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ON LAPLACIANNESS OF IIERMITIAN QUADRATIC
AND BILINEAR FORMS IN COMPLEX NORMAL VARIABLES

Shagufta A. Sultan

1. INTRODUCTION

Hermitian quadratic and bilinear forms in complex normal variables and their
distributions are considered in this article. A set of necessary and sufficient (NS)
conditions for Hermitian yuadratic and bilinear expressions to be distributed as
noncentral generalized Laplacian (NGL) is obtained in Section 2 which, as a spe-
cial case, gives the NS conditions for Hermitian yuadratic and bilinear forms to be
NGL. Mathai (1993a) has defined the NGIL. density and presented a set of NS
conditions for these forms (for the real case) to be distributed as NGL and as a
gamma difference. The density of linear combinations of independent gamma vari-
ables has been obtained by many authors. For example, Provost (1989a) has ob-
tained the density of a sum of gamma variables using the inverse Mellin transform.
Using this, Provost (1989b) expressed the density of a general linear combination
of gamma variables. Sultan (1997) has obtained the explicit expressions for the
cumulants of arbitrary order of a Hermitian bilinear form, joint cumulants of a
quadratic and a bilinear form and of two Ilermitian bilinear forms. A set of NS
conditions for the independence of these torms is also given there.

In Section 3, a set of NS conditions is ohtained for the Hermitian bilinear
forms to be distributed as an Erlang difference. Some definitions for the moment
generating functions (m.g.f.) and the densities of NGL and Erlang difference are
presented in Appendix.

Laplacian distribution is given by the density

flx) = 'é%eﬁx[/[j, — o0 < x < 00 (1.1)
where | x| is the absolute value of x. This density comes in a large variety of situa-
tions such as the formation of sand dunes, residual effect from an input-output
type situation and so on. For example, if the input variable X, and output variable

X, are independently and identically exponentially distributed with mean value f,
then the residual effect U= X, - X, has the m.g.{., denoted by M.(")

My =(1-B7'0+ )" =01-p%)" (1.2)
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which gives rise to Laplace density (1.1).A generalization of this situation is a gen-
eral gamma type input and general gamma type output and the residual effect. Par-
ticular situations of this type are discussed in Mathai (1993b). Since the input-out-
put type situation is arising in many practical problems, it is desirable to check the
conditions under which a given bilinear torm or a quadratic form is distributed as a
Laplacian as in (1.1)or its noncentral version delined in Mathai (1993a). As in the
case ol quadratic form being distributed as a chisquare, central or noncentral, it is
useful in many inference problems to check for bilinear and quadratic forms to be
distributed as in (1.1).This paper explores the necessary and sufficient conditions
under which a given bilinear form or quadratic lortn he distributed as in (1 1) or
its noncentral version. A quadratic form being chisquare distributed is a very im-
portant result in statistical inference problems. This is the basis lor the tests of
hypotheses in analysis of variance, regression and other related problems. Rilinear
and quadratic iorms being Laplace distributed is then a parallel result and has simi-
lar potential in statistical inference problems. When the vectors of quadratic and
bilinear forms are complex Gaussian, then the resulting Ilermitian quadratic and
bilinear forms have lots of applications in engineering, communication theory, ra-
dar and related areas. A large amount ol literature exists on these topics, see for
example {luang and Campbell (1991), Cavers and Ho (1992) and the references
therein. Therefore, in this paper, we explored the NS conditions for Laplacianness
of Hermitian bilinear and quadratic forms.

2. LAPLACIANNESS OF HERMITIAN QUADRATIC AND BILINEAR FORMS

Let x: p X 1 and y: ¢ X 1 have a joint complex normal (CN)distribution, that is,

x) . . X '
7 = ~CN, . (0,2}, u= th y = 21, ¥ =3 >0, which denotes
bra X X
y 2 S0t S
that Cis Hermitian positive definite, C = C', Zis complex conjugate of matrix C,
p, and X|; are the mean vector and the variance-covariance matrix of vector x, X,
is the covariance matrix of x and y and CN (-, -) denotes a p-variate complex nor-
mal, matrices are denoted by capital letters (so are the random variables) and vec-
tors by boldface letters.

2.1. Hermitian quadratic expressions

Let
Qz) = 2" Az + %(a*z +z'a) + d, (2.1)

where A=A is a (p+g) llermitian matrix of constants, a is a (p+q) complex con-
stant vector, d, is a real constant, then Q(z) is a Ilermitian quadratic expression.

The m.g.f. of Q(z) could be obtained as, see for example Mathai and Provost
(1992, p. 40) for the real case
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Moty = [T = 2245 Pexp{e[d, + w A + ‘;‘(a’p +p a))

+t2(2”3/1p N é--zlfza)(z _pzi2 gz (21/2/1“ +Lsuz, )} (2.2)

where ” (X243 < 1, “ ” is a norm and f is the determinant of matrix (), [
is the identity matrix and Y2 denotes the Herrmtmn positive definite square root
of the Hermitian positive definite matrix X. We will investigate the NS conditions
for Q(z) to be a NGL, that is NS conditions for (2.2)and {A.5) to be equal. This,
then will be a result analogous to the chisquaredness of quadratic forms in real ran-
dom variables.

Theorerr 1 The NS conditions for OQ(z) of (22) to be a NGL of (A.5) with the
parameters (¢, B, A)are the following:
I) , 0= for some positive integer #;

(m, The eigenvalues of 312AX2 are such that exactly # of them are equal to 3,

exactly n of them are equal to - f and the remaining p 1y - 2x are equal to

zeros, where 27 is the rank of the matrix A, or (ZA)F X = %(2/1)42 and
tr (AZX) = B’
(), d, +u Au + (@'u+uar=0= (%Xa+ XAp) /1(%-}::4 + Xxlpl);

(v}, A= 2[3 [f.{ AZ AW + - (a TAL A+ W AZa) + wima Xa}

(v), d = ( L J(a’*mza);
' A

and if the rank of A is less than (p 1 y) then

(\1), a Xa= ~—1~—a FAXAXaora= JT(AE)Za
B" ﬁ_'

The {ollowing two lemmas are used in the proof of the above theorem:

Lemma I Let pix), z-1, 2, 3, 4, be polynomials in x with rational coefficients
such that

p](x) LJ);)_{XJ/}).;[XJ - ps(x)
for all x, where p,(0)/p,(0) =0, p,(0) = p,(0) = 1. Then p,{x) = p;(x) and p,(x) = p,x),
see for example Ogawa (1950).

Lemma 2. Let

(1-B5% = 1‘[ 1-A) (2.3)

for | #28°! < 1,!;‘1 | <1,7=1,2,..,p,0>0, >0, A’s real; then
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() o =n for some positive integer #;

(1) exactly n of the Z.i’s are equal to S, exactly n of them are equal to - 3 and the
remaining p - 2# of the /li’s are zeros. See for example, Mathai (1993a) for the
real case.

Proof o Theorem 1. Necessity. Applying Lemmas 1 and 2 to (A.5) and (2.2), condi-
tions (1), and (1), are obtained. Equating exponential parts in (A.5) and (2.2) and
expanding, we get

20 (BPY = t(aﬁ + W Ap + é—(a*‘u + u*‘a)) 4 tz(X” 240 + ém v Za)"

% {Z(rz” 2,!121/2)?}(21/ 2ap+ L Qa) (2.4)
=0

Comparing the coefficient of ¢, t>, t°, ..., on both sides of (2.4)and simplifying,
conditions (11},-(v1), are obtained. It is straightforward to see that these conditions
are sufficient.

2.2. Hermitian quadraticform

When a is null vector and d;=0, (2.1) reduces to Q,(z) =z Az, which is a
Hermitian quadratic form.

Corollary 1. The NS conditions for Q,(z) =z Az, A =A", to be a NGL are:
(I)b =D

(1), =)y,

(), = w"Ap = 0;

(), A= ( 1 )p"’AZAu.

2p°

Corollary 2. The NS conditions for Q,(z) =z"Az, A =A", to be distributed as
noncentral chi-square are (1),-(v);, of Corollary 1 with =2, a=m, m=1, 2, 3, ....

2.3. Hermitian bilinear expression

Let

Blx,y) = %(x"“Aly Ly AT + %(b*x +x'b) + %(c*y +y'e) +d, (2.5)

where A,: p X ¢ is a complex matrix of constants, b:p X 1 and c: ¢ x 1 are complex
vectors of constants, d, is a real constant, then B(x, y) is a Hermitian bilinear ex-
pression, see for example Sultan (1997) for some aspects of Hermitian bilinear

forms. Writing B(x, y) as a Hermitian quadratic form in z = (x), we get
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B(x,y) = Q(z) = 2" Az + %(a z+z'a)+d (2.6)
o 1g4 o
where A = L. 2 ,a' =" ¢"),d =d, and O is the null matrix.
5 A O

Theorem 2. The NS conditions for B(x,y) of (2.5)to be a NGL are
(1, =My

(1), [B%JAZAEAZA _ AzA

and tr(Z1PA SV (XA) = 0, or

2

A12:22A; = (41 J{[(Alzﬂ)z + AxxzzA;xu] (AKZZZA;)

+ [AEZZIAIZZZ + A1222A1‘212](A1212Af)}

2

A4 24 = [41 ]{[(Alzzl)z + AL AT N AZHA)

+ [AIZZJ.AlZZZ + AIEZZA]*ZH](AI*ZMAI )}

2

AT AT = [4; j{[(A;"z12 P+ AE AT IA LAY
+ [AZ A, + AS, AT AL, A
AT A = [ﬁ}{[(ﬁzm)z + AT S AT AL A)
+ [A'Z AL, + A Z,AZ AZ, AN
and tr (% 5.4+ L ZZIAJ - 0;

2

(), 5 (WA, + AR+ (AR + 5 (b + b))

+ %(ugc +cu,)+d, =0;

(), A = [8;2 )[(b"‘z12 + T AN + (b, + T, ) A,

+ lJ-fAl(Zub + Zy0) + U;Af(zl b+ X0+ M;A1(212Af“1 + 2uANR,)

+ HfAi(EzzA;M + X, AN, + b*Zub + b""'lec + C*Z"Zlb + C*Zﬂc];
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V), d; = ("8[1{2' J[(bﬁzu +e¢'Z, ) AT, b+ (b"Z, + ¢ X2, AL b
+(b"Z, +c"Z, ) AZ,e+(b°E, +¢"Z,,) AT el

’ 1
0 4

1 s
24 0

When the rank of matrix is less than (p + ¢), then

(i), b = [ 4[132 )(leA;"ZUA{’b + X AT A+ ELA'E A+ 2 AL, A

€= ( 4;2 J(ZR;’A;{ZL?AFI’ + 2, A%,Ab+ AL Ac+ £, AZ,,4¢).

Proof. Substituting the values of A, a and d, given by 12.6) in Theorem 1 and
plifying, conditions (1) -(v1), are obtained

sim-

Corollary 3. When b and c¢ arc null vectors and d, =U, (2.7) reduces to

Bix,y) = %(X Ay +y A x) and the NS conditions for B(x, y} to be distributed as

NGL could be obtained from Theorem 2.

3. HERMITAh BILINEAR  TORMS AND [HE ERL ANMIFFFRENC E
The NS conditions for

Bix,y) = § Gx Ay +y A4x)

(3 1)

to be distributed as an Erlang difference are obtained in this section. From (2 6)

Bix,y) = Q(z) = 2" Az, A=, 2
SA4 0

The m.g.f. of O(z) from (2.2)becomes (with [l = 0)
My(e)=/1 - =2 AS" 2

3.1. Equicorrelated Case

(3.2)

(5.3)

Letg=p, A,=A,, L,,=1=X,,, X,=p[=C,, , p is the coefficient of correlation
between the components of vectors x and y. Then (3.3), after some simplification,

using the results on the determinant of a matrix, could be written as
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1u—a/lz‘ 1+alt) d (3.4)

13 :*“

where a, = 1tP , - 1-p U X, =0l 2, =051, £,,=0,0.pl, then 4, and

2 2
. 1-
a, would become 4, = Gl‘{g& p) ,d, = 2192 (,, » . Let A, be a non-null ma-
L L

trix, then are state the following result:

Theorerz 3 The NS conditions for B(x, y) given by (3.2), to be distributed as a
central Erlang difference of (A.3) with parameters (a,, &, B;, B,) are the following:
(1) a,=0,=n, where # is the number of nonzero eigenvalues of A;;

(n all the nonzero eigenvalues of A, are positive and equal such that

ﬂ] = (1+p) J— H " : NPT RPN
p 1_p) or all the nonzero eigenvalues of A, are negative md equal such
, _
that D= 1=P)
P, d+p,

If p=0, then all eigenvalues are equal, either all positive or all negative and un-
der (1) and (i) this Erlang difference will be a generalized Laplacian.

Proof. Similar as for the real case, sec for example, Mathai etal. (1995).

Corollary 4. The NS conditions for B(x, y), as defined in (3.1), to be distributed as
an Erlang difference with the parameters 7, #, 6,0,(1 + p)B, 6,05(1 - p)f is that
BA, = A7 and of rank n, where 8 is the common repeated eigenvalue of A4;.

Thearem 4. The NS conditions for the Hermitian quadratic form x A x, A4, = A7,
~CN,0,C,,), ;= X, >0 to be distributed as an Erlang difference of (A.1[)are
the following:
() o =V, 0, =V, for some positive integers V, and Vs;
() all the positive eigenvalues of X;;A4, are equal to S, and all the negative
eigenvalues are equal to - f3,, at least one of them is there in each set.

Department of Mathematics and Statistics SHHAGUFTA A. SULTAN
MeGill University, Montreal, Canada
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APPENDIX A

DENSITIES OF GENERALIZED LAPLACIAN AND ERLANG DIFFERENCE

Central Case

Let X, and X, be two independent real gamma variables with parameters (¢,
B, and (o, B,) respectlvely, o >0, B >0,j=1,2 Let U=X, - X,, then the
m.g.f.s of X;, X, and U are

My (6) = (1 - )™, My (8) = (1= By

My() =(1- B+ B ™ (A1)
for |[51t}<1 | B,¢] < 1. For e, = o, =a, 3, =B, =P, (A.1) becomes

My(t) = (1= B¢ (A.2)

and the density corresponding to (A.2) is a special case of the generalized Laplace
density with & > 0. For ez=1, U has the Laplace density. Mathai (1993a) has ob-
tained the density of U in {A.1) for all positive values of ¢, and a,, which for
a,=m and ¢, =m, where m, and m, are positive integers, reduces to the density
of central Erlang difference as given below

ﬁl; L (m,) {ByueY
bu™ e A z { 2) i }, u >0
=0

H{my —1~—; !

ou) = . (A.3)
B ms-1
15’2(—14)’”2_16 B2 Z [ ), (~Byt) }, # <0

- ey —1—1)!

where /(?[ - ﬁo— Mzﬁi mlﬁ; mz’ A?q _ ﬁ~ﬂ‘21l3— m{ﬂg i) ﬁl — [; /;- Cmd for example,
(@.=ala+1) ... (@a+r-1), (@)y=1,a#0. When 8, =f,=21in (3.7), it reduces to

the density of the difference of two independent chi-squares with 2#, and 22, de-
grees of freedom (d.f.).

Noncentral case

The m.g.f. of a random variable U distributed as a noncentral gamma difference
is (see for example, Mathai, 1993a)

M) = (1= Bty (L + B8 2 exp {~(A, + A,) + A (1 = Be)”!
+A,(1+ B} (A4)
<1,A4>0,7=1,2 With 4,=4,=1, f,=8,=5,

where ﬁj >0, & >0,
a, = ¢, = o, (A.4) reduces to

M) = (1 - BRI % exp {24 + 2A(1 - B2y 1y (A.5)
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Then U in (A.5) is a special case of a noncentral generalized Laplace variable
with parameters (a,f, A). The density of U in (A.4) for a,=m, and o, =m, is
given as

flu) = oAt A) i i Mf_ () (A.06)

yr 7. ! g?i,?‘z
;i:() ;‘2:0 172

where f(«) is the density of U/ of (A.4) and & rz(a) is the gl#) of (A.3) with m,
replaced by #2;+ 7, j=1, 2. The density for a chi-square difference with 2z d.f.
could be obtained from (A.6)by replacing, [)’7- by 2 and o; by m;, 7-1, 2.
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RIASSUNTO

Distribuzione laplaciana di forme hermitiane e quadratiche di variabili normali complesse

Si ottengono risultati che danno le condizioni necessarie e sufficienti perché un’espressio-
ne quadratica Hermitiana o un'espressione bilineare Hermitiana si distribuiscano come una
Laplaciana generalizzata non-centrale. Si ottengono anche le condizioni necessarie e suffi-
cienti affinché forme bilineari Hermitiane siano distribuite come differenza di Erlang.
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SUMMARY

On Laplacianness of Hemmitian quadratic and bilinear forms in complex normal vaviables

A srt of results are abtained which will give the necessary and sufficient (NS conditions
for a Hermitian quadratic expression or a [lermitian bilinear expression to be distribured as
a noncentral generalized Laplacian. The NS conditions arc also obtained for Hermitian
bilincar forms to be distributed as an Erlang difference.



