2000) and of adult fishes (Bi et al., 2007), as well as pests in agricul-
tural systems (Ruiz Cárdenas et al., 2009). The term “inflated” is used to stress that the
probability of getting zero values is higher than the one expected under some classic dis-
tributional assumption (e.g. log-normal, Poisson, etc.). Such data cannot be analyzed
by standard statistical distributions (e.g., log-normal, Poisson, etc.) because of the high
proportion of zeroes (Zuur et al., 2009).

With the purpose of accounting for zero-inflation in the data distribution, an expo-
nential dispersion model (EDM) was assumed for the density and biomass indices. The
exponential dispersion model is a two-parameter family of distributions consisting of a
linear exponential family with an additional dispersion parameter (Dunn et al., 2009).
Members of EDM have density functions or probability mass functions of the form:

f (y|θ;φ) = α(y,φ)exp
�

yθ− k(θ)

φ

�

(1)

where: α and k are known functions, θ is the canonical parameter and φ > 0 is the
dispersion parameter. The domain of the canonical parameter θ is an open interval
satisfying k(θ)<∞. The function k() is called the cumulant function of the EDM be-
cause, if φ= 1, the derivatives of k give the successive cumulants of the distribution. In
particular, the mean of the distribution is µ = k ′(θ) and the variance is φk ′′(θ). The
mapping from θ to µ is invertible, so we may write k ′′(θ) = V (µ) for a suitable func-
tion V (µ), called the variance function of the EDM, which describes the mean-variance
relationship of the distribution when the dispersion is held constant. If Y is distributed
as a member of the EDM with mean µ, variance function V () and dispersion φ, then
the variance of Y can be written as Var(Y ) = φV (µ). Of special interest is the class
of EDMs with power mean-variance relationships for which V (µ) = µp for some p,
called index parameter. Following Jørgensen (1997), we call these Tweedie distribution
models. Tweedie models are natural candidates for modelling continuous positive data
(Dunn and Smyth, 2008), as they include most of the important distributions commonly
used with generalized linear models such as the normal (p = 0), Poisson (p = 1), gamma
(p = 2) and the inverse Gaussian (p = 3) distributions. In this study a value of p be-
tween 1 and 2 was considered as in this case the Tweedie model can be represented as a
mixed distributions with a positive mass at zero and with support on the non-negative
reals. In this special case Tweedie distributions are also known as “compound Poisson”
(Jørgensen and Smyth, 2002) as they can be obtained as Poisson mixtures of gamma dis-
tributions. Tweedie distributions with 1< p < 2 are thus especially appealing to model
zero-inflated data. Tweedie distributions are used in a diverse range of fields including
fisheries (Candy, 2004; Shono, 2008; Tascheri et al., 2010) and rainfall prediction (Dunn,
2004). Dunn et al. (2009) give a survey of published applications. Maximum likelihood
estimates of p are obtained by univariate optimization of the profile likelihood evalu-
ated on a grid of possible values of p, implemented in the R package Tweedie (Dunn,
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2013).
A general approach to data modelling for the three biological variables and for both

species, consists in assuming that the distribution of the response is affected by a num-
ber of predictors. In this work Generalized Additive Models (GAMs) are considered
(Hastie and Tibshirani, 1990), in which the mean of the response depends on an addi-
tive predictor through a link function and the response distribution can be any member
of the exponential family. GAMs allow for unknown smooth functions of observed
explanatory variables in the linear predictor and have already been widely used in the
spatio-temporal modelling of marine species (Borchers et al., 2009; Augustin et al., 1998;
Daskalov, 1999). In these studies the authors choose to use GAMs to model the spatio-
temporal distribution of species abundance as a function of geographical and environ-
mental variables. According to empirical evidence, space-time nonseparable models were
estimated for each variable and for both species. For zero-inflated count data, an alterna-
tive nonseparable spatio-temporal model specification was adopted in Musio et al. (2009).
Models for our zero-inflated continuous responses are specified as follows:

g (µi ) =β0+ te(loni , lati , ti )+
m
∑

j=1

s j (xi j ) = η(xi )

where g is the function linking the mean response µi to the additive predictor η(xi ).
Semi-parametric smooth functions of observed covariates s j ’s are specified as thin plate

regression splines by linear combinations of basis functions. The term te is a tensor prod-
uct spline, a non-isotropic smooth function useful for representing the simultaneous ef-
fects of multiple predictors measured in different units or where very different degrees of
smoothness are appropriate (such as spatial coordinates and time points). Tensor prod-
uct smoothers are invariant to linear rescaling of covariates, and can be quite computa-
tionally efficient. Also tensor product splines can be expressed as linear combinations
of multivariate basis functions.

The use of spline functions allows to specify different features of algorithmic and
statistical efficiency by the automatic selection of the smoothing parameters, i.e. of the
smoothing degree applicable to every term. In the spline case this is translated in the
specification of the number of effective degrees of freedom to assign to every smooth
function. To avoid overfitting estimates, possibly due to a large number of highly non-
linear smooth functions, GAMs are usually estimated by penalized likelihood maximiza-
tion, solved by Penalized Iteratively Reweighted Least Squares, P-IRLS (Wood, 2006), in
which the model likelihood is modified by the addition of a penalty for each smooth
function, penalizing its "wiggliness". Basic GAM fitting implies the minimization of:

||y −Xβ||2 +
m
∑

j=1

λ j

∫ 1

0
s ′′j (x)d x (2)

where the model matrix X contains a set of basis functions for each smoother s j and
covariate values for every linear effect, β is a parameter vector and y is the response
variable. The second part of this equation is a penalty and allows to controll the trade-
off between goodness of fit and model smoothness. The second-order derivatives of
the smoothing functions s j ’s, summarize the smoothness of the nonlinear terms. If λ j
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is very large, the corresponding smoother will be a straight line. On the other hand,
if λ j is small we are likely to end up with a considerably less smooth curve. Because
s j ’s are linear in the parameters, the penalty can always be written as a quadratic form,
and GAM fitting can be resumed addressing a least squares problem given λ j ’s. The es-
timation of the smoothing parameters λ j is then addressed minimizing predictor error
criteria like Generalized Cross Validation (GCV) or Un-Biased Risk Estimator (UBRE).
When the scale parameter is known the expected mean square error minimization leads
to estimation by UBRE, otherwise GCV is called for. In this study GAM’s fit was per-
formed by R function mg
v, (Wood, 2006) implementing P-IRLS estimation with GCV
and UBRE. A Tweedie model was adopted for the zero-inflated distributions of the den-
sity and biomass of both species.

Terms significance and overall GCV scores were considered for model comparison.
A given model was compared to a model with one or more smooth terms replaced by
parametric terms or removed. Smooth terms candidate for replacement by paramet-
ric terms have estimated degrees of freedom close to their minimum. Smooth terms
candidate for removal are identified by reference to approximate p-values. As a general
criterion we choose to preserve the significance of spatio-temporal effects, eventually
avoiding the inclusion of overlapping effects.

3. RESULTS

In this section we report the results of applying GAMs to the data described in Section
2.1 assuming Tweedie distributions for the zero-inflated population variables density
and biomass. For these two response variables, in order to get a better fit to the assumed
Tweedie family, we considered the logarithmic link function. For the same reason the
squared root transformation was adopted for the density of the rose shrimp and the
biomass of both species. As expected, estimates of the Tweedie index parameter p ob-
tained as mentioned in Section 2.2 and reported in Table 1 and 2 imply zero-inflation of
the relative distributions. The non-zero-inflated median carapace length was assumed
normally distributed with identity link function for both species.

Table 1 and 2 show the estimates of linear and smooth effects involved with the
spatio-temporal distribution of the features of the two shrimp populations. Significant
spatio-temporal effects correspond to the distributions of both species being related to
some areas along the Ionian arc. During 1995 and 2006, P. longirostris was found to be
more abundant along the South Calabria and A. foliacea along Apulia. In these years the
greatest sizes were mostly detected along this latter region in both species (Figure 3). P.
longirostris shows a nonlinear relation with depth (Figure 3) with higher values of the
density for depths between 200 and 300 m and a decrease beyond 300 m. Density and
biomass indices of A. foliacea decrease with depth, while the relationship of the median
carapace length with depth is linear, with positive coefficient, for both species (Table 1
and 2). On the one hand, the geographic and depth distribution of both species along
the Ionian arc reflects their life strategies (D’Onghia et al., 1998b, 1998a), on the other
hand, the spatio-temporal fluctuations observed throughout the study period could be
related to the modification of the water mass properties and thermohaline circulation
occurred in the Ionian Sea (e.g. Conversi et al., 2010; Gac̆ić et al., 2010). Winter NAO
index significantly influenced the three population variables of P. longirostris and the
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TABLE 1
Model estimates for Parapenaeus longirostris a

Density Biomass Length

Index parameter p 1.26 (1.195, 1.356) 1.26 (1.197, 1.364)

Linear terms

coefficients

Int. 3.33 (< 0.001) 0.80 (< 0.001) 25.30 (< 0.001)

depth 0.04 (< 0.001)

SST -0.58 (0.0198)

Smooth effects

degrees of freedom

long, lat, year 14.34 (< 0.001) 14.70 (< 0.001) 22.82 (< 0.001)

depth 4.55 (< 0.001) 4.55 (< 0.001)

WNAO 4.49 (0.020) 4.60 (0.019) 2.73 (0.008)
a Index parameter estimates with 99% confidence intervals (in brackets) and GAMs estimates with p-values (in brackets) for
P. Longirostris density, biomass and median length. Linear coefficients and smooth effects degrees of freedom: intercept,
longitude, latitude, year, depth, Sea surface temperature, Winter NAO global barometric index.

TABLE 2
Model estimates for Aristaemorpha foliacea b

Density Biomass Length

Index parameter p 1.74 (1.712, 1.888) 1.33 (1.249, 1.409)

Linear terms

coefficients

Int. -2.51 (0.0621) 56.27 (< 0.001)

depth -0.01 (< 0.001) -0.01 (< 0.001) 0.03 (0.002)

SST 0.46 (< 0.001) 0.26 (< 0.001)

f.effort -0.17 (< 0.001)

Smooth effects

degrees of freedom

long, lat, year 21.60 (< 0.001) 11.99 (< 0.001) 16.69 (0.002)

SST 5.67 (< 0.001)

MO 3.01 (0.006)
b Index parameter estimates with 99% confidence intervals (in brackets) and GAMs estimates with p-values (in brackets) for A.
foliacea density, biomass and median length. Linear coefficients and smooth effects degrees of freedom: intercept, longitude,
latitude, year, depth, Sea surface temperature, fishing effort, MO global barometric index.
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Figure 2 – Spatio-temporal smooth components of the fitted GAMs for years 1995 and 2006. (a)
P. Longirostris, (b) A. Foliacea. The yellow coloured areas correspond to lower values of species
density, biomass and median carapace length. In reverse, the warm colours indicate areas charac-
terized by higher values of the population variables for the two species.
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fitted smooth effects are shown in Figure 4. It is evident an increasing behavior of the
Winter NAO effect for the median length, whereas it is more fluctuating for the density
and biomass. Also a nonlinear effect of MO index on the median carapace length has
been detected for A. foliacea (Figure 5). The Sea surface temperature shows a significant
inverse linear relation with the median carapace length of P. longirostris, it has a positive
linear influence on the density and biomass of A. foliacea (Table 2) and a nonlinear effect
on its median carapace length (Figure 5). In particular, both species seem to be influ-
enced by the variations in the thermal regime (WNAO, MO, SST) which could reflect
the increased presence of the saline and warm Levantine Intermediate Waters (LIW) in
the study area. This could have influenced the recruitment and, thus, the abundance
level of the two shrimps. Indeed, the negative linear relation detected between SST and
size in P. longirostris could be due to the fact that warm waters have a positive influence
on recruitments with a consequent reduction of the size in the whole stock. Ungaro and
Gramolini (2006) found a possible influence of the water temperature at sea bottoms on
the spatial distribution of P. longirostris in the southern Adriatic. Recently, Ligas et al.
(2010) reported an increasing trend of P. longirostris abundance correlated to a rise in
SST, a corresponding decrease of wind circulation and to the reduction of fishing effort.
Capezzuto et al. (2010) revealed that the increase in the abundance of A. foliacea verified
mostly in the period 2000-2004 correlated significantly with the increase in temperature
and salinity detected from 1995 to 2005 between 200 and 800 m in the Ionian Sea. This
fact and present observations can be explained according to the hydrological hypothe-
sis by Ghidalia and Bourgois (1961): A. foliacea is preferentially distributed in warmer
and high salinity waters. In the western Mediterranean the stock abundance of another
deep-water shrimp, Aristeus antennatus, was detected to be enhanced by high MO in-
dex periods reflecting the increased presence of LIW (Massutí et al., 2008). Moreover,
Maynou (2008) found a positive correlation between the average annual NAO index
and the annual catches of the shrimp Aristeus antennatus in six ports along the Catalo-
nia coast. This author hypothesized that the NAO-induced environmental variability
could favour secondary production enhancing the food supply for A. antennatus. The
greatest sizes observed along the Apulian coast in both species could be a consequence
of a lower fishing pressure in this geographic sector. However, as expetcetd, a signifi-
cant inverse relationship between fishing effort and size was only detected in A. foliacea
(Table 2).

Due to the high vulnerability to trawling of both shrimp species, a reduction in the
working days of this type of fishing could reliably favour stock recovery and, thus, an
increase of the size. The fact that the same inverse relationship has not been observed
in P. longirostris seems to be related to an increase of density, biomass and sizes in this
shrimp during the last years of the esamine period. The faster recovery of this shrimp
could due to its wider distribution and shorter life span (D’Onghia et al., 1998b). For P.
longirostris, it seems that the observed positive effects due to changes in environmental
conditions dominated on those negative ones due to fishing pressure.

4. CONCLUDING REMARKS

The two shrimps Parapenaeus longirostris and Aristaeomorpha foliacea are among the
most important deep-sea demersal resources in the North-Western Ionian Sea. Their
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Figure 3 – Fitted depth smooth effects for P. longirostris
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Figure 4 – Fitted WNAO smooth effects for P. longirostris

changes in terms of density, biomass and median length induced by anthropogenic and
environmental variables are here investigated considering a spatio-temporal non-separa-
ble model. Figure 3 shows that the effect of longitude and latitude with respect to time
is rather complex and supports well this choice. On the other hand depth is included as
a separate additive term in the model (Figure 3 and Table 1 and 2 display the impact of
depth), assuming the effect of depth to be constant with respect to time and horizontal
positioning. This simplifying assumption is reasonable as, although both P. longirostris
and A. foliacea can be found on a wide depth range, their constant preferential depth
distribution is well documented in many studies throughout the Mediterranean. In par-
ticular, P. longirostris is mostly found between 150 and 400 m with adults deeper than
juveniles (D’Onghia et al., 1998b; Abelló et al., 2002) while A. foliacea has preferential dis-
tribution at depths of 400-700 m without clear separation between adults and juveniles
(D’Onghia et al., 1998a; Cau et al., 2002). With the previous assumptions, Generalized
Additive Models are used to evaluate the spatio-temporal variation of the population fea-
tures in both species, together with the possible nonlinear effects of biotic and abiotic
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Figure 5 – Fitted Temperature and Annual MO smooth effects of the median length for A. foliacea

factors. Mechanisms producing changes in population variables act in high dimensional
complex natural systems and often remain unexplained. For the same reason, it is often
difficult to disentangle environmental effects on demersal communities from those due
to fishing. The significance of the various predictors here considered reveals effects due
to the geographic area, depth and year on the distribution of the two species, confirm-
ing their sensitivity to the changes in environmental conditions and human pressure
(D’Onghia et al., 2012). Tweedie distributions assumed for zero-inflated population fea-
tures have specific advantages as they can be considered in standard GAM implemen-
tations such as the R library mg
v. Their adoption allows to analyze the interaction
between space and time through a non-separable model with a tensor product splines
component. Unlike the alternative ZIGAM approach, the proposed method does not
provide information about the zero-generating process. This aspect is a major concern
in view of possible future studies allowing to adequately estimate the proportion of zero
records within spatio-temporal models. ZIGAM’s and COZIGAM’s have had a limited
use in spatio-temporal modelling as their current implementation in R does not allow
for smoothers of more than two dimensions. Separable spatio-temporal COZIGAM’s
were fit to P. Longirostris density and biomass data by the R library 
ozigam, leading to
some numerical difficulties. Possible further developments include the consideration of
spatial smoothers accounting for complex boundaries and the use of Bayesian hierarchi-
cal models implementing efficient computational algorithms and Bayesian methods for
model choice.
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SUMMARY

Spatio-temporal modelling of zero-inflated deep-sea shrimp data by Tweedie generalized additive
models

In the Mediterrean Sea the population features of demersal resources fluctuate over spatial and tem-
poral scales due to the variability of abiotic and biotic factors as well as to human activities. The
two shrimps Parapenaeus longirostris and Aristaeomorpha foliacea are among the most important
deep-sea demersal resources in the North-Western Ionian Sea. Their changes in terms of density,
biomass and median length induced by anthropogenic and environmental variables (fishing effort,
sea surface temperature, precipitations, Winter North Atlantic Oscillation (NAO) and Annual
Mediterranean Oscillation (MO) indices) were investigated. Biological data were collected during
trawl surveys carried out from 1995 to 2006 as part of the international program MEDITS (Inter-
national Bottom Trawl Survey in the Mediterranean). Generalized Additive Models were used to
evaluate the spatio-temporal variation of both species, together with the possible nonlinear effects
of biotic and abiotic factors. Density and biomass were assumed to be distributed according to a
member of the Tweedie family in order to account for zero-inflation in the relative data. Space-
time interaction was considered within a non-separable model with smooth spatio-temporal com-
ponent based on tensor product splines. The results show significant spatio-temporal and depth
effects in the three population parameters of these resources. Winter NAO index significantly
influenced the density, biomass and length of P. longirostris. Sea surface temperature significantly
influenced the size of this species and the three population features of A. foliacea. The size of this
shrimp resulted also influenced negatively by fishing effort and positively by the MO index.




