1. INTRODUCTION

In the Mediterranean Sea population parameters of demersal resources fluctuate over spatial and temporal scales due to the variability of abiotic and biotic factors as well as to human activities. Many changes in the environmental conditions occurred in the Ionian Sea at the end of 1980, due to the Eastern Mediterranean Transient (EMT) and to an internal process occurring between Adriatic and Ionian water masses on a decadal scale called Bimodal Adriatic-Ionian Oscillations (BiOS) (Gačić et al., 2010). The EMT-BiOS related regime shift recorded in the early 1990s involved sea surface temperature, sea level pressure, surface and deep circulation of water masses, salinity and nutrient changes, affecting several marine ecosystem components encompassing more trophic levels and different Mediterranean basins (Civitarese et al., 2010; Conversi et al., 2010).

The changes in abundance observed in some demersal resources in the North-Western Ionian Sea were identified to be linked to both changes in physical environment and those due to fishing (D’Onghia et al., 2012). These changes were only detected during time when no spatial analyses were carried out. Indeed, the North-Western Ionian Sea, along the Italian coasts, covers a geographic area of about 3° 50’ in latitude and 3° in longitude. In this area, the deep-water shrimps Parapenaeus longirostris (deep-water rose shrimp, Lucas, 1846) and Aristaeomorpha foliacea (giant red shrimp, Risso, 1816) represent two demersal resources of primary importance. P. longirostris is widespread at depths between 18 and 711 m (Maiorano et al., 2010) and mostly on continental shelf and shelf edge (D’Onghia et al., 1998b), preferring waters with high temperature and salinity (14-15 °C and 38 psu, respectively) (Ghidalia and Bourgois, 1961; Ungaro and Gramolini, 2006). Though A. foliacea is found at depths between 127 and 1145 m (Maiorano et al., 2010) it is preferentially distributed on the upper slope (350-700 m), showing a shallower distribution in the winter-spring and a deeper one during summer-autumn (Tobar and Sardá, 2010; D’Onghia et al., 1998a). The giant red shrimp seems to prefer high values of the water temperature (approximately 13.5°C) and salinity (38.5 psu) that are typical characteristics of Levantine Intermediate Water (LIW) (Ghidalia and Bourgois, 1961).
The aim of the present study is to evaluate the relationships between the spatio-temporal distribution of these two shrimps and environmental variables in the North-Western Ionian Sea. Data from trawl surveys have been analyzed in a spatio-temporal domain from 10 down to 800 m and between years 1995 and 2006. Here the main modelling issue refers to accounting for spatio-temporal dependencies of zero-inflated continuous responses. Previous proposals include the use of Zero Inflated Generalized Additive Models (ZIGAM’s) proposed by Liu and Chan (2008). This approach consists in assuming the existence of two data generating processes: one process regarding the zeroes and another one for non-zero values. In many cases, the two processes are influenced by common factors and we can presume that they are bound by a proportionality constraint. In this case we talk about COstrained Zero-Inflated Generalized Additive Models (COZIGAM’s). As an alternative we propose to use Generalised Additive Models with a particular distributional assumption allowing for zero-inflation. While subsection 2.1 contains a detailed description of the sampling method and data set, in 2.2 we introduce spatio-temporal Generalized Additive Models and a specific class of distributions suitable to model zero-inflated abundance data. In Section 3 we summarize the main results achieved and discuss their relevance in connection with factors affecting the fauna distribution in the marine ecosystem. Finally Section 4 is dedicated to some concluding remarks and the illustration of possible further developments of the research.

2. MATERIALS AND METHODS

2.1. Data collection

Fishery data were collected during experimental trawl surveys conducted from 1995 to 2006 in the North-Western Ionian Sea as part of the international project MED-ITS (MEDiterranean International Trawl Surveys). The study area runs from Capo d’Otranto (LE) (40° 06’ N - 18° 31’ E) to Capo Passero (SR) (36° 41’ N - 15° 10’ E) for a total surface of 16,350 km² at depths between 10 and 800 m. This geographical region was divided into three sub-areas: Apulia; North-Calabria and South-Calabria (Figure 1).

The sampling design adopted was random-stratified by depth. With regard to each depth range, the allocation of hauls was defined proportionally to the extension of the corresponding stratum. During each experimental haul, a Scanmar Sonar System (Fiorentini et al., 1994) was placed on the trawl net in order to provide information about its proper functioning and horizontal opening, the latter being used to standardize abundance data to the swept surface unit. This standardization provides density (N/km²) and biomass (kg/km²) indices for each species and survey at every haul location. Finally the median carapace length to the nearest mm was obtained for individuals of the two species sampled at every haul. Data for *P. longirostris* regards 247 trawl hauls carried out between 100 and 500 m while those for *A. foliacea* includes 369 trawl hauls from 500 down to 800 m.

Density and biomass indices, and carapace length (mm) of the two species were considered as population features (or population variables in what follows) influenced by environmental factors. Temperature might be one of the primary factors producing changes in the mentioned population variables. Sea surface temperature (SST) data for the three areas and 12 years were obtained using the AVHRR satellite data (Advanced
Figure 1 – Map of the study region divided into three sub-areas with bathyal curves and haul locations (P. longirostris in pink, A. foliacea in red).

Very High Resolution Radiometer, http://podaac.jpl.nasa.gov/). Precipitation values (expressed in mm) for the three areas and 12 years were recorded from meteorological archives on the web (www.ilmeteo.it). Fluctuations in the difference of atmospheric pressure between Iceland and the Azores contribute to the so called North Atlantic Oscillation (NAO). Variations of the NAO influence the weather on a large scale over the North Atlantic and Europe and have a strong impact on the oceanic conditions, including the Mediterranean region. The normalized difference in pressure between Algiers and Cairo is known as the Mediterranean Oscillation Index (MO). Values of the two barometric indices for the selected time period were obtained on the web (http://www.cgd.ucar.edu/) and considered for their influence on demersal resources. The depth of the experimental trawling hauls was also considered as an environmental factor influencing the species distribution. Finally, as an anthropogenic influence on the fishing resources, a proxy measure of the fishing effort was obtained as the number of potential working days according to weather and sea conditions, public holidays, required temporary closures of fishing activities and technical stops. This proxy was evaluated for every geographical area and every year involved in the analysis.

2.2. Spatio-temporal modelling

A high proportion of zero counts occurs in the two species (30% of 369 catches for the giant red shrimp, and 15% of 247 catches for the deep-water rose shrimp), causing zero-inflated distributions for density and biomass data (zero counts correspond to NA's in the median carapace length, which has thus a non-zero-inflated distribution for both species): such zeroes are structural depending on the adaptation of the species to the variable environmental conditions in the Mediterranean basin. Fishery trawl survey
data often contain a large number of zero catches, due to the fact that fishes swim in schools influenced by food availability and irregular current patterns (Ciannelli et al., 2007). Zero-inflated data abound in ecological studies as well as in other scientific and quantitative fields, where the data contain an excess of zero responses. Statistical methods for zero-inflated data find application in a wide range of studies including the count of rare species (Cunningham and Lindenmayer, 2005), the distribution of fish eggs and larvae (Fox et al., 2000) and of adult fishes (Bi et al., 2007), as well as pests in agricultural systems (Ruiz Cárdenas et al., 2009). The term “inflated” is used to stress that the probability of getting zero values is higher than the one expected under some classic distributional assumption (e.g. log-normal, Poisson, etc.). Such data cannot be analyzed by standard statistical distributions (e.g., log-normal, Poisson, etc.) because of the high proportion of zeroes (Zuur et al., 2009).

With the purpose of accounting for zero-inflation in the data distribution, an exponential dispersion model (EDM) was assumed for the density and biomass indices. The exponential dispersion model is a two-parameter family of distributions consisting of a linear exponential family with an additional dispersion parameter (Dunn et al., 2009). Members of EDM have density functions or probability mass functions of the form:

\[
f(y|\theta; \phi) = \alpha(y, \phi) \exp \left[\frac{y\theta - k(\theta)}{\phi} \right]
\]

where \(a \) and \(k \) are known functions, \(\theta \) is the canonical parameter and \(\phi > 0 \) is the dispersion parameter. The domain of the canonical parameter \(\theta \) is an open interval satisfying \(k(\theta) < \infty \). The function \(k() \) is called the cumulant function of the EDM because, if \(\phi = 1 \), the derivatives of \(k \) give the successive cumulants of the distribution. In particular, the mean of the distribution is \(\mu = k'(\theta) \) and the variance is \(\phi k''(\theta) \). The mapping from \(\theta \) to \(\mu \) is invertible, so we may write \(k''(\theta) = V(\mu) \) for a suitable function \(V(\mu) \), called the variance function of the EDM, which describes the mean-variance relationship of the distribution when the dispersion is held constant. If \(Y \) is distributed as a member of the EDM with mean \(\mu \), variance function \(V() \) and dispersion \(\phi \), then the variance of \(Y \) can be written as \(\text{Var}(Y) = \phi V(\mu) \). Of special interest is the class of EDMs with power mean-variance relationships for which \(V(\mu) = \mu^p \) for some \(p \), called index parameter. Following Jørgensen (1997), we call these Tweedie distribution models. Tweedie models are natural candidates for modelling continuous positive data (Dunn and Smyth, 2008), as they include most of the important distributions commonly used with generalized linear models such as the normal \((p = 0)\), Poisson \((p = 1)\), gamma \((p = 2)\) and the inverse Gaussian \((p = 3)\) distributions. In this study a value of \(p \) between 1 and 2 was considered as in this case the Tweedie model can be represented as a mixed distributions with a positive mass at zero and with support on the non-negative reals. In this special case Tweedie distributions are also known as “compound Poisson” (Jørgensen and Smyth, 2002) as they can be obtained as Poisson mixtures of gamma distributions. Tweedie distributions with \(1 < p < 2 \) are thus especially appealing to model zero-inflated data. Tweedie distributions are used in a diverse range of fields including fisheries (Candy, 2004; Shono, 2008; Tascheri et al., 2010) and rainfall prediction (Dunn, 2004). Dunn et al. (2009) give a survey of published applications. Maximum likelihood estimates of \(p \) are obtained by univariate optimization of the profile likelihood evaluated on a grid of possible values of \(p \), implemented in the \texttt{R} package \texttt{Tweedie} (Dunn,
A general approach to data modelling for the three biological variables and for both species, consists in assuming that the distribution of the response is affected by a number of predictors. In this work Generalized Additive Models (GAMs) are considered (Hastie and Tibshirani, 1990), in which the mean of the response depends on an additive predictor through a link function and the response distribution can be any member of the exponential family. GAMs allow for unknown smooth functions of observed explanatory variables in the linear predictor and have already been widely used in the spatio-temporal modelling of marine species (Borchers et al., 2009; Augustin et al., 1998; Daskalov, 1999). In these studies the authors choose to use GAMs to model the spatio-temporal distribution of species abundance as a function of geographical and environmental variables. According to empirical evidence, space-time nonseparable models were estimated for each variable and for both species. For zero-inflated count data, an alternative nonseparable spatio-temporal model specification was adopted in Musio et al. (2009).

Models for our zero-inflated continuous responses are specified as follows:

\[g(\mu_i) = \beta_0 + \text{te}(\text{lon}_i, \text{lat}_i, t_i) + \sum_{j=1}^{m} s_j(x_{ij}) = \eta(x_i) \]

where \(g \) is the function linking the mean response \(\mu_i \) to the additive predictor \(\eta(x_i) \). Semi-parametric smooth functions of observed covariates \(s_j \)’s are specified as thin plate regression splines by linear combinations of basis functions. The term \(\text{te} \) is a tensor product spline, a non-isotropic smooth function useful for representing the simultaneous effects of multiple predictors measured in different units or where very different degrees of smoothness are appropriate (such as spatial coordinates and time points). Tensor product smoothers are invariant to linear rescaling of covariates, and can be quite computationally efficient. Also tensor product splines can be expressed as linear combinations of multivariate basis functions.

The use of spline functions allows to specify different features of algorithmic and statistical efficiency by the automatic selection of the smoothing parameters, i.e. of the smoothing degree applicable to every term. In the spline case this is translated in the specification of the number of effective degrees of freedom to assign to every smooth function. To avoid overfitting estimates, possibly due to a large number of highly non-linear smooth functions, GAMs are usually estimated by penalized likelihood maximization, solved by Penalized Iteratively Reweighted Least Squares, P-IRLS (Wood, 2006), in which the model likelihood is modified by the addition of a penalty for each smooth function, penalizing its "wiggliness". Basic GAM fitting implies the minimization of:

\[||y - X\beta||^2 + \sum_{j=1}^{m} \lambda_j \int_0^1 s''_j(x) dx \]

where the model matrix \(X \) contains a set of basis functions for each smoother \(s_j \) and covariate values for every linear effect, \(\beta \) is a parameter vector and \(y \) is the response variable. The second part of this equation is a penalty and allows to control the trade-off between goodness of fit and model smoothness. The second-order derivatives of the smoothing functions \(s_j \)’s, summarize the smoothness of the nonlinear terms. If \(\lambda_j \)
is very large, the corresponding smoother will be a straight line. On the other hand, if λ_j is small we are likely to end up with a considerably less smooth curve. Because s_j's are linear in the parameters, the penalty can always be written as a quadratic form, and GAM fitting can be resumed addressing a least squares problem given λ_j's. The estimation of the smoothing parameters λ_j is then addressed minimizing predictor error criteria like Generalized Cross Validation (GCV) or Un-Biased Risk Estimator (UBRE). When the scale parameter is known the expected mean square error minimization leads to estimation by UBRE, otherwise GCV is called for. In this study GAM’s fit was performed by R function mgcv, (Wood, 2006) implementing P-IRLS estimation with GCV and UBRE. A Tweedie model was adopted for the zero-inflated distributions of the density and biomass of both species.

Terms significance and overall GCV scores were considered for model comparison. A given model was compared to a model with one or more smooth terms replaced by parametric terms or removed. Smooth terms candidate for replacement by parametric terms have estimated degrees of freedom close to their minimum. Smooth terms candidate for removal are identified by reference to approximate p-values. As a general criterion we choose to preserve the significance of spatio-temporal effects, eventually avoiding the inclusion of overlapping effects.

3. RESULTS

In this section we report the results of applying GAMs to the data described in Section 2.1 assuming Tweedie distributions for the zero-inflated population variables density and biomass. For these two response variables, in order to get a better fit to the assumed Tweedie family, we considered the logarithmic link function. For the same reason the squared root transformation was adopted for the density of the rose shrimp and the biomass of both species. As expected, estimates of the Tweedie index parameter p obtained as mentioned in Section 2.2 and reported in Table 1 and 2 imply zero-inflation of the relative distributions. The non-zero-inflated median carapace length was assumed normally distributed with identity link function for both species.

Table 1 and 2 show the estimates of linear and smooth effects involved with the spatio-temporal distribution of the features of the two shrimp populations. Significant spatio-temporal effects correspond to the distributions of both species being related to some areas along the Ionian arc. During 1995 and 2006, $P. longirostris$ was found to be more abundant along the South Calabria and $A. foliacea$ along Apulia. In these years the greatest sizes were mostly detected along this latter region in both species (Figure 3). $P. longirostris$ shows a nonlinear relation with depth (Figure 3) with higher values of the density for depths between 200 and 300 m and a decrease beyond 300 m. Density and biomass indices of $A. foliacea$ decrease with depth, while the relationship of the median carapace length with depth is linear, with positive coefficient, for both species (Table 1 and 2). On the one hand, the geographic and depth distribution of both species along the Ionian arc reflects their life strategies (D’Onghia et al., 1998b, 1998a), on the other hand, the spatio-temporal fluctuations observed throughout the study period could be related to the modification of the water mass properties and thermohaline circulation occurred in the Ionian Sea (e.g. Conversi et al., 2010; Gaćić et al., 2010). Winter NAO index significantly influenced the three population variables of $P. longirostris$ and the
Spatio-temporal modelling of zero-inflated deep-sea shrimp data

TABLE 1

Model estimates for *Parapenaeus longirostris* a

<table>
<thead>
<tr>
<th>Index parameter</th>
<th>Density</th>
<th></th>
<th>Biomass</th>
<th></th>
<th>Length</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ</td>
<td>1.26</td>
<td>(1.195, 1.356)</td>
<td>1.26</td>
<td>(1.197, 1.364)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear terms coefficients</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Int.</td>
<td>3.33</td>
<td>(< 0.001)</td>
<td>0.80</td>
<td>(< 0.001)</td>
<td>25.30</td>
<td>(< 0.001)</td>
</tr>
<tr>
<td>depth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.04</td>
<td>(< 0.001)</td>
</tr>
<tr>
<td>SST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.58</td>
<td>(0.0198)</td>
</tr>
<tr>
<td>Smooth effects degrees of freedom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>long, lat, year</td>
<td>14.34</td>
<td>(< 0.001)</td>
<td>14.70</td>
<td>(< 0.001)</td>
<td>22.82</td>
<td>(< 0.001)</td>
</tr>
<tr>
<td>depth</td>
<td>4.55</td>
<td>(< 0.001)</td>
<td>4.55</td>
<td>(< 0.001)</td>
<td>2.73</td>
<td>(0.028)</td>
</tr>
<tr>
<td>WNAO</td>
<td>4.49</td>
<td>(0.020)</td>
<td>4.60</td>
<td>(0.019)</td>
<td>2.73</td>
<td>(0.028)</td>
</tr>
</tbody>
</table>

a Index parameter estimates with 99% confidence intervals (in brackets) and GAMs estimates with p-values (in brackets) for *P. longirostris* density, biomass and median length. Linear coefficients and smooth effects degrees of freedom: intercept, longitude, latitude, year, depth, Sea surface temperature, Winter NAO global barometric index.

TABLE 2

Model estimates for *Aristaemorpha foliacea* b

<table>
<thead>
<tr>
<th>Index parameter</th>
<th>Density</th>
<th></th>
<th>Biomass</th>
<th></th>
<th>Length</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ</td>
<td>1.74</td>
<td>(1.712, 1.888)</td>
<td>1.33</td>
<td>(1.249, 1.409)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear terms coefficients</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Int.</td>
<td>-2.51</td>
<td>(0.0621)</td>
<td>56.27</td>
<td>(< 0.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>depth</td>
<td>-0.01</td>
<td>(< 0.001)</td>
<td>-0.01</td>
<td>(< 0.001)</td>
<td>0.03</td>
<td>(0.002)</td>
</tr>
<tr>
<td>SST</td>
<td>0.46</td>
<td>(< 0.001)</td>
<td>0.26</td>
<td>(< 0.001)</td>
<td>-0.17</td>
<td>(< 0.001)</td>
</tr>
<tr>
<td>F. effort</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smooth effects degrees of freedom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>long, lat, year</td>
<td>21.60</td>
<td>(< 0.001)</td>
<td>11.99</td>
<td>(< 0.001)</td>
<td>16.69</td>
<td>(0.002)</td>
</tr>
<tr>
<td>SST</td>
<td>3.01</td>
<td>(0.026)</td>
<td>5.67</td>
<td>(< 0.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b Index parameter estimates with 99% confidence intervals (in brackets) and GAMs estimates with p-values (in brackets) for *A. foliacea* density, biomass and median length. Linear coefficients and smooth effects degrees of freedom: intercept, longitude, latitude, year, depth, Sea surface temperature, fishing effort, MO global barometric index.
Figure 2 – Spatio-temporal smooth components of the fitted GAMs for years 1995 and 2006. (a) *P. Longirostris*, (b) *A. Folsacea*. The yellow coloured areas correspond to lower values of species density, biomass and median carapace length. In reverse, the warm colours indicate areas characterized by higher values of the population variables for the two species.
fitted smooth effects are shown in Figure 4. It is evident an increasing behavior of the Winter NAO effect for the median length, whereas it is more fluctuating for the density and biomass. Also a nonlinear effect of MO index on the median carapace length has been detected for *A. foliacea* (Figure 5). The Sea surface temperature shows a significant inverse linear relation with the median carapace length of *P. longirostris*, it has a positive linear influence on the density and biomass of *A. foliacea* (Table 2) and a nonlinear effect on its median carapace length (Figure 5). In particular, both species seem to be influenced by the variations in the thermal regime (WNAO, MO, SST) which could reflect the increased presence of the saline and warm Levantine Intermediate Waters (LIW) in the study area. This could have influenced the recruitment and, thus, the abundance level of the two shrimps. Indeed, the negative linear relation detected between SST and size in *P. longirostris* could be due to the fact that warm waters have a positive influence on recruitments with a consequent reduction of the size in the whole stock. Ungaro and Gramolini (2006) found a possible influence of the water temperature at sea bottoms on the spatial distribution of *P. longirostris* in the southern Adriatic. Recently, Ligas et al. (2010) reported an increasing trend of *P. longirostris* abundance correlated to a rise in SST, a corresponding decrease of wind circulation and to the reduction of fishing effort. Capezzuto et al. (2010) revealed that the increase in the abundance of *A. foliacea* verified mostly in the period 2000-2004 correlated significantly with the increase in temperature and salinity detected from 1995 to 2005 between 200 and 800 m in the Ionian Sea. This fact and present observations can be explained according to the hydrological hypothesis by Ghidalia and Bourgois (1961): *A. foliacea* is preferentially distributed in warmer and high salinity waters. In the western Mediterranean the stock abundance of another deep-water shrimp, *Aristeus antennatus*, was detected to be enhanced by high MO index periods reflecting the increased presence of LIW (Massuti et al., 2008). Moreover, Maynou (2008) found a positive correlation between the average annual NAO index and the annual catches of the shrimp *Aristeus antennatus* in six ports along the Catalonia coast. This author hypothesized that the NAO-induced environmental variability could favour secondary production enhancing the food supply for *A. antennatus*. The greatest sizes observed along the Apulian coast in both species could be a consequence of a lower fishing pressure in this geographic sector. However, as expected, a significant inverse relationship between fishing effort and size was only detected in *A. foliacea* (Table 2).

Due to the high vulnerability to trawling of both shrimp species, a reduction in the working days of this type of fishing could reliably favour stock recovery and, thus, an increase of the size. The fact that the same inverse relationship has not been observed in *P. longirostris* seems to be related to an increase of density, biomass and sizes in this shrimp during the last years of the examine period. The faster recovery of this shrimp could due to its wider distribution and shorter life span (D’Onghia et al., 1998b). For *P. longirostris*, it seems that the observed positive effects due to changes in environmental conditions dominated on those negative ones due to fishing pressure.

4. **Concluding Remarks**

The two shrimps *Parapenaeus longirostris* and *Aristacomorpha foliacea* are among the most important deep-sea demersal resources in the North-Western Ionian Sea. Their
changes in terms of density, biomass and median length induced by anthropogenic and environmental variables are here investigated considering a spatio-temporal non-separable model. Figure 3 shows that the effect of longitude and latitude with respect to time is rather complex and supports well this choice. On the other hand depth is included as a separate additive term in the model (Figure 3 and Table 1 and 2 display the impact of depth), assuming the effect of depth to be constant with respect to time and horizontal positioning. This simplifying assumption is reasonable as, although both *P. longirostris* and *A. foliacea* can be found on a wide depth range, their constant preferential depth distribution is well documented in many studies throughout the Mediterranean. In particular, *P. longirostris* is mostly found between 150 and 400 m with adults deeper than juveniles (D’Onghia et al., 1998b; Abelló et al., 2002) while *A. foliacea* has preferential distribution at depths of 400-700 m without clear separation between adults and juveniles (D’Onghia et al., 1998a; Cau et al., 2002). With the previous assumptions, Generalized Additive Models are used to evaluate the spatio-temporal variation of the population features in both species, together with the possible nonlinear effects of biotic and abiotic
Spatio-temporal modelling of zero-inflated deep-sea shrimp data

Factors. Mechanisms producing changes in population variables act in high dimensional complex natural systems and often remain unexplained. For the same reason, it is often difficult to disentangle environmental effects on demersal communities from those due to fishing. The significance of the various predictors here considered reveals effects due to the geographic area, depth and year on the distribution of the two species, confirming their sensitivity to the changes in environmental conditions and human pressure (D’Onghia et al., 2012). Tweedie distributions assumed for zero-inflated population features have specific advantages as they can be considered in standard GAM implementations such as the R library mgcv. Their adoption allows to analyze the interaction between space and time through a non-separable model with a tensor product splines component. Unlike the alternative ZIGAM approach, the proposed method does not provide information about the zero-generating process. This aspect is a major concern in view of possible future studies allowing to adequately estimate the proportion of zero records within spatio-temporal models. ZIGAM’s and COZIGAM’s have had a limited use in spatio-temporal modelling as their current implementation in R does not allow for smoothers of more than two dimensions. Separable spatio-temporal COZIGAM’s were fit to P. Longirostris density and biomass data by the R library coxizam, leading to some numerical difficulties. Possible further developments include the consideration of spatial smoothers accounting for complex boundaries and the use of Bayesian hierarchical models implementing efficient computational algorithms and Bayesian methods for model choice.

REFERENCES

Spatio-temporal modelling of zero-inflated deep-sea shrimp data

SUMMARY

Spatio-temporal modelling of zero-inflated deep-sea shrimp data by Tweedie generalized additive models

In the Mediterranean Sea the population features of demersal resources fluctuate over spatial and temporal scales due to the variability of abiotic and biotic factors as well as to human activities. The two shrimps *Parapenaeus longirostris* and *Aristaeomorpha foliacea* are among the most important deep-sea demersal resources in the North-Western Ionian Sea. Their changes in terms of density, biomass and median length induced by anthropogenic and environmental variables (fishing effort, sea surface temperature, precipitations, Winter North Atlantic Oscillation (NAO) and Annual Mediterranean Oscillation (MO) indices) were investigated. Biological data were collected during trawl surveys carried out from 1995 to 2006 as part of the international program MEDITS (International Bottom Trawl Survey in the Mediterranean). Generalized Additive Models were used to evaluate the spatio-temporal variation of both species, together with the possible nonlinear effects of biotic and abiotic factors. Density and biomass were assumed to be distributed according to a member of the Tweedie family in order to account for zero-inflation in the relative data. Space-time interaction was considered within a non-separable model with smooth spatio-temporal component based on tensor product splines. The results show significant spatio-temporal and depth effects in the three population parameters of these resources. Winter NAO index significantly influenced the density, biomass and length of *P. longirostris*. Sea surface temperature significantly influenced the size of this species and the three population features of *A. foliacea*. The size of this shrimp resulted also influenced negatively by fishing effort and positively by the MO index.