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BVAR MODELS AND FORECASTING:
A QUARTERLY MODEL FOR THE EMU-11

G. Amisano, M. Serati

1. INTRODUCTION

In thelast 20 years, vector autoregressive models (VAR) have encountered enor-
mous success and they have been extensively used for forecasting purposes. They
have become valid substitutes/complements of the structural macroeconometric
models (SMMs). The main advantage of VAR models with respect to SMMs is
their higher manageability in the specification, estimation and simulation stages.

On the other hand, the most serious limitation of VAR models is their ineffi-
cient parameterisation. The quest for more efficient estimation methods, capable
o delivering more reliable forecasts, is the main motivation of the Bayesian ap-
proach to VAIZ modelling (Bayesian VAK models, or BVAR: see Litterman, 1979;
Doan et al., 1984; Litterman, 1986). This approach is based on the combination of
prior and sample information which may be obtained by resorting to the Kalman
filter (Hamilton, 1994, chapter 13), given the state-space representation of the
VAR,

This paper is devoted to the costruction and evaluation of a quarterly forecast-
ing BVAR model for the EMU-11 member states treated as a single country. In
the current completion stage of monetary union, al the key macroeconomic vari-
ables are affected by episodes of turbulence, and even the most basic macroeco-
nomic relationships are characterised by structural instability. Within a reduced
form model framework, like a VAR one, it is not possible to perceive these insta-
bility phenomena as modifications of the structural parameters. Nevertheless, in
order to model these episodes of higher turbulence in a proper way, we used time
varying BVAR models (see Doan et al., 1984; Amisano et al., 1997) in this paper.

There are still some signs that the models we have estimated have some limita-
tions, in spite of their good forecasting properties. For this reason, we believe
that it is necessary to refine the KVAR methodology with the purpose of making
it more suitable to contexts undergoing gradual transitions. In {act, the original
time varying parameter BVAR methodology has a crucial limitation: its limited
ability to deal with periods in which the transition phenomena are concentrated in
sub-samples or they are different across subperiods. To tackle this problem, in the
second part of this paper, we present an innovative approach in which we extend
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the traditional BVAR time varying parameter models: the intensity of parameter
variation is governed by a time varying variance covariance matrix of the state
equation error terms. We achieve this by increasing the dimensionality of the
hyperparameter space. We provide some preliminary evidence on how this pro-
posal works, based on a set of simulated data and on a restricted version of the
EMU-11 model.

The paper is organised as follows. I n section (2) we describe the structure of the
models for EMU-11 area. In section (3) we discuss the most important choices that
we have made when aggregating the single-country series in order to obtain area-
wide series. In section (4) we comment on the results obtained and the forecasting
properties of the estimated models. In section (5) we describe the methodological
features of our proposal on how to deal with gradual transition phenomena and the
results of some preliminary applications. Section (6) contains some conclusions and
the directions of our future research.

2. THE STRUCTURE OF THE MODELS

Our choice of working with the EMU-11 aggregates is strategically motivated:
while we are aware of the usefulness of single country models, it is clear that the
attention of policymakers, financial operators and academic researchers is increas-
ingly focussing on the EMU area taken as a single entity.

Moreover, the alternative choice of running separate country specific models
and then pooling the forecasts has some obvious disadvantages. First of al, manag-
ing 11 forecasting models could be extremely time consuming, especially when one
takes into consideration that data updating is not synchronous across different
countries. Secondly, it would be necessary to formulate (and defend!) 11 different
scenarios on the exogenous variables, with the unavoidable consequence of multi-
plying the possible sources of forecasting errors. Thirdly, running separate models,
one loses the covariance structure across countries, so that the uncertainty around
point forecasts is not properly measured: this is a big problem in the EMU area,
where the single countries are deeply interdependent. When EMU-11 aggregates
are used this cross-country correlation is synthetically accounted for.

In the light of these considerations, we have chosen to work with the EMU-I1
aggregates, as if we were dealing with a single country. Our forecasting model is
articulated in two blocks. The first one is devoted to forecasting a set of real vari-
ables (real variable section, henceforth RVS), whereas the second one (deflators
section, henceforth DS) deals with the corresponding deflators and some other
price indicators. Taking jointly into consideration the forecasts produced by the
two blocks, it is possible to produce forecasts on nominal variables.

The choice o splitting up the model into two blocks parallels the one made in
Amisano et al. (1997) for the Italian economy and it is mainly justified by the aim
of limiting the dimension of each single model for practical purposes.

The type of interdependence between the two sections of the model is such that
some variables which are endogenous in the first section appear as exogenous vari-
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ables in the second one. In this way, we keep the need to produce scenarios for the
exogenous variables at a minimum.

The deflators section of the model is upstream and the real variable section is
downstream. The rea variable section (RVS) has 7 endogenous variables; six of
them are the key quarterly accounts indicators, i.e. GDP (Y) and its main constitu-
ents: investments, disaggregated into business and machinery investments (MI) and
construction investments (Cl), private consumptions (C) and finally exports (X)
and imports (Q).Of course, these two variables do not record intra-EMU trade,
which is recorded as consumption or investment. The seventh variable is industrial
production (IP).We include this variable in the model in order to verify whether
our simplified forecasting structure can produce sensible indications on the tenden-
cies of the productive system.

To avoid collinearity problems, the endogenous set does not contain al GD P com-
ponents: the excluded components are changesin stocks and public consumptions.

The exogenous variables set contains 11 variables. A first block of variables is
needed to measure the degree of competitiveness of the EMU-11 area products,
and to forecast the international trade flows. In this group we have two exchange
rates (German Mark/Japanese Yen, MY, and German Mark/US Dollar, MD), the
terms of trade (ToT), measured as ratio between EMU-11 import and export
deflators, and an indicator of world demand (WDEM), which is obtained by sum-
ming the imports of those areas (*) with high levels of imports from the EMU-11.

A second block of exogenous variables aims at forecasting aggregate demand and
activity. This group of variables comprises a measure of the degree of market con-
fidence (MCONF), public sector revenues and expenditures (%) (PSREV and
PSEXP), an areawide measure of inflation (INFL) which is relevant for its effects
on internal demand. In this group we have aso the EURO 3 month interbank in-
terest rate (3ME), the 10 year German benchmark rate (10YD), and a measure of
degree of capacity utilisation (CU), which is very important to forecast | P and usu-
aly leads investment.

All exogenous variables are included with their current values and the first two
lags.
It should be noted that the true number of exogenous variables is less than 11:
in fact, ToT and INFL are exogenous in this section of the model but they are
endogenous in the deflators one. Moreover, other 5 exogenous variables (MY,
MD, 3ME, 10YD and the WDEM indicator) appear as exogenous variables in the
DS section.

The specification of RVS alows for a deterministic part formed by an intercept
term and 3 impulse dummies (*).

The deflators section has 8 equations. A first block of 6 equations deals with the
deflators of the corresponding variables appearing in the first section of the model:

4 USA, UK, Switzerland, Japan, Brasil, Argentina, Russia, Poland and all Asia.
(%) Comprising interest paid on public sector debt.

() These step dummies are introduced to deal with abnormal observations, i.e. 1983Q4,
1991Q1 and 1993Q1.
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the GDP deflator (DGDP), the deflators of the two investiment aggregates (DM
and DCI), the consumption deflator (DC), the import and export deflators (DQ
and DX).

The last two equations of the model are devoted to the harmonised CPI index
(CPI) and a PPI index (PPI). The role of PPI is similar to that of IP in the real
variable section of the model, i.e. to anticipate productive tensions.

There are 8 exogenous variables, five of which are in common with the other
section (MD, MY, 3ME, 10YD and WDEM). In addition, we have two raw mate-
rials price indexes, NONOIL and OIL, with obvious meanings. The last exogenous
variable is a nominal wage variable, measuring the state of the labour market.

As in the previous section of the model, exogenous variables are included with
their current values and their first two lags, and the deterministic part includes an
intercept term and some impulse dummies.

All variables included in either section of the model are seasonaly adjusted
(when needed) and appear in logs, bar the interest rates. The two sections of the
model are VARs with 4 lags and the sample period is 19800Q1-1999Q1. All series
concerning national or EMU-11 aggregates come from Eurostat or Datastream.

Both blocks are modeled as time varying parameters BVARs. According to the
standard BVAR approach (Litterman, 1979; Doan et al., 1984; Litterman, 1986,
Sims, 1989), each equation of the VAR is estimated separately and the prior distri-
bution is Gaussian with unit prior mean on the first lag coefficients of the depend-
ent variable, whereas al other parameters are given zero prior mean (Minnesota
prior). The prior variance-covariance matrix (Q,,, =1, 2, ..., n) of the parameters
in each equation is diagonal with diagonal elements specified by means of a small
vector of hyperparameters: iocussing on the i-th equation, and calling y;; the coef-
ficient on the j-th deterministic variable, a, , and b, ;. the coefficients on the 4-th
lag of the j-th endogenous variable and of the j-th exogenous variable respectively,
the prior variances are set as follows:

) . . i 5 Oy ; é
ID(W,',-)JI/Z = ni,[v(dj/.,k)]l/Z =7 s S O_ZZ ,[1}([;1.7.,’!3)]1/2 =7 AT (2.1)
"

i i i i i
m >0n, >0, >0, <0,75 <0,

where ¢ is the i-th diagonal element of X, the variance-covariance matrix of the
disturbance terms of the VAK.

As for parameter time variability, let us indicate 3;, the coefficient vector of the
i-th equation of the VAR; the state equation is:

B - ﬁm =mi(By_ - Bio) i My~ N0, ), 0<mi<T, (2.2)

where P, is the prior expected value of Bi thehyperparameter T tunes thedecay
of the state vector towards its prior mean. The state equation variance-covariance
matrix R, is specified by means o the hyperparameter m:

Q= ”%Qm (2.3)
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The hyperparameters (collected in the vector &) are chosen so as to optimise the
forecasting performances of the model: in this case we maximize the Theil's-U in-
dex at agiven forecasting horizon h, i.e. the ratio between the h-step ahead Root
Mean Square Errors (KMSE) of the model and the one of a random walk model
(naiveforecast).

The hyperparameters of both models have been calibrated using the 1991:1-
1999:1 subsample as forecasting properties assessment period. Obviously, this
subsample contains al the relevant turbulences that have affected the European
economies in the last years.

3. DATA DESCRIPTION AND AGGREGATION PROBLEMS

In order to deal with the EMU-11 area as a single country, it is necessary to
solve some preliminary problems, concerning the construction of appropriate eco-
nomic time series.

Although in the EMU-11 case Eurostat aready produces the relevant aggre-
gates, we have chosen to re-construct them by aggregation of country indicators.
W e decided to do so for two reasons. Firstly, some Eurostat series are available
only for the 1990s; secondly, we felt the need to explore the technical characteris-
tics of the data set, and to make it possible to carry out a quick update of the
aggregate series in the case of other economies joining the EMU.

This choice meant that the following 2 problems had to be solved: (1) how to
convert country data into a common currency; (2) how to aggregate (4) the country
indicators to obtain an area wide indicator.

In order to better understand the implications of how to solve (1), we will start
by describing (2). The approach we have chosen is coherent with the one adopted
by many international organisations (such as Eurostat) and by many applied re-
searchers (see for instance Bikker, 1998). All magnitudes expressed as pure num-
bers and harmonised across countries (for instance national accounts indicators),
the EMU-11 series were obtained as simple sums of the country values expressed
in asingle currency. Calling Y agiven nominal variable, we have;

Yigw = 2 Y 3.9
ieEMU
The same holds for real aggregates so that the corresponding deflator is obtained as:
N vN
DYpyy = Y%MU = 2 = i € EMU 3.2)
YEMU EZYz
As for the variables expressed as indexes (e.g. | P or wages), the EMU-11 meas-

ure is a weighted sum of the single country series, with weights given by the GDP
(expressed in current prices, common currency) quota of each country:

§) Having solved (1).
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DP.
YHAH,:’ = , 2 ':Bin‘ N ﬁi = (;g'[)’f”’, Z = 1,‘..,11 (33)
e EMU

The problem of how to convert dl the single country series into a common cur-
rency is more complicated. TO this end, we can alternatively use the bilatcral nomi-
nal exchange rates, or the bilateral PPPs (°) with respect to the currency chosen as
the denominator. In either case, the most important choice is the one between a
constant rate and a time series of conversion rates. The literature on this topic (see
for instance Winder, 1997) suggests that to obtain aggregate variables in real terms
it is necessary to use a constant conversion rate M. In this way, we ensure that no
price dynamics is introduced arbitrarily in the resulting real aggregates. In fact, if
we used the current exchange rate, the behaviour of the resulting aggregate would
be directly influenced by the evolution of the bilateral exchange rate.

Moreover, the choice o a constant conversion rate, together with the aggrega-
tion described by (3.1) and by (3.3), is supported by some general properties.
which hold for both resulting nominal and real aggregates To illustrate these prop-
erties, let us consider a variable, for instance GDP, and bv means of (3.1) let us
compute its EMU-11 aggregate, by using the nominal cxchange rate of a base year
(e,:),} IB

Vigp = 2 Y, = X " 3.4)

e EMU JeEMU €4y

Note that the percentage growth rate of the EMU-11 GDP (Y/Y) can he written as:

LY Y,
Vigu _ €BMU €y | ¢ | Y (3.5)
7 Y Y, Y. 7
gy EMU sepay| TEMU | L

)
In other words. the EMU-11 GDP growth rate (and the growth rate of al arca
wide aggregates) 1s a weighted average ot the growth rates of the single countrs
components, with weights given bv the quota ol each country variable on the area
wide aggregate Note aso that the resulting growth rate is invariant with respect to
the choice of the common currency used for the aggregation These properties dis-
appear If the conversion rate is the current exchange rate (or PPPY These proper
tics arc particularly appealing for interpreting the resulting forecasts in the light o
those of its single country components.

The good propertics of using a constant conversion rate hold also when dealing
with aggregate deflators, obtained as the ratio between current and constant price
series. To provide an example, let us consider the EMJ11 GDP deflator(DY )

)
)

Purchasing Power Parities,
Nominal exchange rate or PPP of a base year.
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y X ¥
: Yo 62' 62? ‘
DYgyp = —HIL = L=y = | DY, (3.6)

Y Y YZR ieEMU| Yy
6;73'
Expression (3.6) states that even the aggregate deflator (and, with a small approxi-
mation (), also its variations) is a weighted average of the single country deflators,
with weights given by the quota of each country variables on the area-wide aggre-
gate.

In the light of these considerations, in this paper we adopt as conversion rates
the bilateral exchange rates with respect to the German Mark, using 1995 as a

base year.

4, i wresvrrs o rHE EMU-11 mopel

4.]. General comments

We have aready pointed out that the last part of the sample period is affected by
instability phenomena which are mainly (but not completely) concentrated in the
1992/1993 period. This is particularly evident for the constant price variables,
whereas the behaviour of the deflators seems to be lessinfluenced by such phenomena.

The turbulence period starts immediately after the signing of the Maastricht
rrcaty and the completion of the Single Market, and it does not stop at the outset
of the European recession of 1993 For these reasons, we suspect that it might sig-
nal a deeper transition process brought about by the EMU

The behaviour of the two models (asgauged by Thcil's W indexes and by control
forecasts) seems to be satisfactory. The frequent turning points are correctly antici-
pated without significant delays, and the signs of predicted quartes-over-corre-
sponding quarter (qcy) growth rates (¥) arc aimost aways in line with those of the
actual series. The forecasting performance is uniformly superior to that of the cor-
responding non-Hayesian VARs.

However, there are some signs of properties of the model which are not com-
pletely satisfactory, which we summarise as follows:

1. In the RVS, the CI equation has Theil's U’s marginally above one.

2. In some cases, hyperparameter configurations that are capable of reducing
further Theil's U's have a negative influence on control forecasts in the last 4 quar-
ters. In other words, the hyperparameter configuration is not optimal with respect
to the last 4 observations. Moreover, the optimal hyperparameter configuration is
not robust to the insertion of new observations.

(") Winder (1997)
() With this expression, we mean the growth rate of a variable with respect to its value
4 quarters before.
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3. Sometimes, some relevant trade-offs across different forecasting horizons
arise.

4. The forecasting performance is highly sensitive to the calibration of the
hyperparameters on the deterministic variables and of those governing the degree
of time variability.

Taking dl these points into consideration, we believe that in our context it is
necessary to adopt a modified strategy to account for parameter time variability.
We need to model the gradual transition processes connected to the EMU with a
more appropriate framework, as documented in the proposal contained in section
(5) of this paper.

4.2. Forecadting propertiesd the real model

In table 1, Theil's U indexes from 1 to 4 step ahead are reported. Table 2 con-
tains the control forecasts for the endogenous variables in logs and table 3 for the
gcg changes.

In general, the model has good forecasting properties for aimost al equations.
The first equation (Y) has good Theil's U's values at al forecasting horizons (from
0.712 to 0.534). The forecasts for the series in levels and the qcq changes show
that the model can forecast GDP very well.

The second equation (M) also shows good results. Theil's U's are satisfactory
(from 0.642 to 0.521), but we note that, although the model is capable of produc-
ing forecasts very close to the actual values on the control period, the forecasts fol-
low the slowdown in the growth rate of the actual series occurred in 1998:4 only
with adelay.

The third equation (Cl)deserves the title of the "worst equation of the model".
Beside the values of Theil's U's, which points at the difficult forecastability of the
CI series (from the 2 step ahead onwards, the indexes are marginally above 1), we
note a clear tendency o the model to over-predict Cl, even if there is a gradual
narrowing of the gap between forecasts and actual values.

The forecasts produced by the fourth equation (C) have much better properties.
Theil's U's are clearly satisfactory (from 0.704 to 0.615) and show that the esti-
mated equation can closely mimic the behaviour of actual consumption data. This
is particularly evident from the analysis of the qcq growth rates: the deceleration
o the private consumption growth rate is correctly picked-up.

TABLLE 1
Theil’s U’s of the real model

Steps GDP ™ Ic ¢ Q X P
1 0.712 0.642 0.984 0.704 0.933 0.783 0.602
2 0.544 0.459 1.028 0.594 0.783 0.694 0.69
3 0.516 0.466 1.047 0.577 0.662 0.548 0.769
4 0.534 0.521 1.041 0.615 0.629 0.479 0.845
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TABIF 2
Control forecasts for the real model, /ogs

Date FOR(Y) Y Date FORI(Q) Q
98.02 14.71571388 14.716455 98.02 12.77992 12.738779
98.03 14.72244482 14.722427 98.03 12.78424 12.710312
98.04 14.7255072 14.724498 98.04 12.78226 12.676375
99.01 14.73132344 14.727506 99.01 12.78356 12.65531
Date FORMI) MI Date FOR(X) X
98.02 12,28198733 12.280695 98.02 12.84335 12.858467
98.03 12.29887116 12303887 98.03 12.76789 12.814487
98.04 12.31881087 12,302671 98.04 12.75001 12778376
99.01 12.3335576 12.331863 99.01 12.77806 12.772622
Date FOR(CD CI Date FOR(IP) 1P
98.02 12.43808729 12.401047 98.02 4.723066 4.714937
98.03 12.43927556 12.40845 98.03 4.731942 4.71677
98.04 1243373078 12.416449 98.04 1.736985 4712181
99.01 12.45267504 12.443221 99.01 4.740673 4712181
Date TFORI(C) C

98.02 14.21554489 14.214613

98.03 14.22432057 14.226438

98.04 14.23117226 14.235312

99.01 14.23836647 14.237956

TABLE 3

Control forecasts, real model, qeq variations

Date FORMD_Y) D_Y Date FORMD...Q) D..Q
98.02 2.805367445 2.881586566 98.02 10.86827386 6 400018925
98.03 279731608 2795484905 98.03 10.36496934 2499983387
98 04 2.3980107 2.294722309 98.04 9.94716993 1 099990228
99.01 2.19110355 1.801738949 99.01 1.055105733 11 10861902
Date FOR{D_MI) D__MI Date FORMD_.X) D X
'18.02 7.270170808 713161879 98.02 4.606266369 6 200047351
98.03 7.852632191 8.394962234 98.03 2.166247654 2 1999615035
98.04 8.611448348 6.872544632 98.04 3.865930799 1 099987676
99.01 6.849765643 6.668851101 09.01 ~9.078649225 -9571979018
Date FOR(MD CI P Cl Date FOR(D__IP) D__IP
98.02 2522182745 1.205799678 98.02 5.991013428 5 132890977
98.03 2970610188 -0.155093122 98.03 5.189269579 3 605336189
98.04 1.89838971 0.152533492 98. 04 4.042842408 1493919512
99.01 2.038809943 1.078676211 99.01 3079872694 0 184369752
Dare FOR(D_..C) D C

98.02 2.352771637 2.257434642

98.03 2860204087 3.07823459

98.01 2.792466162 3.2188818

91.01 2.735903769 2.693742582
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Equation 5 (Q) has some problems too: despite the fact that Theil's U's are
more or less satisfactory (from 0.933 to 0.629), we can notice a persistent differ-
ence between forecasts and actual values of the series. Note that the 4-step-ahead
predicted gcq growth rate is very close to zero, whereas its actual value is negative.
This could be due to the abnormal evolution of the EMU-11 imports in the last
two years of the sample, which has negatively influenced the comparison between
predicted and actual values.

Equation 6 (X) has better forecasting properties than the previous one. Theil's
U indexes are satisfactory (from 0.783 1 step ahead to 0.479 4 steps ahead). We
notice that predicted values are close to actual values, although the forecasts em-
phasise the decrease of X during the control period. In fact, the predicted qcq
growth rates become negative one period earlier than the actual ones. In any case,
the exports trend is correctly picked up by the model.

Equation 7 (IP) shows fair properties in terms of Theil's U's (from 0.602 to
0.845) and the control forecasts follow the profile of the series, even if they tend
to exaggerate the actual series evolution. The profile of qcq changes is correctly
reproduced by forecasts.

4.3. Forecasting properties of the deflators model

In table 4 we report 1- to 4-step-ahead Theil's U indexes for al equations of the
deflators model. Table 5 contains the control forecasts for the logs of the variables
over the period 1998:2 -1991:1, while table 6 contains the control forecasts for the
geq growth rates.

Although this section of the model has in general good performances for almost
al equations, there are clearly two different groups of equations: those showing
very good forecasting properties, and those with less satisfactory performances.
The first equation (DGDP) belongs to the first group. Theil's U's are satisfactory
(from 0.634 to 0.423) and the predicted values are close to the actual ones. The
second equation (DMI) generates worse forecasts than the previous one. Theil's
U's are relatively high (from 0.976 to 0.914) and the control forecasts are not satis-
factory at all. In particular, despite the fact that the actual series moves upwards,
with a clear decrease in the last sample observation, the forecast series is slightly
increasing throughout the whole control period. The DCI deflator equation gener-
ates better results than the previous equation, as far as Theil's U's are concerned
(from 0.655 to 0.588), and we note that the predicted values are capable of track-

TABLE 4
Theil’s U’s, deflators model

Steps DGDP DMI DCI DC bQ DX Pl PPl
1 0.634 0.976 0.655 0.688 0.721 0.568 0.569 0.988
2 0.475 0.964 0.573 0.587 0.709 0.509 0.551 0.958
3 0.433 0.941 0.599 0.503 0.528 0.367 0.492 0.91
4

0.423 0.914 0.588 0.461 0.437 0.295 0.374 0.983
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TABLE 5
Control forecasts, deflators model, logs
Date FOR(DGDDP) DGDP Date FOR(DQ) DQ
98.02 4,781584482 478913 98.02 4.572416589 4.602933398
98.03 4783910344 47891 98.03 4.557501237 4.513508034
98.04 4.784495394 4,790672 98.04 4.561345289 4.490957106
99.01 4787604345 4.789078 99,01 4.547196275 4.511798279
Date FOR(DMI) DMI Date FOR(DX) DX
98.02 4.652229374 4.652725 98.02 4.570715399 4.584114792
98.03 4.652307919 4.654618 98.03 4.580770365 4576154199
98.04 4.652375335 4.654226 98.04 4.606581849 4.593605868
99.01 4.652439073 4.64517 99.01 4.572295111 4.570733758
Date FOR(DCD DCI Date FOR(CIP) clp
98.02 4.763795079 4,776259 98.02 4.832060255 4.835099
98.03 476325439 4.774204 98.03 4,834024567 4.836364
98.04 4762184495 4.771706 98.04 4.83557879 4.835683
99.01 4.761645235 4.77007 99.01 4836948082 4.838305
Date FORDC) DC Date FOR(PI PPI
98.02 4.79864376 4.800771 98.02 4.621457043 4.620179327
98.03 4.801335471 4.800732 98.03 4.619313292 4.616149305
98.04 4.802514483 4.813568 98.04 4.617711063 4.606742
99.01 4.799391239 4.802895 99.01 4.615601329 4.600488
TABLE 6
Control forecasts,deflator model, qcq growth rates
Date FORDDGDP) DDGP) Date FOR(DDO)) DOHQ
38.02 0.750271949 1.513360227 38.02 ~3.833894103 -0.853973804
98.03 1076490641 1.602406294 98.03 -4,106104367 -8.233333333
98.04 0.710848941 1.334825247 98.01 -5.010409417 -11.46666667
99.01 1.042834549 1.191846557 99.01 -4.685059354 -8
Date FOR(DDMID D(DMI) Dare FOR(D(DX)) DMX)
98.02 ~0.480239683 -0.430902859 98.02 ~1/806281719 -0.481691005
98.03 ~-0.504883848 -{0.274776353 98.03 0.261758364 -0.2
98.04 ~-0.570019464 -0.383837464 98.04 0.799523165 0.5
99.01 0.02991182 -0.694576589 99.01 ~0.51145115 -0.666666667
Dare FOR{DDCIN DDA Dare FOR(D(CPD) D(CPD
98.02 ~0.396445291 0.852774431 98.02 1.043533637 1.351046124
98.03 -0.347269945 0.749884318 98.03 0.874128568 1.110393074
98.04 10.75423198 0.195250199 98.04 0.803216249 0.813721524
99.01 0.357834715 0.485173172 99.01 0.714239131 0.850992845
Date FOR(MD(DC) DIDC) Date FOR(D(PPI)) DPrH
98.02 0.941094433 1.156048897 98.02 0.143481382 0.015608174
98.03 1.159448867 1.098420504 98.03 -0.505262447 -0.819565036
98.04 0.006246754 1.117900569 98.04 -0.80904153 ~1.891127788
99.01 0.619132626 0.972296384 99.01 -0.77714251 -2.265455148
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ing the evolution and the turning points of the actual series. Equation 4 (DC) has
good predictive properties, especially for the 4 step ahead forecasts (Theil'sU's de-
crease from 0.688 to 0.461 as the forecast horizon increases). Taking into consid-
eration both logs and qcq growth rates forecasts, this equation does better 4 steps
than 1 step ahead. The same considerations hold for equation 5, which produces
forecasts for the import deflator (DQ). The sixth equation {DX) has very good
Theil's U's (from 0.568 to 0.295), and the control forecasts are satisfactory, espe-
cially those of the logs, from which one can see that the turning points are cor-
rectly picked up.

Equation 7 (CPI) is the most interesting one, since it can be used to forecast
inflation. As we can see from table 4.3.1, this equation has very good Theil's U's
(from 0.569 to 0.374). The CPI behaviour is correctly predicted, even if there is a
slight systematic under-prediction. On the other hand, equation 8 (PPI) has very
high Theil's U's values (from 0.988 to 0.983), although the control torecasts show
that the tendencies of this indicator are correctly predicted. In any case, the de-
crease of production prices in the relevant period has been very dramatic and it
was a priori hardly foreseeable.

5. A NEW PROPOSAL FOR TREATING STRUCTURAL CIIANGE

5.1, Methodology

In the BVAR context, a subset of &, the hyperparameters vector, is particularly
important for the econometric treatment of transition/structural change phenom-
ena. These hyperparameters, which we indicate with &,, determine £, i=1, 2,
..., 0, the variance covariance matrix of the transition equation error terms for each
equation of the VAR. Coetersis paribus, if we consider two possible configurations
for £, sap 2, and €2, with ,; - €, positive definite, by using £,, we have a
potentially higher time variability of the parameters than that produced by £2,. In
general, in the BVAR approach hyperparameters are calibrated and constant for al
the sampling period. We believe that, in order to successfully model gradual transi-
tion phenomena, it is necessary to use a specification in which hyperparameters de-
fine a time varying €2, matrix:

Q= Q& D (5.1)

As a simple example, let us assume that the model being used has only one param-
eter, o, with a transition equation affected by the error term 7,. The variance of
n,is m, which is determined by the following modification of (2.3):

@ =g+ 6, -5, (£ - T)% exp(=0; - (¢t~ T)) - ¢, (5.2)
5, =0,1,68,>0,6,>0,6,>0, T, =last period in which s, =0

We call this kind of model DVI (Dynamic Variability Intensity). Note that in this
way we have a discrete state variable, s,, which we can consider as an indicator
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variable associated to the state of low (s,=0) or high (s, = 1) parameters variability.
The hyperparameters in the vector 6 =[6,6,8,]" define how the potential variability
of the parameters is allowed to increase, via a corresponding increase in the transi-
tion equation error terms variance, and in which way this variance evolves through
time (seefigure 1, showing some possible degrees of time evolution of w,).

In our view, some aspects deserve special attention. Firstly, it is necessary to
establish in which state (s,=0 or s5,=1) the system is at each sample (or post-sam-
ple) observation. This could in principle be achieved in two different ways:

a) it is possible to impose that the system moves from one state to the other on
the occurrence of specific events, such as, for example, the transition from a higher
to a lower wage indexation scheme. This entails imposing dogmatic priors on the
state of the system for the different observations.

h) It is possible to treat 5, a an unobservable variable, with some transition
properties (i.e. Markovian), and let the model itself decide how to assign each ob-
servation to different states, via application of an apt filter (see Hamilton, 1994;
Lindgren, 1978), according to the smoothed probabilities

Another problem is that of determining the hyperparameters. We believe that
the best way is to treat the model in hierarchical terms, asin Chib and Greenberg
(1995), and to verify whether this approach yields good properties for the esti-
mated models.

5.2. Choice among competing models

This new proposal of tuning the parameters time variability intensity has to be
compared with the traditional BVAK methodology. In Bayesian terms, the choice
between two competing models, M, and M,, is made by constructing the posterior
odds ratio (POR):
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Figure 1 - Values of o, corrisponding to different configurations of 8,, 6, and 8,.
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P()Rﬂo - P(Ml|y) - pM) ‘BFI|2,BFl|7 M

2 pily) P 2 plylay)’
In this case, we compare two models: (1) M, =HVAK model with DVI;
(2) M, = standard BVAR model. We choose M, if POR, |, is higher than one. Note
that M, is nested within M,, given that M, is obtained from M, just by imposing
that the hyperparameters vector 8 (controlling DV1) is equal to a vector of zeros. If
we assign to each model equal prior probabilities, the POR coincides with the
Bayes factor RF,|,. The evaluation of BFs is generally very difficult in most appli-
cations, (see Geweke, 1999). For this reason, we resort to the asymptotic approxi-
mation described by Bernardo and Smith (1994, p. 487), and choose the model
with the minimum BIC criterion:

BIC,=-2 - In (mly|M,, X))+ [ - In (D (5.4)

(3.3)

The properties of the approximation used in this context are unknown; in future
research, we intend to use exact simulation techniques in order to directly evaluate
the POR.

5.3. Results

In this subsection we show the results of some applicationc, used as an example
to verify the applied properties of our proposal. In order to simplify computations,
we decided to work with a more “parsimonious” prior distribution, 7 ¢ , taking into
conrideration (2.1), we specify the prior distribution symmetrically across al the
equations of the VAR, in the following way:

T = m, i=12,...m j=12345678 (5.5)
i = 7, Vi
P i =

Hence, we have a very small set of hyperparameters which can be easily dealt
with. 'She complete & vector is:

T .
i={9:|=[71'1 T, n, m, 5, m, m m 6 6, 6, (5.6)
Moreover, for the sake of simplicity, we have set #, =1 and 7, = 7.
The properties of the method that we propose have been assessed by running
two different applications. The first one is based on a simulated data set, whereas
the second one uses a small subset of the EMJ 11 real variables model.

5.3.1. Application on a simulated dataset

The dataset being analysed has sample size equal to 300. The data have been
generated by a time varying parameter VAR(1) with two equations, a stationary
exogenous variable and an intercept term. The DGP parameters evolve over time
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according to (23) for the first 250 observation, with hyperparameters values
corrisponding to our default configuration; for the remaining 50 observations,
we use a DVI scheme, with a known initia time ('l;,=251), and the values
6, =1.0¢ - 006, 6,=4.0,6,=0.2. In that way, the peak of the DVI profile occurs
at observation 269, with a value of 0.0033

We have used this generated dataset to estimate 2 different BVAR models: the
first one (Model 1) reproduces the origina DGP, whereas the second (Model 2)
associates a uniform degree of parameter variability to the whole dataset, ignoring
any DVI phenomenon (6, is constrained to zero). For both models, we have nu-
merically optimised the hyperparameters configuration. The objective function is
the sum o the sample pseudo-likelihoods (see Doan et a/., 1984). To compare the
two models, we have used Schwartz’s BIC criterion (described in (5.4)), which
takes into consideration the modal pseudo-lilteliliood function and the
dimensionality ot the hyperaparameters vector

As one can easily see in table 7, the performance of Model 1 is clearly superio:
to those of Model 2, since its BIC value (-2122.26)is much smaller than that o
the no-DVI model (-2101.06). The values of Theil’s U indexes (table 5.3.1) reveal
the superiority of Model 1 throughout the forecasting horizon (1 to 20 steps): for
the ftirst equation, Theil’s U's are below those of Model 2 in 18 cases out of 20
{the exceptions are 1 and 7 step ahead forecasts), whereas they show the superior-
ity of Model 2 in dl cases for the second equation. Finally, also on the grounds of
control forecasts (figures2 and 31, Model | secems to exhibit the best behaviour In

TABLE Y

Simulated data: BIC and Theil's U's
Mod. 1 (DVI) BIC = -2322.26  Mod.2 (NO DVI) BIC = -2101.06

M1 {DVD M2 (NO DV M1 DVD M2 iNo DVT)

Steps equation 1 equation 1 equation 2 equation 2
| 0.0397685 0.0579542 0.0579803 0.0384998
2 0.1322360 0.1353727 0.1361636 0.1446297
3 0.1380773 01414824 0.1405733 0.1350932
4 0.137922 0.1431385 0.1465929 0.1658241
3 0.1167538 0.1225330 0.1274062 0.1304076
6 0.1259352 0.1299560 01452906 0.1633852
7 0.1416791 0.1404957 0.1725056 0.1893234
8 0.1806920 0.1847262 0.2248470 0.2378791
9 0.1900664 0.1977490 0.2454273 0.2563621
10 0.2:420384 0.2523690 0.3045234 0.3127318
11 02317554 02435137 0.3015658 0.3083606
12 0.2413997 0.2571473 0.3182382 (0.3245772
13 03034268 0.3244331 0.3800419 0.3907775
14 0.2850861 0.3102414 0.3684890 0.3813072
15 0.3037659 0.3338182 0.3925080 0.4094044
16 0.3456054 0.3821593 04391542 0.4622514
17 0.4038612 0.4477714 05051759 0.5358435
18 0.4394045 0.5125711 0.5731472 0.6128862
19 0.5085531 0.5722483 0.6353282 0.6845454

20 0.5018137 0.5774816 0.6452087 0.7053765
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Figure 2 - Control forecasts, eq. 1. Figure 3 - Control forecasts, eq. 2

particular, for both equations of Model 1 the means and standard deviations of the
1 to 20 steps forecasting errors are aways smaller than their counterparts obtained
by using Model 2.

The capability of tracking the true DGP DVI profile is very good; the estimated
values of 6 correspond to an estimated peak at observation 270 (the true maximum
is at observation 269), and the estimated maximum value of DVI is 0.00293
(whereas the true value is 0.0033). More generally, the entire estimated profile of
DVIisvery similar to the true DGP profile, asis evident from figure 4.

These encouraging results are fairly robust with respect to simulated datasets
with different DGPs, with different sample sizes, and different DVI profiles. We
have encountered some difficulties in the estimation and the forecasting steps,
when the degree of DVI is particularly high, far from the ones that we consider
reasonable and appropriate for real world phenomena.

5.3.2. A reduced EMJ 11 model

Our second application is on real data: we use a simplified version of the con-
stant price section of the EMU-11 model, in which we have eliminated the exter-
nal trade flows. It is, in fact, a HYAK model with 3 equations, GDP (Y), total
investments (1) and private consumption (C). We inserted only one exogenous vari-
able, the terms of trade variable (ToT). The sample size is the same as in the origi-
nal model (72 observations, from 1990:1 to 1999:1), and the last four observations
have been put aside to generate the usual set of control forecasts.
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Figure 3 - Estimated and true DVI profiles. Figure 5 - Estimated DVT profile for the

reduced EMU-11 model.
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TABLE 8
Reduced EMU-11 model, BIC values

Model 1 (DVD) Model 2 (NO DV

BIC -2089.5 2033.08

Asin the simulated data set example, we specify two different models, Model 1
and Model 2. Model 2 has 8, constrained to zero (no DVI), while Model 1 dlows
for DVI. In the case of Model |, the initialisation for the vector 8reflects a priori
beliefs on the transition process; our beliefs in this respect are that the transition
started in 1990:1 (observation 41), with the German unification process, and
reached its maximum intensity at the end of 1993 (observation 56), after the big
currency crises that hit the European economiesin 1992 and 1993. These hypoth-
eses are accommodated by initialising 8,=0.0000001, 6, = 1.6, 8,=0.1. The esti-
mated DVI profileis reported in figure 5.

The advantages of dealing with a DVI model are evident by looking at the RIC
criterion values for the two models (table 8): Model 1 BIC is -2089.5, while Model
2 has -2033.08.

In general, the evidence gathered with this exercise leads us to make the follow-
ing observations.

1. In the gradual convergence towards EMU, the area-wide aggregates and their
interrelations have been characterised by some major changes.

2. We note that the traditional time varying parameter BVAR mechanism is not
fully capable of modelling these transition phenomena. This fact can be used to
explain some of the less than fully satisiactory properties of the EMU-11 models
presented in the previous sections of this paper

3. The empirical evidence confirms that our procedure can be seen as a sensible
solution to the problem.

4. Qur apriori beliefs concerning the DVI process are substantially modified by
the data. In fact, the © hyperparameters obtained by numerical optimisation
(8,=1.3¢ - 007; 6,=6.97; 8,=1.01) locate the DVI peak at 1991:3 (observation
47), whereas we originally thought that the maximum would be at observation 56
(1993:4). From 1991:3 on, the phenomenon gradually decreases, and it vanishes
completely after the first haf of 1994 (observation58).

Summing up, the two experiments we have run confirm the usefulness of model-
ling gradual transition processes viatime varying parameter schemes which are more
articulated than the one of the standard BVAR approach. Our proposal in this re-
spect, which is characterised by a DVI mechanism governed by a small set of hyper-
parameters, is preferable to the traditional BVAR parameters evolution scheme on a
closed economy, stripped down version of the KVS section of the EMU-11 model.

Considering each endogenous variable, we note that the Y and | forecasts are the
ones that show the biggest improvements with respect to the no-DVI model. In our
view, this is quite interesting since we have seen in section (4) that the investment
equations had the worst propertiesin the fully fledged, no DVI, EMU-11 model.
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6. CONCLUSION

In this paper, we present a quartetly forecasting model for the the EMU-11
economies considered as a single country. The model has two sections: a constant
price variables section and a section dealing with deflators. The model is a time
varying parameter BVAR model which shows generally good forecasting perform-
ances and a good ability of tracking turning points without delays. Its forecasting
performances, as measured by Theil's U indexes are largely superior to those of a
non-Bayesian VAR model. In particular, on some crucia variables, such as GDP,
consumption, exports, and inflation, the forecasts are particularly satisfactory.

The estimated models present some problems: the forecasting performances are
not particularly brilliant for certain variables, such as construction investments and
PPI. Moreover, the forecasting properties are very sensitive to the calibration of
certain hyperparameters, and not robust with respect to the addition of new obser-
vations. Our interpretation of this problem is that the European economies have
entered into a gradual transition process that has been revealed by a sudden wors
ening of the forecasting performances of the models based on the traditional time
varying parameter approach.

Taking al these things into consideration, in the second part of this paper we
present an innovative method for handling parameters variability in a KVAR ap-
proach. We show that our procedure has good properties, by using two different
applications. The first one is based on simulated data, and the second one on a
stripped down version of the EMU-11 model.

Some lines of research are at the top of our agenda. As for the EMU-11 model,
we need to carefully assess the sensitivity of the model with respect to different
scenarios by producing real out-of-sample forecasts. As regards our DVI proposal,
we still have to apply it to the fully fledged version of the EMU-11 model, and see
how it works for that application. Moreover, we have to investigate the possibility
of modelling the DVI with different functional forms.

A further evolution is that of moving to a fully Hayesian approach, based on a
hierarchical structure, to be analysed by means of MCMC techniques, as in
Amisano and Serati (2000).
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RIASSUNTO

Modelli BVAR e previsione: un modello trimestrale per 'UME a 11 paes

Questo lavoro & dedicato ala costruzione e dla ralutazione di un modello previsivo tri-
mestrale, appartenente dla famiglia dei VAR bayesiani (RVAR), per il gruppo degli | 1 paesi
aderenti all’'Unione Monetaria Europea (UME) trattati come un unico paese. In questa fase
iniziale e transitoria del processo di completamento dell' UME, ['evoluzione di molte variabi-
li economiche & caratterizzata da turbolenze e numerose relazioni macroeoconmiche sono af-
flitte da instabilita strutturale. Per questi motivi, i modelli utilizzati in questo lavoro sono
modelli RVAR a parametri variabili. Ad ogni modo, afronte delle buone proprieta previsive
di questi modelli, rimangono ancora segnali di una qualche loro parziale inadeguatezza. Alla
luce di tali segnali, nella seconda partc del lavoro presentiamo un approccio innovativo sulla
base del quale la tradizionale metodologia BVAR a parametri variabili viene estesa e modifi-
cata: l'intensitd di variazione dei parametri viene governata per mezzo di una matrice di
varianza e covarianza del termini d'errore dell'equazione di stato anch’essa variabile nel
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5

tempo. Cid & possihile ampliando (in misura minima) la dimensione dello spazio iperpara-
metrico. I’evidenza empirica, prodotta sia sulla base di dati simulati, sia nell’'ambito di una
version6 ristretta del modello sul'UME a 11 paesi, seppur preliminare, appare incoraggiante
per quanto riguarda I'efficacia della nostra proposta.

SUMMARY

BVAR models and forecasting: a quarterly #zodel for the EMU-11

This paper deals with the costruction and evaluation of a quarterly forecasting BVAR
model for the EMU-11 countries treated as a single country. In the current stage of EMU
completion, most variables are affected by turbulences, and many macroeconomic relation-
ships are characterised by structural instability. For this reason, the forecasting models used
in this paper are time varying RVAR models. There are still signs that the models me have
estimated are affected by some limitations, in spite of their good forecasting properties. In
the light of this, in the second part of this paper we present an innovative approach in
which we extend the RVAR time varying parameter methodology: the intensity o param-
eter variation is governed by a time varying variance covariance matrix of the state equation
error terms. This is achieved by dlightly increasing the dimensionality of the hyperparameter
space. We show some preliminary, encouraging evidence on how this proposal works, based
on simulated data and on arestricted version of the EMU-11 model.



