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1. INTRODUCTION

Wildfires are a major environmental problem in Portugal and their management is a
relevant public policy issue due to the significant economical and social damage they
cause. Portugal has a warm temperate climate, mostly Mediterranean, characterized by
hot, dry summers and cool, wet winters. Areas of rugged terrain are common, and the
natural vegetation is typically evergreen, pyrophytic and drought-resistant. These envi-
ronmental conditions render the country very prone to wildfires, resulting in destruc-
tion of thousands of hectares of forest every year. Therefore, in Portugal wildfires are a
public policy issue and quantitative policy support tools such as probability statements
on where and how much wildfire damage is caused are highly useful. Our primary ob-
jective in this paper is to supply one such tool, namely to produce annual maps available
in the late spring, with probabilistic forecasts of fire occurrence for the summer of the
same year. Although risk is defined as expected loss, here we define risk of fire as the
probability of occurrence, without addressing the loss component.

In Turkman et al. (2013) annual fire risk maps are produced based on two different
modeling strategies. The first strategy consists in modeling inter-arrival times between
fires using a discrete version of the Weibull model. The second strategy consists in mod-
eling annual fire occurrences using a first order non-homogeneous Markov model at a
grid cell level. Fire risk for the year t , is then defined in two alternative forms at grid
cell level:

1. The probability of a fire in year t given the time since the last fire. Loosely speak-
ing, we can define this probability as the hazard rate.
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2. The probability of fire in year t given the observed fire incidence at year t − 1.
Again, we can loosely define this conditional probability as the transition proba-
bility from one state (fire or no fire) to another at each grid cell.

These two distinct strategies accommodate different possibilities in introducing time de-
pendent covariates and make complementary probabilistic statements. However, both
of these modeling strategies depend on aggregating data over a grid of sufficient reso-
lution. These simplifications in modeling are achieved by discretizing the space at the
cost of loosing valuable information. In this paper, the objective is to model the point
patterns without resorting to aggregation of data in grid cells.

Data which we base our studies and findings are annual satellite imagery data, which
consist of the location of observed fire scars in Portugal. Ideally, the data should be
treated as a spatio-temporal point process, discrete in time and continuous in space. Let
(s, t ) be the points of a spatio-temporal point process ξ with state space {s ∈ D, t ∈ T }
representing the centroids of fire scars observed at the end of the fire season of year t
and let M be the associated marks representing the size of the fire scars. Ideally, this
marked point process (ξ , M ) is modeled by a 4-dimensional point process with inten-
sity function λ(s, t , x), where x represents the size of the fire scar with centroid at s ,
observed at year t . However, at present inference on such a model is not computation-
ally feasible unless the marks, namely the fire sizes are independent of the local point
density. A preliminary data analysis based on Schoenberg’s separability test (Schoen-
berg, 2004) indicates that the simplification may not be adequate for the data set we
study. There is strong evidence that the density of the marks are not independent of the
local point density and therefore the intensity function does not have the simpler struc-
ture given by λ(s, t , x) = λ(s, t ) f (x), where f (x) is the density of fire sizes. Therefore
in this paper we will not be able to offer a joint model for the point patterns and marks.
Our efforts will concentrate on studying the spatio-temporal point process ξ . Detailed
separate study of different aspects of fire sizes can be found in de Zea Bermudez et al.
(2009); Turkman et al. (2010); Mendes et al. (2010); Amaral Turkman et al. (2011); Turk-
man et al. (2013). We fit an adequate spatio-temporal log Gaussian Cox process to the
point patterns. We follow the stochastic partial differential equation (SPDE) approach
of Lindgren et al. (2011). Lindgren et al. (2011) study certain SPDEs, whose stationary
solutions are the Matérn fields, and use finite element methods to approximate the so-
lutions of these differential equations. These methods allow approximation of Matérn
Gaussian fields by Gaussian Markov random fields defined over irregular discrete grids,
which resolve many computational difficulties related to inference for spatio-temporal
point patterns. These computational advances allow us to obtain the predictive distri-
bution of the intensity function of such point patterns for future years, permitting us to
make probabilistic statements regarding the fire risk in space and time.

The structure of the paper is as follows: in Section 2 we explain our data set. In
Section 3, we do a brief preliminary analysis of the data using statistical techniques ap-
plied to spatial point processes. In Section 4, we fit a spatio-temporal log Gaussian Cox
process and we follow the stochastic partial differential equation (SPDE) approach of
Lindgren et al. (2011). Finally, in Section 5, we give some possible extensions for this
work.
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2. DATA

The data are based on satellite imagery, consisting of the records of observed fire scars.
Fire perimeters are mapped from satellite imagery, acquired annually after the end of
the summer fire season. Data are available for the period 1975-2005 (31 years). Due
to the available technology, during the period 1975-1983 only fires above 35 hectares
were recorded. The resolution of the satellite imagery improved after 1984, allowing the
recording of fires larger than 5 hectares. Data resulting from this procedure were visually
inspected, and thoroughly edited to remove errors. Burned area estimates derived from
satellite image classification were compared against ground data at the county-level, and
discrepancies were removed. In order to keep the consistency in analysis through all the
period of the study, only fires above 35 hectares are considered.

The data set is of the form {(si , ti ) , i = 1, ..., 13457} where (si , ti ) corresponds to a
wildfire observed at location si and year ti . s are the spatial coordinates (latitude and
longitude) of the centroids of recorded fires. The data set has 13457 records of wildfires
with burned area larger than 35 hectares.

Figure 1 shows how the wildfires are distributed spatially (left) and the distribution
of the number of wildfires by year (right). The majority of the wildfires are in the north
of Portugal and 1985 and 1989 were the years when more wildfires happened (1199 and
913, respectively).
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Figure 1 – Observed wildfires for the entire period 1975-2005: fire locations (left) and number of
wildfires by year (right)

3. PRELIMINARY ANALYSIS VIA SPATIAL POINT PROCESSES

A conventional starting point for the analysis of a spatial point process is to investigate
the hypothesis of complete spatial randomness (CSR), which consists in determining
whether the point pattern derives from a homogeneous Poisson process. If the CSR
hypothesis is rejected, then there must be a tendency towards clustering (events occur in
closely spaced groups) or regularity (events more spaced than under CSR). It is clear from
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Figure 1 (left) that the hypotheses of complete spatial randomness should be rejected.
Indeed, the Quadrat Counts test (Diggle, 2003) was carried at different resolutions, for
the period of study and for each year separately, and the test statistic values are extremely
large resulting in a very small p−val ue s (almost all p−val ue s were less than 2.2e−16),
so the hypotheses of CSR is rejected. In fact, in the south of Portugal the fire intensity
is less than 0.1 fires per km2, but in the north the highest values of the intensity are
reached with 0.5716 fires per km2. This spatial variation does not change over the years
and almost every year the highest intensity values are reached in the north of Portugal,
but the locations of the wildfires move from west to east and from east to west over the
years.

To compare the relative importance of time variation and spatial variation in the
intensity of the spatio-temporal point process, we followed the methodology suggested
by Bonneu (2007). Bonneu (2007) suggests computing the ratio between an estimate
of the time variation and an estimate of the spatial variation of intensity. The time
variation represents at most 0.97% of the spatial variation, hence the spatial variation
explains most of the total variation in the data.

To investigate the separability hypothesis of the intensity function of the spatio-
temporal point process ξ , we follow the work of Schoenberg (2004) and Bonneu (2007).
Schoenberg (2004) constructs nonparametric tests to investigate whether a multi-dimen-
sional point process is separable. Here, the objective is to test if the intensity can be
expressed as a product of intensities:

λDT (s, t ) = λD (s) fT (t ) , s ∈D, t ∈ T

where λDT and λD are, respectively, the intensity function of the spatio-temporal point
process and the intensity function of the spatial point process, and fT the density func-
tion relative to time. To test the separability hypothesis between space and time, statis-
tics defined in Schoenberg (2004) were computed on a regular grid with m = 16384
cells (a grid of 128× 128) where each cell represents a point (s, t ) of the domain D ×T .
Large values of these statistics indicate a departure from the separability hypothesis, so
to test the significance of these statistics one-side Monte Carlo test were constructed. All
the tests that were constructed rejected the hypothesis of separability. This test can be
used to test the independence of marks and local point density, namely by testing the
hypotheses that

λ(s, t , x) = λ(s, t ) f (x).

As was reported in Section 1, these tests rejected the hypotheses.
From the modeling point of view, this exploratory analysis gives valuable informa-

tion. In a purely spatial context, the exploratory study shows a clear departure from
CSR and suggests that trend should be included in a model for wildfires. In a spatio-
temporal context, the space looks more important than time but the Schoenberg’s sep-
arability test does not support the separability hypothesis of the intensity function.

4. MODEL

To model our data we fit a spatio-temporal log-Gaussian Cox process (Møller et al.,
1998). Log-Gaussian Cox processes are widely used to model point patterns, due to



Quantification of annual wildfire risk; A spatio-temporal point process approach. 59

their flexibility and their usefulness in the context of modeling aggregation (clusters)
relative to some underlying unobserved environmental field (Illian et al., 2010; Simpson
et al., 2011). In recent years there have been considerable number of papers where the
log-Gaussian Cox point process is used, for example in Brix and Diggle (2001) and Liang
et al. (2009) in the context of disease mapping or in Møller and Diaz-Avalos (2010) in the
context of wildfires.

Here we present an application of a log-Gaussian Cox process where the data are a
realization of a time series of spatial point processes. A latent time dynamic random
effect in the random intensity function describes the temporal evolution of the spatial
point patterns as proposed in Reis et al. (2013).

The likelihood of log-Gaussian Cox process is analytically intractable due to the in-
tegral of the intensity function, therefore it is important to find methods to approximate
the likelihood. In general, the study area is discretized on a regular grid (Reis, 2008; Hos-
sain and Lawson, 2009; Illian et al., 2012) and the data are aggregated into counts. Other
possibility is the Stochastic Partial Differential Equation (SPDE) approach introduced
by Lindgren et al. (2011). Our goal is to show a possible way to do inference without
the aggregation of the data, so we follow the SPDE methodology proposed by Lindgren
et al. (2011) and presented in Simpson et al. (2011) for the log-Gaussian Cox processes.

4.1. Log-Gaussian Cox spatio-temporal process

The likelihood (conditional on a latent spatio-temporal process as explained below) is
expressed as

L(θ| {(si , t ), i = 1, ..., nt , t = 1, ...,T })∝ exp(−
T∑

t=1

∫

D

λ(u, t )d u)
T∏

t=1

nt∏

i=1

λ(si , t ). (1)

Here, θ is the vector of parameters to be estimated and nt is the number of fires observed
during the year t . The intensity function λ(s, t ) is defined as

log (λ (s, t )) =β0+β
T z (s, t )+φ (s, t )

where β0 is the intercept, β are the regression coefficients and z (s, t ) is the vector of
covariates (spatial and spatio-temporal covariates). φ (s, t ) is a stationary and isotropic
Gaussian process in space and stationary first order autoregressive process in time

φ (s, t ) = ηφ (s, t − 1)+W (s, t ) , t = 2, . . . ,T (2)

and

φ (s, 1)sN

�
0,

1
1−η2

Σ

�

where 0< η< 1 is the temporal correlation parameter and

W (·, t )sN (0,Σ)

corresponds to the Gaussian field with Matérn covariance. We assume that W (s, t ) are
independent and identically distributed over time. So, Σ is a purely spatial Matérn co-
variance function, i.e.

C ov
�
W (s, t ) ,W
�
s′, t ′
��
=

¨
0 if t 6= t ′

σ2(k h)νKν (k h)
2ν−1Γ (ν) if t = t ′

for s 6= s′
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where h = ‖s− s′‖ ∈R+ is the Euclidean spatial distance, Kν denote the modified Bessel
function of the second kind of order ν, Γ is the Gamma function, ν > 0 is a shape pa-
rameter, k > 0 is a spatial scale parameter and is related to the range (ran g e =

p
8ν/k,

distance where the spatial correlation is close to 0.1) and σ2 is the variance of the Gaus-
sian field, which can be written as

σ2 =
Γ (ν)

4πk2ντ2Γ (ν + d
2 )

where τ is a scaling parameter and d is the space dimension (d = 2). We assume that
ν is fixed, as is usually done, since this parameter is not easy to identify. So, we choose
ν = 1.

4.2. Likelihood Approximation

The likelihood (1) is analytically intractable due to the integral of the intensity function
which depends on the random field W . In general, the study area is discretized on a
regular grid in order to approximate the continuous random field by a discrete random
field. The SPDE (Lindgren et al., 2011) approach uses a finite element method to de-
fine the Gaussian random field as a linear combination of a basis function and Gaussian
weights, defined on a triangular mesh of the domain, and thereby the Gaussian field is
approximated by a Gaussian Markov random field with local neighborhood and sparse
precision matrix (Simpson et al., 2011).

The first step is to define a triangulation mesh of the region D (Portugal) that covers
the space in a regular way. Delaunay triangulation is applied to divide Portugal into 715
triangles that gave rise to 421 vertices (Figure 2 (left)) with a maximal edge length of 25
km. We then apply the finite element method to construct an approximate solution of

Figure 2 – Delaunay Triangulation of Portugal (left) and the correspondent Voronoi diagram
(right).
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SPDE (Simpson et al., 2011):

W (s, t )t fW (s, t ) =
v∑

j=1

w jϕ j (s, t )

where v is the number of vertices of the triangulation,
¦

w j

©v
j=1

are the weights with

Gaussian distribution and
¦
ϕ j

©v
j=1

are the basis functions. ϕ j is piecewise linear in each

triangle and assumes 1 at vertex j and 0 at all other vertices. Lindgren et al. (2011) show
that fW is a Gaussian Markov random field (GMRF) with mean 0 and precision matrix

QS = τ
2
�
k2eC+G
� eC−1
�
k2eC+G
�

where eC is a diagonal matrix and G is a sparse and symmetric matrix. So, replacing W

by fW we obtain

eφ (s, t ) = η eφ (s, t − 1)+fW (s, t ) , eφ (s, 1)sN

�
0,

1
1−η2

Q−1
S

�

and the joint distribution

eφ=
� eφT (s, 1) , eφT (s, 2) , . . . , eφT (s,T )

�T

is a Tv− dimensional GMRF with mean 0 and precision matrix Q=QT ⊗QS , where
QT is the precision matrix of the temporal autoregressive process of order 1 (a T−di-
mensional matrix with zero entries outside the diagonal and first off-diagonals) and QS

is the precision matrix of the spatial process obtained from the SPDE representation (a
v−dimensional matrix which does not change in time). Replacing φ by eφ in the inten-
sity and approximate the integral in (1) by a quadrature rule, the likelihood function of
the log-Gaussian Cox process can be written as (Simpson et al., 2011)

L (θ| {(si , t ), i = 1, ..., nt , t = 1, ...,T })t
T∏

t=1

v+nt∏

i=1

eλ (s∗i , t )y
∗
i t exp
�
−α∗i eλ (s∗i , t )
�

where
�
s∗i
	v+nt

i=1 are the locations (i.e. v locations of the vertices of the triangulation
and nt locations of the observed wildfire),

�
α∗i
	v+nt

i=1 are the quadrature weights, y∗t =�
0T

v×1,1T
nt×1

�T
is the point process realization for each year t and

log
�eλ (s∗, t )
�
=β0+β

T z (s∗, t )+ eφ (s∗, t ) .

4.3. Bayesian inference

We adopt a Bayesian inference framework and use the Integrated Nested Laplace Ap-
proximation (INLA) algorithm to perform the inference (Rue et al., 2009). INLA is
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a method for Bayesian inference in structured additive regression models with a latent
Gaussian field, like our model. INLA is an alternative to MCMC and combines analyti-
cal approximations with numerical integration, allowing to obtain the marginal posteri-
ors for the latent fields and the marginal posteriors for the hyper-parameters in relatively
short computational time (approximately 40 minutes using a standard laptop computer).

We consider the following covariates: altitude (meter), slope (percentage), aspect (de-
gree), forest cover (percentage) and precipitation (average). Among these covariates,
only precipitation changes over time, all the others are static in time. Altitude, slope
and aspect were obtained from a digital terrain model with a spatial resolution of 30
meters. Slope is the percentage of incline of a surface and aspect is the orientation of the
slope. Forest cover is the percentage of forest and shrub land cover and precipitation is
the average precipitation during the month of May (i.e., prior to the fire season) from
1975-2005, and both were obtained from a regular grid with a spatial resolution of 25
km2. Since it was not possible to obtain data in a finer resolution, we assume homo-
geneity in each grid cell and for each location (observed fires and triangulation vertices)
we assume the value of the cell grid wherein each location fell within.

The following hierarchical model is implemented:

• likelihood:

L
� eφ,β0,β| {(s∗i , t ), i = 1, ..., v + nt , t = 1, ...,T } , y∗i t

�
=

T∏

t=1

v+nt∏

i=1

Poisson
�
α∗i
eλ (s∗i , t )
�

;

• link function:

eλ (s∗i , t ) = exp
¦
β0+β1 z1(s

∗
i )+β2 z2(s

∗
i )+β3 z3(s

∗
i )+β4 z4(s

∗
i )+β5 z5(s

∗
i , t )+ eφ (s∗i , t )
©

,

where z1 is the covariate altitude, z2 is the covariate slope, z3 is the covariate
aspect, z4 is the covariate forest cover and z5 is the covariate precipitation.

• a priori distributions:

– β0,β1,β2,β3,β4 andβ5 are a priori independents with distribution N (0,1000)
(vague priors);

– η with uniform distribution [0,1] since is a correlation parameter;

– the SPDE parameters (log (τ) and log (k)) are Normal with precision matrix�
0.1 0
0 0.1

�

We note that in this model we have not aggregated the point patterns and the locations
of the points have been retained. See Simpson et al. (2011).

4.4. Results

In Table 1 we have the posterior summaries of the parameters for the model with data
from 1975-2004. Posterior summaries for the parameters show that only covariate β5
(precipitation) includes zero in the 95% credible interval. However the smallest HPD
(highest posterior density) which contains zero has probability 0.89 which indicates that
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TABLE 1
Posterior summaries of the parameters.

Mean St.Dev. 2.5% CI Median 97.5% CI
β0 −6.6204 1.2871 −9.1443 −6.6204 −4.0959
β1 −0.1902 0.0092 −0.2083 −0.1902 −0.1722
β2 0.0794 0.0075 0.0648 0.0794 0.0941
β3 0.0805 0.0095 0.0618 0.0805 0.0992
β4 0.0898 0.0103 0.0695 0.0898 0.1100
β5 −0.0165 0.0105 −0.0370 −0.0165 0.0041
η 0.9236 0.0093 0.9037 0.9241 0.9403
k 0.0107 0.0008 0.0091 0.0108 0.0121
τ 14.6048 0.6459 13.4529 14.5570 15.9836
σ2 3.2151 0.4584 2.4386 3.1682 4.2362
ran g e 265.043 19.6802 233.053 262.460 309.600

TABLE 2
DIC values for different fitted models.

DIC
Full model: 158540.24
Without elevation: 158907.12
Without slope: 158624.02
Without aspect: 158596.78
Without forest cover: 158578.08
Without precipitation: 158539.77
Without temporal effect: 165849.77

it is not reasonable to exclude this covariate from the model. β1 (altitude) and β4 (pre-
cipitation) are negative, altitude and the amount of precipitation decrease the risk of fire,
otherwise the β2 (slope), β3 (aspect) and β4 (percent of forest cover) increases the risk
of fire. The value of η, the AR(1) temporal correlation coefficient, is 0.92, meaning that
there is a strong temporal correlation.

In order to assess the effect of the various covariates in the model, we repeatedly fit
sub-models leaving out the covariates one at a time and compare the model fit based on
the DIC (deviance information criterion). To test the importance of the spatio-temporal
effect, we run the model with a purely spatial effect. The results are summarized in
Table 2. Table 2 shows that the full model is the best model except when the covariate
corresponding to precipitation (β5) is removed. However, the decrease in DIC is very
small. The spatio-temporal effect is important since improves the model considerably.

Like in Reis et al. (2013), to evaluate the fit of the model we use the Pearson’s stan-
dardized residuals. To calculate the residuals is necessary to transform the data. First we
count the observed fires that fall within each polygon of the Voronoi diagram (Figure 2
(right)). To estimate the counts that we expect to fall in each polygon, we multiply the
posterior mean of the intensity in each triangle vertex by the area of the polygon asso-
ciated with that vertex. About 97% of the residuals lie between -3 and 3, but some years
have residuals very high (Figure 3 (left)). However, we note that Pearson’s standardized



64 P. Pereira et al.

residuals may not be very informative, in fact is not a meaningful model validation tool
for spatial point patterns. See Baddeley et al. (2008) for the properties of residuals for
spatial point processes.
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Figure 3 – Pearson’s standardized residuals by year (left); Probability integral transform (PIT)
(right).

In order to assess the predictive quality of the model, we use the cross-validated prob-
ability integral transform (PIT). The PIT histograms are typically used informally as
a diagnostic tool and assess the predictive quality of a model with respect to calibra-
tion. Calibration is checked by plotting the histogram of the PIT values and checking
of uniformity in the unit interval [0,1] (Gneiting et al., 2007). If there are deviations
from uniformity, forecast failures and model deficiencies might be present (Czado et al.,
2009). A U-shaped histogram indicates under-dispersed predictive distributions, hump
or inverse-U shaped histogram points to overdispersion and triangle-shaped histogram
can occur when the predictive distributions are biased (Czado et al., 2009). The PIT his-
togram (Figure 3 (right)) suggests under-dispersion of the predictive distribution, since
the left and right end of the histogram presents higher columns resembling a U-shaped
histogram.

4.5. Prediction

One important use of the fitted model is the prediction of future fire point patterns.
The predictive distribution of λ(s, t + 1) and its mean can be interpreted in the narrow
sense, as the annual fire risk map for the next year.

To obtain one-step-ahead forecasts of the predictive distribution we code the obser-
vations, i.e. the vertices of the triangulation, at time t + 1 and calculate the posterior
predictive distribution. So the predictive distribution for λ(s, 2005) (logarithmic scale)
is shown in Figure 4. The map of the standard deviation (Figure 4 (left)) appears to
present edge effect. A possibility to reduce this edge effect is to extend the triangulation
beyond the border of Portugal. However, the data represent wildfires and part of the
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boundary of Portugal is the Atlantic ocean, so we chose not to extend the triangulation.
One way of overcoming this problem is to extend the triangulation towards the ocean,
but define an offset covariate that was large negative over the ocean so that the intensity
is estimated as being zero there.
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Figure 4 – Predicted intensity (logarithmic scale) for the year 2005: Mean with contour (left),
Standard deviation with contour (left).

A simple way of model validation is to plot the predicted intensity with the observed
fires. The predicted intensity for 2005 (Figure 5) detects the areas where the density of
wildfires are higher, the north and center of Portugal.
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Figure 5 – Predicted intensity (logarithmic scale) and observed wildfires for the year 2005.
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5. DISCUSSION

At present, we report on the inference for the log Gaussian Cox process for the spatial
point patterns of wildfires and consequently we also report on the mean of the predic-
tive distribution of the random intensity function λ(s , t + 1), which we define as the
predicted annual fire risk. However, for practical purposes it is much more informative
to give probability statements on the number of fire events. This can be done by defin-
ing areal units, for example at county level, and then calculate the predictive distribution
of number of fires within these areal units using the intensity function λ(s , t + 1).

We have not given satisfactory model validation for our model and the consequent
predictive power of the mean predicted intensity for quantifying the annual risk of fire
incidences other than simple visual comparison for predictions and realizations for 2005.
Residual analysis for spatial point (Baddeley et al., 2008) will be highly useful in such
model validation studies. Validation of the models can alternatively be done using ROC
(Receiver Operating Characteristic) analysis. See for example (de Zea Bermudez et al.,
2009) for similar use of ROC curves in wildfire studies.

The intensity function was modeled as a time series of Gaussian fields in which it was
assumed a separable covariance function. One possibility to improve this model is to
consider a non-separable covariance function as defined in Gneiting (2002). Use of non-
separable covariance structure for space and time is clearly suggested by the preliminary
data analysis reported in Section 3.

As was reported at the beginning of the paper, the empirical studies indicate de-
pendence between local point density and the respective marks (fire size), which com-
plicates the structure of the resulting models. We have avoided this complication by
fitting a spatio-temporal log-Gaussian Cox process to spatial points, ignoring the marks.
However, providing a joint model for point patterns and marks is highly desirable in
producing fire risk maps for different quantiles of the fire size distribution.
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SUMMARY

Quantification of annual wildfire risk; A spatio-temporal point process approach.

Policy responses for local and global fire management depend heavily on the proper understanding
of the fire extent as well as its spatio-temporal variation across any given study area. Annual fire
risk maps are important tools for such policy responses, supporting strategic decisions such as
location-allocation of equipment and human resources. Here, we define risk of fire in the narrow
sense as the probability of its occurrence without addressing the loss component. In this paper,
we study the spatio-temporal point patterns of wildfires and model them by a log Gaussian Cox
processes. The mean of predictive distribution of random intensity function is used in the narrow
sense, as the annual fire risk map for next year.


