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A NOTE ON GOODNESSOFFIT TEST USING MOMENTS

G. Li, A. Papadopoulos

1. INTRODUCTION

An important problem in statistical applications is to test whether or not an as
sumed model gives good fit to the data. Among the most commonly used proce-
dures for testing goodness of fit of a parametric family is the Pearson-Fisher chi-
square test (see Fisher, 1922, 1924). The Pearson-Fisher chi-square test involves
partitioning the real line into a number of cells and then comparing the observed
cell frequencies with the expected cell frequencies using a chi-square test statistic.
The chi-square test is easy to use and applies to ailmost any parametric family. On
the other hand, it aso has the drawback that the selection of its partition is arbi-
trary. Furthermore, for a given partition, the rejection power of the chi-squared
test can change dramatically between different alternatives.

Another general approach to goodness of fit test is to use some distance statis-
tics such as the Kolmogorov-Smirnov statistic and Anderson-Darling statistic
among others. Compared with chi-square tests, distance tests have the advantage
that they do not involve subjective selection of a partition. On the other hand,
most distance tests are appropriate only for testing the simple hypothesis whether a
set of observations are from some completely specified distribution function.
When certain parameters of the distribution must be estimated from the sample,
they no longer apply. Lilliefors (1967, 1969, 1973) studied the use of distance sta-
tistics to test goodness of fit of the normal, exponential family, and gamma fami-
lies. In recent years, considerable efforts have been made to extend distance tests
to test the composite hypothesis of a general parametric family, using transforma-
tions of sotne generalized empirical processes; see, e.g., Khmaladze (1993) and Sun
(1997) among others. Ilowever, the resulting tests have not been widely used in
practice partly because they are often very complicated and not easy to use.

Many other goodness of fit tests have been proposed in the past for some spe-
cific parametric families; see D’ Agostino and Stephens (1986) for a comprehensive
review of goodness of fit techniques. Among them are some tests of departure
from normality using the sample skewness (\ h } and the sample kurtosis (%,). For
a normal distribution, the population skewness and kurtosis are O and 3 respec-
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tively. Moreover, the exact distributions of /4, and rz are known in normal sam-
pling (see Pearson and Hartley, 1970, table 34), which can be used for testing de-
parture from normality. We point out that the (, 4, , ,) method is moment-based
and applies only to normality testing. Very few results are known for the distribu-
tionsof /4 and h, in nonnormal sampling.

The main purpose of this article is to introduce a simple moment approach to
testing goodness of fit based on some moment structure o a parametric distribu-
tion family. This approach has some appealing features For example, the idea is
very simple since it only involves comparison o sampling moments with population
moments. |t is applicable to a varicty of discrete or continuous parametric families,
while the ( /4, , b,) method is only known for testing normality. The proposed
tests only use the standard normal (or chi-square) table and thus are easy use in
practice. Compared with chi-square tests, the moment based method does not in-
volve subjective selection of a partition. It also demonstrated superior and more
stable rejection power than chi-square tests for different alternatives in our limited
simulation studies.

In section 2 we describe the general moment-based method. We also illustrate
this approach by deriving moment based goodness of tests of some cotntnon para
metric families. In section 3 we report results from a simulation study to compare
the performances of the moment based tests with some chi-square and distance
tests.

2. MOMENT-BASED GOODNESS-OF-FIT TESTS

2.1. The setup and assumption

Assume that X,, ..., X, are independent identically distributed random variables
from acumulative distribution function F. Consider the problem of testing the null
hypothesis

U,,: Fisamember of aparametric family F,, 8E @,

where @ is a subset of Re,
Let in,= _[x’ dF(x) denote the i-th moment of F,. The following basic assump-
tion will be used throughout this paper.

Assumption A. Assume that m, exists for some positive integer » and that m,,....
a2, satisfy the following equation

gomy, .., m)=0 forall 6e @

for some functiong: R — R.

I'n many situations, it is easy to {ind afunction g satisfying Assumption A. For in-
stance, if a parametric distribution is symmetric about its mean, then E(X - m,)'=0.
"Thisimpliesthat m, - 3#2,m, + 2m; = 0. Thus, onecan choose g(x, ¥, 2) = 2 - 3xy + 2x°.
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I'ngeneral, existence of gsatisfying Assumption A isfeasible given thefact that m,, #z,,
... dl depend on acommon finite dimensional parameter 8.

2.2. Thetest

I
Let 7, = EX;/n be the sample moment of i-th order, /=1, 2, ...
7=l

Theorem 1. Assume that Assumption A holds. Assume further that g is continu-
ously differentiable. Then, under H,,

; d
gl m,)— N(O,V(8)),

where
\ T
V(Q):___(&g(m_[,m,;@ dglmy,. m,)\ of dglmy,...,m,) dglmy,...,m,) 2.1
) L o, e o, - o T o, o
and X'=(0,), ., with 6, =m, ;- m,m,.

Proof. By the central limit theorem, in conjunction with the Cramér-Wold device,
the random vector

(o, m )~y )Y

converges in distribution to r-variate normal with mean vector (0, .., 0) and
covariance matrix 2. This. together with the delta method, implies that

. N ; N . d o
g, m) = ~Nulglm,... o)~ gl ;m, )} — N(0O,V(8)),

where V(6) is detined by 12 1)
Let 6=68(X,, , X,) be aconsistent estimate of H under f1,. Assume that m,,
, m,, are continuous functions of 8. Then. V(#) is a consistent estimate ol V(6)
under F, Define

T = ugm,..,h,),VO) (2.2)

Then, it {ollows from Theorem 1 that under H,

T 5 N, 1)

as # — oo, This leads to the following level « test of H,,: Reject H,, ii ’ Tl > L
where z,,, is the upper ¢/2 percentile of the standard normal distribution.

Remark 1. A consistent estimate 6 of 6 under H,, can usually be obtained using
either the method of moments or the method of maximum likelihood (see Bickel
and Doksum, 1979, chapter 3). It would be difticult to say in general whether one
method is preferred to the other. Only one method is used in each of the examples
in section 2.3 for the purpose o illustration.
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Remark 2. There may exist several functions, say g,, ..., g, satisfying Assumption
A and, sometimes, one may wish to combine these functions to test goodness of
fit. One may conduct several tests based on g, ..., g, separately. We refer the
readers to Mardia et a. (1979, pp. 127-131) for the Roy union-intersection princi-
ple and Pallini (1994) for combinations of dependent tests and their optimality.
One may also derive a chi-square test using the multidimensional function g= (g,

., 2). With g being k-dimensional, Theorem 1 still holds with the limiting distri-
but|on being a k-variate normal d|str|but|on with mean O and covanance matrix

V(6) given by (2.1). Define Q= rng (mz,, ..., 7,) V-U8) gy, ..., #2,), where 8is a
consistent estimate of 6 under H,,. Then, under H, and some regulanty conditions,
Q has a chi-square limiting distribution with k degrees of freedom. Therefore Q
can be used to test H,,in the usual manner.

W e note that the proposed test may not have good power to distinguish between
certain prametric families such as normal and logistic distributions. A related ques
tion is whether or not there exists atest function g(-) which maximizes the rejection
power against agiven parametric alternative. We have not been able to find a satis-
factory solution to this problem so far, and future research is warranted.

2.3. Application to some common distributionfamilies

To illustrate the proposed approach, we derive some moment-based goodness of
fit tests for some common parametric distribution families. Although one may ob-
tain more than one g satisfying Assumption A in the examples considered below,
for simplicity, we only give a test based on a single function g in each example.
Note that to obtain the test statistic T defined by (2.2), we need to find afunction
g satisfying Assumption A. In addition, we need to express »z, ..., 7., in terms of
8in order to find V(0) defined in (2.1).

2.3.1. Tedtfor exponential distribution

Totest H, : Fx)=1 - exp(- x/6), x > 0, we take r=2 and glx, y)=y - 2x°.
Because m, = 8 and m, =26, we have g(nz;, m) =0 for al 8> 0. After some age-
braic calculations, it is shown that V(6) = 46*. Estimate 8 by 6= ,. Then, the test
statistic T defined by (2.2) reduces to

'\"71(7312 - 27;25)
20}

T =

This can be further written as

_ R
r-3)

where X =Y X./nands? = Y (X, - X)*/n are the sample mean and sample
i=1 i=1
variance respectively.
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2.3.2. Test for normality

To test the null hypothesis that the sample X,, ..., X, are from a normal di-
stribution N(u, o), where p and o? are unknown, we take r=3 and g (~y, z) =
z - 3xy * 2%°. It can be verified that g(#,, m, m,)=0 for al 8= (p,oc?). Estimate

n n

6=(p, 0% by 6=(X, s? where X =3 X,/nands? = Y (X, - X)*/» are the
=1 =1
sample mean and sample variance, respectively. Then the test statistic 1" is given by

Ny — s, + 262
WV(6)
where V() is defined by (2.1)with

T =

’

()g(mme)m?,) &g(mpmg;mj) {)g(mp’ﬂQ; m;)‘ 2
( - o o, j = (=3m, + 6m?,=3m,,1),

and
my=H,
my= U+ 02,
my =1’ + 307,
my=ut+ 6o’ + 307,
ms = + 100’ 6% + 15u0*,

my=u®+ 15uto? +45u%c" + 150°.

2.3.3. Test for gamma distribution

To test the null hypothesis that the sample X, ..., X,, are from a gamma distri-
bution with the following probability density

Solx) = La—x{l_] exp(—fx) x>0

4 F((X) > >
where 9= (¢, p),a> 0 and B> 0, we take »=3 and glx, y, z)=xz tx%y - 297 It
can be shown that g(w,, m,, m,)=0 for dl 6=(a,p, «>0 and B> 0. Estimate
0= (o, B) by 6=(X?/s?, XIs?).Then, our test statistic T is given by

- ln(;%lik% + i, - 2732_3_)4

N

\V(6)
where V(6) is defined by (2.1) with

dglmny, my,my) gl m,,my) gl 1y, 1)

Iy ’ dn, ’ e,

R
j = (my + 2mymy, ] — 4y, my),
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and
mi=Blofa+1) .. (a+j-1), forj=1,..6.

2.3.4. Test for beta distribution

To test the null hypothesis that the sample X, ..., X, are from a beta distribu-
tion with the following probability density

xa—l(l _ x)b—l
B(a,b) ’
where 8= (a, ), a> 0 and 4 > 0 are unknown, we take r= 3 and glx, y, z) = 2(2x?% -

x - Y) - ylx? +xy - 29). It can be verified that g(»z,, m, m,) = 0. Therefore, the
test statistic for H, is

fg(x) =

0<x <1,

T = VulmyQ2m? — m, = m,) — myml + mm, - 2m,))| VVI6)

where 6= (2,) = (52,2, - # )% — ), &(1 = #2,/%2y) and V(6) is defined by (2.1)
with

gy, my my) gl my,my)  Oglm,, my, my) _
om, ’ om, ’ om,

= (4mymy, — M, = 2mm, - 7775,47722 -m, - mlz - 277z17¢zz,2m12 -m,-m,),
and
a+i .
mo= -0t =16

‘Y a+b+i
=0

2.3.5. Test for uniform distribution

To test the null hypothesis that the sample X,, ..., X, are from an uniform dis-
tribution with the following probability density

1
fF)(x) = b—ﬂ ’
where 6= (a b), - «o< a < b < o are unknown, we take r=3 and g (x, y, Z)=

z - 3xy +2x°. It can be verified that g(#,, m,, m,) = 0. Therefore, the test statistic
for Hy is

a<x<b,

n(iry, = 3, T 252
,V(6)
where 8= (2,b)= (min(X,), max{X,)) andV(8)is defined by (2.1)with

[Qg(ml,mz,m;) gy, my,my) Oy, my, ms)

om, ’ om, om,

T =

} = (~3m, + 6m12,—3m1,1),

and
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2.3.6. Test for extreme-value distribution

To test the null hypothesis that the sample X,, ..., X, are from an extreme-value
distribution with the following probability density
folx) = exp {— exp {— ’%}} —o0 < % < o0,

where 6= (a, p),- « < a< e and > 0 are unknown, we take =3 and glx, y,
2)=(z - 3xp T 22 - vy - x2)°, where y, = E(X, - m ’[E(X, - m,)*}? = 1.29857
is the coefficient of skewness. It can be verified that glzz,, m, m,) = 0. Therefore,
the test statistic for H;, is

- Nu (2, = 3rny + 200))F — y e, — #2))
V()

where 0 = (&,B)= (m, - }qﬁ, W67, — A)[K) and V($) is defined by (2.1)with

————— = 6(277712 - mz)(mj - Jmym, + 2mf) + 6}/12m1(m2 - mf)z,

gl my, m5)

o,

= 6my(my, — 3mmymy + 208) + 3y (my — m))’,

gy, m,, my)

o,

= A, — 3mymy + 2m)),
and
my =0+ Y,
BT
Wy =10y Ky + MKy + 21,125,
my = m Ky + 2myKy + 113Ky + 2mi 4 2mym,

s = Ks + 200, Ky + I Ky + my Ky + 6manty + 2mmy,

My = 1Ky + 25 Ks + S2sKy + 3Ky + bms + 8mymy + 2m ms,
K =0+Yp,

_ g
K =

K, == ¢ V) forrx2.
Here ¢() is adigamma function (see Mood et al., 1974, p. 543).
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2.3.7. Test for logigtic digtribution

To test the null hypothesis that the sample X;, ..., X, are from alogistic distri-
bution with the following cumulative distribution function

Fo)=[Ltexp{- (x - o)/BHI}  -oo<x<es,
where 8= (a,B), - =< a< o, and 8> 0 are unknown, we take r= 3 and glx, Y,
2)=z - 3xy+2x’. It can be verified that g(»;, m, m,) = 0. Therefore, the test
statistic for Hy is
Nuly = 3, + 273?13)

VV(6)

T =

H

where 6 = (&, B) = (m, m ™" (71, — #2)) and V(6) is defined by (2.1)with

[ ()‘g(ml’MZ’m5) 8g(7”1’m2’m5) ag(ml’iﬂ2’m3)j = (_37772 + 677212:_37771,1):

om, ’ o, ’ e
and
m, =0,
2
vy a5
my = 3mm, - 27721,
my =Ky 2Ky + 25K + 2mt + 2myms,
M,  =m,Ks+ 205K + 325Ky + 12,y + Omagmas + 2y,
my ="Kt 2moks + Smyk, t 3mgxy t 6mt t 8mymy t 2m ms,
G,o1=0, r=1,2,.. = 6(27 - 1)B¥B oy F=1,2,.

Here B,, is a Bernoulli number (sec Kendall and Stuart, 1958, p. 80).

2.3.8. Test for Laplace distribution

To test the null hypothesis that the sample X,, ..., X, are from a Laplace distri-
bution with the following probability density function

O

where 0= (a,P), - o< <o, and B> 0 are unknown, we take r= 3 and glx, ¥,
z)=z - 3xp+2x’. It can be verified that g(#,, m, ;) = 0. Therefore, the test
statistic for H,,is
- AU A };2217212 +2i))
v V()
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where § = (&,/3) = (N, (%, - #1)/2) and V(6) is defined by (2.1)with

1

[ oglmy, my,my)  Oglmyy, my,my)  Oglmy, m,, my)

= (=3m, + 6w, —3m,,1
om, ) o, , o (=3my + 6y, —3m,,1),

and
m =,
my =0 + 232,
my =0 + 6of3?,
my=at+ 12a%B% + 124,
ms =0’ +200°B% + 60037,

m, = o + 300 B? + 180023 + 120

2.3.9. Tedtsfor Poisson distribution

To test the null hypothesis that the sample X,, ..., X, are from a Poisson distri-
bution with the following probability frequency function

folx) = e‘GQx/x! , x=0,1,2,..,

where 6 > 0 is unknown, we take »= 2 and g(x, y)=y - x - x2. For Poisson distri-
bution, m, = 8 and 72, = 8+ 6°. Hence, glm,, m,) = 0. After some algebraic calcula
tions, it is seen that V() = 20%. Let 6=2,. Therefore, the test statistic for H, is
given by

T = Vg, ..., )|NV(0) = Nn(ss, — iy, — #d)N2 7y,

which can be further written as

o n(s_
- a2 0).

where X and s? denote the sample mean and the sample variance. B

It is worth noting that the above statistic T can be written as T'= (y? - n)/N2n
where y? = #s?/ X is the well known Fisher index of dispersion statistic (see Fisher,
1970, p. 58).

2.3.10. Test for binomial distribution

To test the null hypothesis that the sample X,, ..., X, are from a binomial
(m, 6 distribution where 0 < 6 < 1 is unknown, we take »=2 and
gbe, )=y - x - ((m- D)fm)x?. It is easy to verify that g(xz,, m) = 0 for binomial
distribution. Therefore, the test statistic for H,,is
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m=1 >
\n(ﬁzz—ﬁzl— ’771)
m

T =

5

WVi6)
where 8= X/m and V(6) is defined by (2.1)with

&g(m[)m2) , ag(7/fgl’m2) - (—1— 2(m _1)— m]’]')’
o o, "
and
= me;

my=mO(mb - 6+ 1),
my=mB(1 - 26) + (mO?(1 - 306),
i =mO(1 - 8) ~ 6mO’(1 - ) + (mO)(7 - 120+ 56°) ~ 2026360 + 1) - 3(m8)" .

2.3.11. Test for negative binomial distribution
To test the null hypothesis that the sample X,, , X,, are lrom a ncgative
binomial (12, 8 distribution where 0 < 6 < 1 is unknown, we take =2 and
olx, yy=y x - (my Dfm)x® It 1s easv to verify that gim,, m,) = 0 for negative
binomial distribution Theretore, the test statistic for [, is
N ( . P m+ 1
Sn|my =y~
T - m
L V(6)

A
A2
) J

3

where 6= 72/(m + X) and V() is defined by (2.1) with

{ (Zg(;??],ffz;)) ’ Qg(ryl,izzz)J ) (/—1A 2Am+1) ’”wljs
L o e, \ n

and
my =l - 0)[8,

w1 - )t w1 -0y

9.,
2 - 6)(1-0)

s
ey = + dmny, — 2my

07

e, = - 9: 0) [ +401-H)F1-6°+3m1 - 0]+ dmm, - 6}7212 - 2mim, + 3}
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3. A SIMULATION STUDY

We conducted a Monte Carlo study to compare the performance of the pro-
posed test for exponential family with some existing goodness-of-fit tests. Specifi-
cally, we consider the moment based test (TS5) derived in Section 2.3.1, the
Lilliefors test (T4), and three chi-squared tests (T'1, T2, and T3) with partitions
(6,13,20), (4,8, 12, 16, 20), and (3,6, 9, 15, 18, 20), respectively. Each entry in
the tables is based on 1,000 Monte Carlo samples and represents the simulated re-
jection probability multiplied by 1,000.

Table 1 reports results of simulations to estimate the size (probability of type |
error) of goodness-of-fit tests for exponential family for various combinations of
nominal levels (0), sample sizes (»), and underlying exponential (6) distributions. It
is seen that the simulated sizes of Lilliefors’s test are very closc to the nominal
levels. 'She simulated sizcs of the moment-based test are reasonably closc to the
nominal levels when o= 0.1 and 0 05, but may require a larger sample size when
o =0.01. The three chi-square tests T1-T3 did not perform as well as T4 and T5.

Table 2 reports simulated rejection power of the five aforementioned goodness-
of-fit tests for exponential familv for various combinations of nominal levels (@),
sample sizcs (#) and Weibull (a, #) alternatives: Flx) = 1 - exp(- x“/5)

Table 3 reports simulated rejection power ot the five tests for exponential fam-
ily for various combinations of nominal levels (¢), sample sizes (#) and lognormal
alternatives

TABLE 1

Sivmulated size (multiplied by 1,000) of goodness-of it lests Jor exponential Jamily

- 0.10 o= 0,03 =001

B A - A S T A T Tz T3 T4 TS T1 T2 T3 T4 T35

0.3 20 182 198 252 100 117 115 128 188 37 81 25 58 102 9 38
30 162 16l 214 100 27 &1 95 134 78 &4 12 36 58 14 41

40 lal 170 204 113 119 88 97 122 32 69 10 34 50 3 33

50 34 149 178 113 113 g9 77106 60 75 L3 22 36 10 22

1.0 20 191 212 261 100 tio 115 145 182 plv} 22 38 90 13 3%
30 190 190 234 118 126 105 122 188 R3S 76 24 35 RO 1? 31

40 158 159 183 93 104 78 86 108 49 66 B 20 56 8 2%

50 139 126 160 93 89 73 66 83 42 49 11 10 28 7 19

1.5 20 177 207 280 103 136 T 139 206 46 8% 21 54 97 it 47
30 160 145 219 97 93 78 87 149 69 [ 15 26 65 8 33

40 155 152 171 83 9 85 87 111 41 37 12 24 46 7 22

50 164 134 173 95 88 84 90 108 51 35 20 28 34 8 18

2.0 20 182 206 265 103 113 113 139 198 50 77 21 49 92 10 38
50 152 le6 221 108 119 87 100 1356 K1 80 17 39 72 11 34

40 134 137 178 103 101 81 89 108 55 38 19 23 32 7 26

50 136 136 173 96 120 74 91 122 44 72 12 22 46 7 23

Nate: The tests T1, 2, and T3 are chi-square tests with partitions (6, 13, 200, (4, 8, 12, 16, 201, and {3, 6. 9, 15, LK,
200, respectively. T4 represents the Lillicfors test. IS represents the moment based test derived in Section 2.3 1. | or
cach selected 6, the data were generated Lrom tlic exponential distribution Flx) = 1 — exp(~ x/8). 1,000 Monte Carlo
samples were used to obrain each entry.
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TABLE 2

Simulated rejection power (multiplied by 1,000) of goodness-of-fit tests for exponential family under
Weibull alternatives

o=0.10 a=0.05 a=0.01
T T2 T3 T4 T5 T T2 T3 T4 T35 TL T2 T3 T4 T5
0.5 20 322 387 484 3545 770 214 274 400 370 697 81 144 219 147 343
30 427 485 513 694 883 292 363 391 631 830 109 186 201 282 700
40 498 539 618 793 943 359 452 499 673 91l 152 239 290 385 809
50 647 680 683 898 971 489 548 556 801 954 189 299 314 547 877
1.0 20 341 399 464 340 811 224 299 366 393 746 87 149 215 138 3592

30 455 544 542 720 911 334 417 430 671 838 139 202 246 287 719
40 571 596 638 835 946 410 452 510 704 910 150 245 315 426 807
50 660 696 677 906 978 516 558 552 827 96l 223 332 342 561 876

15 20 347 431 543 549 812 239 330 433 405 738 86 173 252 182 5385
30 439 522 541 725 898 308 407 438 663 851 113 199 237 289 733
40 340 585 657 812 949 397 465 542 713 910 154 251 309 430 792
50 671 695 712 914 966 517 594 582 822 951 202 318 340 600 882

20 20 337 426 497 538 793 231 325 409 402 726 104 162 255 156 566
30 441 487 548 694 892 315 368 427 641 836 122 186 229 269 707
40 547 597 613 833 943 391 483 514 706 903 152 236 301 429 799
50 640 670 680 877 973 495 5331 563 789 952 205 284 324 530 873

05 20 691 747 839 938 991 544 653 745 865 989 275 418 528 607 973
30 842 904 910 994 1000 729 BI8 837 989 1000 409 580 602 858 999
40 906 961 968 998 1000 820 922 938 991 1000 487 755 799 942 999
50 981 994 993 1000 1000 942 975 974 999 1000 673 884 902 992 1000

Lo 20 680 752 842 941 997 521 640 752 355 993 251 413 526 %0 974
30 821 891 903 985 1000 701 820 828 982 1000 397 590 619 844 997
40 940 962 970 996 1000 840 921 935 991 1000 510 745 807 951 1000
50 983 991 986 1000 1000 942 971 971 1000 1000 681 875 888 991 1000

15 20 662 757 812 919 993 509 636 725 843 980 264 426 528 596 947
30 838 898 910 . 997 1000 731 812 846 988 999 395 597 646 860 994
40 936 961 973 997 1000 853 919 938 995 1000 511 768 823 948 1000
50 982 989 987 1000 1000 937 965 966 999 1000 630 853 886 986 1000

20 20 682 749 825 933 998 539 630 718 851 994 253 406 515 580 964
30 840 897 900 987 1000 714 826 833 978 999 403 608 640 844 994
40 938 968 975 999 1000 849 921 953 994 1000 529 754 807 956 1000
50 975 988 988 1000 1000 928 971 978 998 1000 674 850 890 985 1000

Note: T1, T2, and T3 are the same chi-square tests as those in Table 1. 7'4 represents the Lilliefors test. TS represents
the moment based test derived in Section 2.3.1. For each given (4, %), the data were generated from the Weibull distri-
bution F(x) = 1 - exp(- x%/8). 1,000 Monte Carlo samples were used to obtain each entry.

Table 4 reports simulated rejection power of the five tests for exponential fam-
ily for various combinations of nomina levels (@) sample sizes () and truncated
normal alternatives.

It is observed from tables 2, 3 and 4 that the proposed moment based test (T5)
demonstrared better rejection power than the chi-square tests (T1-T3) and the
Lilliefors test (T4)in amost every situation considered.

Under lognormal alternatives, al five tests performed well with the proposed
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TABLE 3

Simulated rejection power (multiplied by 1,000) of goodness-of-fit tests
for exponential family under lognormal alternatives

o= 0.10 a=0.05 o=0.01

T T2 T3 T4 TS5 T T2 T3 T4 T5 TT T2 T3 T4 T5

04 20 975 995 996 1000 999 926 977 992 1000 996 712 885 935 996 991
30 998 1000 1000 LOOO 1000 989 1000 999 1000 1000 877 980 998 1000 999
40 1000 1000 1000 1000 998 1000 1000 1000 1000 998 973 1000 1000 1000 998
50 1000 1000 1000 1000 1000 1000 1000 1000 1000 100G 995 1000 1000 (000 1000

0.5 20 857 914 930 996 971 738 832 883 986 961 444 622 717 888 935
30 948 982 985 1000 993 882 954 971 1000 989 632 852 890 994 971
40 991 999 999 1000 994 958 996 999 1000 991 793 960 969 1000 985
50 997 1000 1000 1000 997 994 1000 1000 1000 996 903 990 999 1000 992

0.6 20 676 739 787 939 4§73 514 629 697 857 823 264 388 482 584 740
30 812 883 895 993 901 660 783 822 983 878 351 541 o612 854 808
40 906 960 967 999 937 799 910 917 998 9Il 525 721 768 961 853
50 934 983 985 1000 945 871 960 965 1000 925 608 833 880 990 838

04 20 969 991 996 1000 999 919 971 989 1000 999 697 894 934 997 996
30 997 1000 1000 1000 999 984 999 998 1000 999 876 989 992 1000 999
40 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 968 1000 1000 1000 1000
50 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 998 1000 1000 1000 1000

0.5 20 845 912 934 995 970 738 842 882 984 958 452 620 712 876 924
30 947 985 990 1000 994 858 958 963 1000 989 597 831 861 991 975
40 988 998 1000 1000 988 961 990 997 1000 988 782 956 969 999 976
50 999 1000 1000 1000 1000 995 1000 1000 1000 999 911 995 996 1000 997

0.6 20 680 746 794 943 856 527 624 699 873 819 255 385 464 569 728
30 774 890 897 990 871 638 811 8l6 982 836 367 535 399 834 768
40 890 955 963 1000 922 787 914 928 997 896 499 730 755 958 845
50 o 1000 952 Q7% 040 970 1000 020 420 22 w74 000 882

Note: T1,'1'2, and T'3 are the same chi-square tests as those in Table 1. T4 represents the Lilliefors test. T5 represents
the moment based test derived in Section 2.3.1. For each given (i, o), ttic data were generated from the lognormal
distribution with mcan g and standard deviation tr. 1,000 Monte Carlo samples were used to obtain each entry.

moment based test (T'5) (seetable 3) being slightly better. Under Weibull and trun-
cated normal alternatives, however, substantially increased reject power is achieved
by the proposed moment based test (T5) compared with the other four tcsts (T1-
T4) (seetables 2 and 4). Thisis true especially for small samples. For example, it is
seen from table 4 that the simulated rejection probabilities for the five tests T1,
T2, T3, T4, and TS are 0.196, 0.278, 0.329, 0.422, and 0.909, respectively, when
u=1,0=1,»=30, and = 0.01.
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TABLE 3

Smulated rejection power (multiplied by 1,000) of goodness-of-fit tests for exponential family
under truncated normal alternatives

a=0.10 a = 0.05 a=0.01
T T2 T3 T4 TS Tt T2 T3 T4 TS T T2 T3 T4 U5
1 20 162 211 289 144 313 103 147 217 83 234 27 60 115 22128
30 159 187 253 172 344 100 122 173 132 251 25 50 81 22 125
40 169 205 241 213 417 92 133 147 129 319 24 47 56 45 178
50 174 197 236 226 423 93 124 159 W6 327 27 47 60 45 183
0 20 195 259 384 283 556 126 193 306 188 469 46 93 162 47 294
30 237 274 343 359 633 142 192 257 314 570 49 84 136 95 379
40 270 307 357 4533 760 162 209 257 318 682 55 79 113 116 491
50 316 335 346 520 830 196 229 244 382 743 60 94 120 150 550
1 20 392 508 608 661 925 291 384 502 525 885 122 210 298 245 768
30 548 626 645 841 978 430 495 541 787 957 196 278 329 422 909
40 678 728 774 916 992 533 616 696 850 988 225 361 459 611 958
50 769 823 813 966 1000 638 715 716 918 997 291 448 483 731 988
-1 20 169 260 329 188 358 103 176 254 105 292 30 77 130 33 181
30 173 212 276 235 441 90 134 198 180 340 21 (] 84 38 200
40 169 209 228 246 493 91 138 163 143 386 20 47 75 43 207
50 207 216 238 304 550 124 138 172 207 447 30 51 67 65 263
0 20 196 271 363 279 565 126 196 273 174 461 42 102 136 62 309
30 208 267 301 355 669 128 179 212 302 570 43 84 103 95 382
40 289 330 366 480 757 175 223 252 331 662 52 88 118 143 474
50 308 324 364 529 814 199 229 242 379 737 51 77 107 151 551
1 20 271 397 508 516 831 173 308 402 371 749 77 152 240 151 587
30 390 473 476 638 903 273 349 381 587 847 104 161 206 239 720
40 492 553 599 796 973 352 428 478 649 943 133 217 275 375 852
30 603 627 643 860 990 450 506 517 764 979 145 270 305 486 922
-1 20 155 222 297 184 383 96 158 214 120 295 27 67 116 27 167
30 156 206 261 231 461 85 149 182 179 351 30 60 78 35 227
40 207 240 257 315 567 114 156 172 213 473 35 61 71 56 290
30 219 223 272 336 624 131 158 188 225 513 31 50 77 77 326
0 20 205 260 367 311 581 121 201 284 200 484 49 102 155 60 328
30 236 297 323 387 654 154 208 235 333 572 51 85 126 96 400
40 266 305 354 458 758 154 209 244 298 657 54 75 122 112 455
50 302 310 347 503 824 190 210 253 376 739 49 94 123 157 561
1 20 258 322 446 427 731 159 242 348 294 660 44 132 204 97 495
30 371 439 464 602 883 249 316 359 543 8l4 88 139 180 187 663
40 408 445 499 680 927 267 329 385 552 887 86 154 209 267 764
50 516 543 577 787 963 359 423 446 670 929 122199 220 374 835

Note: T1, T2, and 'S3 arc the same chi-square tests as those in Table |. T4 represents the Lilliefors test. T5 represents
the moment based test derived in Section 2.3.1. For each given (i, o), the data were generated {rom the truncated
normal distribution by truncating the normal distribution with mean g and standard deviation ¢ at 0. 1,000 Monte

Carlo samples were used to obtain each entry.
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RIASSUNTO

Una nota sui test di bonta dell’adattamento basati sui momenti

Lo scopo del presente articolo & di introdurre un metodo generale, basato sui momenti,
per derivare formalmente un test di bonth dell'adattamento di una famiglia parametrica. Si
mostra come, in generale, un test approssimato gaussiano o chi-quadrato possa esserederiva-
to analizzando la struttura dei momenti di una famiglia parametrica, sotto I'ipotesi che i mo-
menti fino ad un dato ordine esistano. L'idea & semplice e i test ottenuti possono essere im-
plementati facilmente. Al fine di illustrare 1'uso della metodologia proposta sono derivati,
per alcune famiglie parametriche discrete e continue note, i test di bonta dell'adattamento
basati sui momenti. | test proposti sono inoltre confrontati con 'usuale test chi-quadrato di
Pearson e Fisher e con alcuni test di distanza mediante uno studio di simulazione.
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SUMMARY

A note on goodness of fit test using moments

The purpose of this article is to introduce a general moment-based approach to derive
formal goodness of fit tests of a parametric family. We show that, in general, an approxi-
mate normal test or a chi-squared test can be derived by exploring the moment structure of
a parametric family, when moments up to certain order exist. The idea is simple and the
resulting tests are ecasy to implement. To illustrate the use of this approach, we derive mo-
ment-based goodness of fit tests for some common discrete and continuous parametric fami-
lies. We also compare the proposed tests with the well known Pearson-Fisher chi-square test
and some distance tests in a simulation study.



