
A NOTE O N  GOODNESS O F  FIT TEST USING MOMENTS 

G .  Li, A.  Papadopoulos 

An important problem in statistical applications is to test whether or not an as- 
sumed model gives good fit to the data. Among the most commonly used proce- 
dures for testing goodness of fit of a parametric family is the Pearson-Fisher chi- 
square test (see Fisher, 1922, 1924). The Pearson-Fisher chi-square test involves 
partitioning the real line into a number of cells and then comparing the observed 
cell frequencies with the expected cell frequencies using a chi-square test statistic. 
The chi-square test is easy to use and applies to almost any parametric family. O n  
the other hand, it also has the drawback that the selection of its partition is arbi- 
trary. Furthermore, for a given partition, the rejection power of the chi-squared 
test can change dramatically between different alternatives. 

Another general approach to goodness of fit test is to use some distance statis- . - 

tics such as the Kolmogorov-Smirnov statistic and Anderson-Darling statistic 
among others. Compared with chi-square tests, distance tests have the advantage 
that they do not involve subjective selection of a partition. O n  the other hand, 
most distance tests are appropriate only for testing the simple hypothesis whether a 
set of observations are from some completely specified distribution function. 
When certain parameters of the distribution must be estimated from the sample, 
they no longer apply. Lilliefors (1967, 1969, 1973) studied the use of distance sta- 
tistics to test goodness of fit of the normal, exponential family, and gamma fami- 
lies. In recent years, considerable efforts have been made to extend distance tests 
to test the composite hypothesis of a general parametric family, using transforma- 
tions of sotne generalized empirical processes; see, e.g., Khmaladze (1993) and Sun 
(1997) among others. IIowever, the resulting tests have not been widely used in 
practice partly because they are often very complicated and not easy to use. 

Many other goodness of fit tests have been proposed in the past for some spe- 
cific parametric families; see D'Agostino and Stephens (1986) for a comprehensive 
review of goodness of fit techniques. Among them are some tests of departure 
from norn~ality using the sample skewness ( L h, ) and the sample kurtosis (h2 )  For 
a normal distribution, the population skewness and kurtosis are O and 3 respec- 



tively. Moreover, the exact distributions of ,I?, and 17, are known in normal satn- 
pling (see Pearson and Hartley, 1970, table 34), which can be used for testing de- 
parture from normality. W e  point out that the ( l 6, , bl) method is moment-based 
and applies only to normality testing. Very tew results are lcnown for the distribu- 
tions of ,h, and h, in nonnormal sampling. 

The main purpose of this article is to introduce a simple moment approach to 
testing goodness of fit based on some moment structure of a parametric distribu- 
tion family. This approach has some appealing features For example, the idea is 
very simple since it only involves comparison of sampling nmnents with population 
moments. It is applicable to a variety of discrete or continuous parametric families, 
\xrhile the ( ,h l  , bL) method is only known for testing normality. The proposed 
tests only use the standard normal (or chi-square) table and thus are easy use in 
practice. Compared with chi-square tests, the moment b;ised nietllod docs nor in- 
volve subjective selection of a partition. Tt also demonstratcci superior and more 
stable rejection power than chi-square tests for different alternatives in our limited 
simulation studies. 

In section 2 we describe the general tnoment-based method. \Ne also illustrate 
this approach by deriving moment based goodncss of tests of some cotntnon para- 
metric familics. In  section 3 we report results from a simulation study to compare 
the of the moment based tests with some chi-square ,md distance 
tests. 

Assume that X,,  . . . , X, are independent idcnticiilly distributecl 1 aridom variables 
iron1 a cumulative distribution tunction F. (hnsidcr the problem of testing the null 
hypothesis 

U,, : F is a nlember of a parametric family Fo, 8 E 0 ,  

where 6) is a subset of R". 
T.et in, = jx' &FB(%) denote the L-t11 m.onlcnt of P,,. The iolloiving basic assump- 

tion will be 11sed throughout this paper. 

Assumption A, Assume that m,, exists for some pwitivc integer r and tllat m , ,  .... 
rxz, satisfy the following equation 

for some function g : R' -+ R. 
In many situations, it is easy to find a function g satisfying Assumption A. For in- 

stance, if a parametric distribution is symmetric about its mean, then E(X - m,)' = 0. 
'This implies that m ,  - 3m,rrz, + 2m: - 0. Thus, one can chooseg(x, y, z )  = z - 3xy + 2x'. 



In general, existence of g satisfying Assumption A is feasible given the fact that m,,  m?, 
. . . all depend on a common finite dimensional parameter 0. 

2.2 .  ?h test 
1: 

Let &, = X ; / n  bc the sample moment of i-th order, i = I ,  2, .. . 
/ = l  

Thewcm I .  Assume that Assumption A holds. Assume further that g is continu- 
ously differentiable. Then, under E l o ,  

m )  c (  . r , ) ( g ( m , , . . . ,  2 ,  p .  d g ( q  ,..., m , )  
c h z ,  ' " ' dm, &E, (3rnT- ,..., 

ilror,l: By the central limit theorem, i n  conjunction with the (:ramdr-\%'old device, 
the random vvctor 

convergrs in distribution to ~ - v ~ r i a t c  normnl with mean vector (0 ,  .., O )  and 
covxidnce rndtrix E. 'This, togethcr with tlic delta ~nethoci, irnplivs that 

where I!(@) i i s  tietined h! 12 l) 
Let CI= O(X,, , X<)  be a consistent estimate, of H under II,,. Assurr~e that m , ,  

.. , m,, <Ire continuous functtona of 0. 'Shen. 1'10) i~ a con&tent estimate ol \'(Q) 
under [ I , ,  Define 

7' == ng(G, ,  .. , h, )/ , \ ' (H)  

'l'hcn, it follows frorn Theorem L that under /lo, 

,L A Y(0, l l 

as n X .  This lcads to thc lollowing level U test of H,,: Reject H,, ii l T /  > z,,/~. 
where is tllc upper 4 2  pcrcentile of the standald normal distrihltion. 

R e m a d  I .  A consistent estimate O of O under H,, c m  usually be obtained using 
either the method of rnoments or the method of' maximum likelihood (see Bickel 
and Doks~rm, 1979, chaptcr 3 ) .  It would be difticult to say in general whether one 
method is preferred to the other. Only one method is used in each of the examples 
in section 2.3 for the purpose of illustration. 
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Remark 2. There may exist several functions, say g,, . . . , gk, satisfying Assumption 
A and, sometimes, one may wish to combine these functions to test goodness of 
fit. One may conduct several tests based on gl, ..., gk, separately. We  refer the 
readers to Mardia et al. (1979, pp. 127-131) for the Roy union-intersection princi- 
ple and Pallini (1994) for combinations of dependent tests and their optimality. 
One may also derive a chi-square test using the multidimensional function g =  (g1, 
..., gklT. With g being k-dimensional, Theorem 1 still holds with the limiting distri- 
bution being a k-variate normal distribution with m:an O and covariance qat r ix  
V(6) given by (2.1). Define Q = ng7'(hl, ..., h,) V-'(@) g(&,, ..., A,), where 8 is a 
consistent estimate of 8 under HQ. Then, under I-l; and some regularity conditions, 
Q has a chi-square limiting distribution with k degrees of freedom. Therefore Q 
can be used to test H,, in the usual manner. 

W e  note that the ~ r o ~ o s e d  test may not have good power to distinguish between 
certain prametric families such as normal and logistic distributions. A related ques- 
tion is whether or not there exists a test function g(.) which maximizes the rejection 
power against a given parametric alternative. W e  have not been able to find a satis- 
factory solution to this problem so far, and future research is warranted. 

2.3. Application to some common distribution families 

To illustrate the proposed approach, we derive some moment-based goodness of 
fit tests for some common parametric distribution families. Although one may ob- 
tain more than one g satisfying Assumption A in the examples considered below, 
for simplicity, we only give a test based on a single function g in each example. 
Note that to obtain the test statistic T defined by (2.2), we need to find a function 
g satisfying Assumption A. In addition, we need to express ml ,  ..., m2, in terms of 
8 in order to find V(%) defined in (2.1). 

2.3.1. Test for exponential distribution 

To  test I-I,, : F(x) = l - exp(- X/$), X > 0, we take r = 2 and g(x, y) = y - 2x2. 
Because m, = 8 and m, = 202, we have g(ml, m,) = 0 for all 8 0. After some alge- 
braic calculations, it is shown that V(8) = 48'. Estimate 8 by 8 =  h , .  Then, the test 
statistic T defined by (2.2) reduces to 

This can be further written as 

n n 

where X = C X , / n  and s2 = C ( x 2  - X)'/n are the sample mean and sample 
i= l  i=l 

variance respectively. 



2.3.2. Test for normality 

To test the null hypothesis that the sample X,,  ..., X, are from a normal di- 
stribution N ( p ,  02), where p and o2 are unknown, we take r = 3 and g ( ~ ,  y ,  z )  = 

z - 3xy + 2%'. It can be verified that g(ml ,  m,, m , )  = 0 for all 8 =  ( p ,  0 2 ) .  Estimate 
n rj 

8 = ( p ,  02) by 8 = (X, 5') where X = C X , / n  and s2 = C ( X ,  - % ) ' / n  are the 
2=1 2=1 

sample mean and sample variance, respectively. Then the test statistic ?'is given by 

where V ( 8 )  is defined by (2.1)  with 

and 

2.3.3. Test for gamma dist~ibution 

To test the null hypothesis that the sample XI, ..., X,, are from a gamma distri- 
bution with the following probability density 

where t3= (a, p),  a > O and ,B > 0, we take r = 3 and g(x, y, z )  = xz + x2y - 2 3 ~ ~ .  I t  
can be shownA that &zl, m2, m,)  = O for all 8 =  (a,  p), (X > 0 and p > 0. Estimate 
8 =  ((X, p) by $= ( x 2 / s 2 ,  X / s 2) .  Thcn, our test statistic ?'is given by 

, \ n + &:?h2 - 2 h 3  1 = - -  . .. 

\ 
, 

where IT(@) is defined by (2.1) with 
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and 

mi=,@ia(a+ 1) ... ( " + l -  l ) ,  f o r j =  1, ..., 6 .  

2.3.4. Test for beta distribution 

To test the null hypothesis that the sample XI, ..., X, are from a beta distribu- 
tion with the following probability density 

where 8 = (a, h),  a > O and b > O are unknown, we take r = 3 and g(x, y, z )  = z(2x2 - 
X - y )  - y(x2 +xy  - 22). It can be verified that g(m,, m,, m,) = 0.  Therefore, the 
test statistic for H. is 

2 T = \n(m3(2m: - m, - m2)  - m2(m, + mlm2 - 2m2)) /  \V(%) , 

where i)= (2, b) = ( & , ( h z  - r ; ~ ~ ) / ( h :  - hz), 2(1 - ;,/h,) and V(@)  is defined by (2.1) 
with 

= (4m1m3 - m, - 2m1m2 - mi,4m2 - m, - m: - 2m1m,,2m: - m, - m,), 

and 

2.3.5. Test for uniform distribution 

To test the null hypothesis that the sample X,, ..., X, are from an uniform dis- 
tribution with the following probability density 

1 
f*(x) = - b - a '  

where 8 =  (a, b) ,  - a, < a < b < are unknown, we take r = 3 and g ( X ,  y ,  z )  = 

z - 33cy + 2x3. It can be verified that g(m,, m,, m,) = 0 .  Therefore, the test statistic 
for H. is 

, \ n (A3 - 3 4 A 2  + 2A; ) r =  , V ( @ )  
, 

where 8= (2, b) = (min ( X , ) ,  max {X,)) and V(8 )  is defined by (2.1) with 

c3g(ml,m2,mi) dg(mI,m2,m3) &(ml,m2,m3) 1 = (-3m, + 6m:, -3m1, l )  : 
I am, ' h 3  

and 
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2.3.6. Test for extremc-ualue distribution 

To test the null hypothesis that the sample X , ,  ..., X, are from an extreme-value 
distribution with the following probability density 

where 6 =  ( a ,  p) ,  - m < a < and /3 > 0 are unknown, we take r = 3 and g(x, y ,  
z )  = (Z - 3xy + 2x3) ,  - y:(y - x2) ' ,  where y, = E(Xl - ~ , ) ' / [ E ( x ,  - m1)21312 1.29857 
is the coefficient of skewness. It can be verified that &vl, m,, m, )  0. Therefore, 
the test statistic for H. is 

- -  

where 0 = (&,B)  = (m, - y , p , ,  6 ( h 2  - A:) [K)  and V($) is defined by (2.1)  with 

and 

K? = (-Br 4"- "(1) for r 2 2 . 

IIere $(.) is a digamma function (see Mood et al., 1974, p. 541). 



2.3.7. Test for logistic distribution 

To test the null hypothesis that the sample X,, ..., X, are from a logistic distri- 
bution with the following cumulative distribution function 

F&x) = [ l  + exp { -  ( X  - a)/P}]-' - W < X < m, 

where 0 =  (a, P) ,  - m < a < c-, and p > 0 are unknown, we take r= 3 and g(x, y, 
z )  = z - 3xy + 2x'. It can be verified that g(m,, m,, m,) = 0. Therefore, the test 
statistic for H. is 

--P 

where 6 = (&,B)  = ( m 1 , ~ - '  3(h, - h;))  and V(@) is defined by (2.1) with 

and 

m, =m,Kj+2m2~++~m,Ki+?n+K2+6m2m,+2m,m,, 

m6 = m,K6 + 2m,ti5 + 5m3x, + 3mlKj + 6m: + 8m2m4 + 2m,m,, 

~ ~ , _ , = 0 ,  1*= 1, 2, ...; ~, ,=6(2 '" -  1)P2'R2,, 1*= 1, 2, . . .  . 

Here B,, is a Bernoulli nunlber (sec Kendall and Stuart, 1958, p. 80). 

2.3.8. Test for I,uplme distribution 

To test the null hypothesis that the sample X,, ..., X ,  are from a Laplace distri- 
bution with the following probability density function 

whcrc @ =  (a, P ) ,  - < a < 03,  and j3 > 0 are unknown, we take I * =  3 and g(x, y ,  
2) = Z  - 3x31 + 2 ~ ' .  I t  can be verified that g(m,, m,, m,) = 0. Thcrelorc, the test 
statistic for H,, is 
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where e = ( G ,  B) = (h,, \(h2 - % ) / 2  ) and V(@)  is defined by (2.1) with 

and 

2.3.9. Tests for Poisson distribution 

To test the null hypothesis that the sample X,, ..., X, are from a Poisson distri- 
bution with the following probability frequency function 

where 8 > 0 is unknown, we take r = 2 and g(x, y) = y - x - x2.  For Poisson distri- 
bution, m ,  = 8 and m, = 8 + 02.  Hence, g(m,, m2) = 0. After some algebraic calcula- 
tions, it is seen that V(O) = 202. Let O= A l .  Therefore, the test statistic for E-fo is 
given by 

T = \ n g ( h  ,,..., &,)/\V($) = \n (&,  - A ,  - A;i)/\2h, , 

which can be further written as 

where X and s2 denote the sample mean and the sample variance. 
I t  is worth noting that the above statistic T can be written as T =  ( X *  - n)/d% 

where = ns2/X is the well known Fisher index of dispersion statistic (see Fisher, 
1970, p .  58). 

2.3.10. Test for binomial distribution 

To test the null hypothesis that the sample X,, ..., X, are from a binomial 
(m,  8) distribution where 0 < 6 < 1 is unknown, we take r = 2  and 

g(x, y )  = y - X - ((m - l ) /m)x2 .  It is easy to verify that g(ml, m,) = O for binomial 

distribution. Therefore, the test statistic for H,, is 



whcre b= X/m and V(@ is defined by (2.1) with 

and 

7'0 test the null hypothests t h a ~  the sample XI, , X,, are from a rlcgative 
binomial (m,  0) distribution where O O < 1 is unknov-11, we i , ke  r = 2 and 

y k ,  y) = y X - ( (YM t 1)/m)xL It IS c ; i s~  t u  verify I h ~ t  gim, ,  m,) -- 0 ior i~cg~ i t i i e  

b inon~ id  distribution Theretore, the test statistic for [I, ,  ii 

where 6 -  m/(m + X )  and Tit)) i i  detiried br  (2.1) with 

Yvl, = 
1 4 1  - C)) + m'(1 - C ) ) '  

C)'  

4 ') [l + I(1 - H )  + (l - C))' + 3m(l - C))] + -Im,m, .-. - 2m;m2 + 3m, . 
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W e  conducted a Monte Carlo study to compare the performance of the pro- 
posed test for exponential family with some existing goodness-of-fit tests. Specifi- 
callv, we consider the moment based test (T5) derived in Section 2.3.1, the 
1,illiefors test (T4), and three chi-squared tests ( T l ,  T2,  and T3) with partitions 
(6,13,20), (4, 8, 12, 16, 20), and (3, 6, 9, 15, 18, X ) ,  respectively. Each entry in 
the tables is based on 1,000 Monte Carlo sanlples and represents the simulated re- 
jection probability nlultiplied by 1,000. 

Table 1 reports results of simulations to estimate the s i ~ e  (probability of type I 
error) of goodness-of-fit tests lor exponential family for various combinations of 
nominal levels (a),  sample sizes ( E ) ,  and unclcrlying cspo~lcntial (6) )  distributions. It 
is seen that the simulated sizes of 1,illiefors's test are verv closc to the tloininal 
levels. 'She simulated sizcs of the moment-based test are reasonablr closc to the 
nominal lcvcls when cx- 0.1 and 0 05 ,  but may require a larger sample size when 
a= 0.01. The three chi-square test5 '1'1-7'3 did not perform as well as T4 ancl T5. 

Table 2 reports sirniilatecl rejection power of the five aforcnmlrioncd goodness- 
of-fit tests for exponential fanrilv for various cornbirlationr of norninal levels ( ( A ) ,  

wmplc sizcs (n)  and Wcibull (a, i?! rdterti,itilw. F(x)  = I - cup(- . X ' / / ) )  

'l'ablc 3 rcports simulated rcjuction power ot the five tests for rxpotleritial f ~ m -  
ily ior v x i o u s  cotnbin,~tions of ~ln~ninal  lerels ( U ) ,  s m ~ p l c  sizes ( 1 2 )  m d  lognor1r1:11 
Jter~iatives 

l i i ,  l l j  115 
120 I t ) >  121 
10-' 7x h!, 

89 73 66 

, L )  22 i $  &>.l 1; $ 8  

x i  76 ' 1  $ 7  V 0  l?  j l  

49 ch 13 )ii ji, ri 28 

42 4 1 1      1 0 L8 7 1.) 

.Yak 'l'l ie ~ebts  '1 '1, r2, m d  T 3  CIW clii-sqiixc r r \ t c ,  x i th  p m i ~ i o ~ ~ >  16, l ? ,  201,  (4, $,, 12, 16, 201, L~[ id  ( 3 ,  0. %l, Li, l%, 
2111. rc\peiti\r.lr. T-+ rcptcwnr, thc 1,illichir~ tr , i ,  l i  rcpii.~tiit, rlie i~~onicl i l  bascd r c ~ r  iieiix. ed iil St.ctilin 1.3 1. I Cjr 
c .d i  5clccicd 0. tiic d.~i.i wcrc ; x i ~ c r o ~ c d  Lrotli tlic eipoileiitial d i i t r i b ~ i t i o ~  1.is1 = 1 - I.>F(- ~ / @ i .  1 ,il<!ll h l m t r  ( h l c  
i.imple, B . C ~ C  ~ticcl to ulmiii e d ~  entry. 
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Xute: 'l'l, 'l'2, and T3 are the same chi-square tests as thosc in Table 1 .  7'4 represents the L,illiefors test. T5 represents 
the nionierlt b ;wd  tcst derived in Section 2.3.1. For each given ( U ,  b) ,  the data were generated i rom the W e i b d l  distri- 
butiori [:(X) = 1 - e q -  x d / h ) .  1,000 Xlonre Carln samples were iised to obtain each entry. 

Table 4 reports simulated rejection power of the five tests for exponential fam- 
ily for various combinations of nominal levels (a), sample sizes (n) and truncated 
normal alternatives. 

It is observed from tables 2, 3 and 4 that the proposed moment based test (T5) 
demonstrared better rejection power than the chi-square tests (Tl-T3) and the 
Lilliefors test (T4) in almost every situation considered. 

Under lognormal alternatives, all five tests performed well with the proposed 
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1000 939 
L000 1000 
1000 998 
1000 1000 

996 971 
1000 993 
1000 994 
I000 997 

939 873 
993 901 
999 937 

1000 945 

1000 999 
l000 999 
I000 l000 
1000 1000 

995 970 
1000 994 
1000     988 

1000 1 iIO0 

~ $ 3  X i ( ,  
990 871 

1000 922 
1000 372 

Xotc: 7 1 ,  '1'2, ulid 1 '3  ;ire the same chi-square tcsts as rhose in  Tahlc I .  T4 reprcwnti the 1.illieiorc test. T5 rcprtsciiti 
the moiiienr b~sccl  test derived in Section 2.3.  I. For each given ( p ,  cr), ttic data a c r c  gcricrntcd from the log~io~~ii . i l  
distribution with lncan jr and 7randal.d deviation cr. 1,000 hlonie Carlo \arriplc, \wre iiscii to  obtain ench entry. 

inonlent based test (Tj) (see table 3) being slightly better. Under Weibull and trun- 
cated normal alternatives, however, substantially increased reject power is achieved 
by the proposed moment based test (1'5) compared with the other four tcsts (Tl- 
T4) (see tables 2 and 4). This is true especially for small samples. For example, it is 
seen from table 4 that the simulated rejection probabilities for the five tests T I ,  
T2, T3, T4, and T j  are 0.196, 0.278, 0.329, 0.422, and 0.909, respectively, when 
p = l ,  o= l ,  n = 30, and a= 0.01. 



TABLE 3 

Simulated rejection power (twltiplietl by 1,000) ofgoodness-oJ-fit teslsfor c,xl1o?2entialfat~ily 
t d e r  t?uncateci nosmal altcunatit~es 

n=0.10 cw = 0.05 a =  0.01 

Sotr,: T1, 7 2 .  and 'S3 arc the same chi-square tests as those in Table l .  1'4 represents the L,iliiefors test. T5 represents 
the ~noment based test cierivcd in Section 2.3.1. For each given (p. G), the data were genera~ed iron1 the truncated 
normal distribution by tru~icatitig the normal distrihurion .isit11 nienn p and standard deviation LT a t  0 .  1,000 M m t c  
<:ark \amplcs were used to obtain each entry. 
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RIASSUNTO 

lina nota sui test di bonti delI'adattamento basati sui momenti 

Lo scopo del presente articolo 6 di introdurre un metodo generale, basato sui momenti, 
per derivare formalmente un test di bonth dell'adattamento di una famiglia parametrica. Si 
mostra come, in generale, un test approssimato gaussiano o chi-quadrato possa essere deriva- 
to analizzando la struttura dei momenti di una famiglia parametrica, sotto I'ipotesi che i mo- 
menti fin0 ad un dato ordine esistano. L'idea i. semplice e i test ottenuti possono essere im- 
plementati facilmente. A1 fine di illustrare l'uso della metodologia proposta sono derivati, 
per alcune famiglie parametriche discrete e continue note, i test di bonth dell'adattamento 
basati sui momenti. I test proposti sono inoltre confrontati con l'usuale test chi-quadrato di 
Pearson e Fisher e con alcuni test di distanza mediante uno studio di simulazione. 
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SUMMARY 

The purpose of this article is to introduce a general moment-based approach to derive 
formal goodness of fit tests of a parametric family. W e  show that, in general, an  approxi- 
mate normal test or a chi-squared test can be derived by exploring the moment structure of 
a parametric family, when moments up to certain order exist. The idea is simple and the 
resulting tests are easy to implement. T o  illustrate the use of this approach, we derive mo- 
ment-based goodness of fit tests for some common discrete and continuous parametric fami- 
lies. W e  also compare the proposed tests with the well known Pearson-Fisher chi-square test 
and some distance tests in a simulation study. 


