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BVAR MODELS AND FORECASTING: 
A QUARTERLY MODEL FOR T H E  EMU-11 

G .  Amisano, M. Serati 

In the last 20 years, vector autoregressive models (VAR) have encountered enor- 
mous success and they have been extensively used for forecasting purposes. They 
have become valid substitutes/complen~ents of the structural nlacrocconometric 
models (SMMs). The main advantage of VAK models with respect to SMMs is 
their higher manageability in the specification, estimation and simulation stages. 

O n  the other hand, the most serious limitation of VAR models is their ineffi- 
cient parameterisation. The quest for more efficient estimation methods, capable 
of delivering more reliable forecasts, is the main motivation of the Bayesian ap- 
proach to VAIZ modelling (Hayesian VAK models, or HVAK: sce Litterman, 1979; 
Doan et al., 1984; I'itterman, 1986). This approach is based on the combination of 
prior and sample information which may be obtained by resorting to the Kalman 
filter (Hamilton, 1994, chapter 13),  given the state-space representation of the 
VAK. 

This paper is devoted to the costruction and evaluation of a quarterly forecast- 
ing BVAR model for the EMU-11 member states treated as a single country. In 
the current conlpletion stage of monetary ~ulion,  all the key macroecononlic vari- 
ables are affected by episodes of turbulence, and even the most basic macroeco- 
nomic relationships are characterised by structural instability. Within a reduced 
form model franlework, like a VAR one, it is not possible to perceive these insta- 
bility phenomena as modifications of the structural parameters. Nevcrthelcss, in 
order to model these episodes of higher turbulence in a proper way, we used time 
varying 13VAlZ models (see Doan et al., 1984; Amisano et al., 1997) in this paper. 

There are still some signs that the models we have estimated have some limita- 
tions, in spite of their good forecasting properties. For this reason, we believe 
that it is necessary to refine the KVAR methodology with the purpose of making 
it more suitable to contexts undergoing gradual transitions. In fact, the original 
time varying parameter BVAR methodology has a crucial limitation: its limited 
ability to deal with periods in which the transition phenonlena are concentrated in 
sub-samples or they are different across subperiods. To  tackle this problem, in the 
second part of this paper, we present an innovative approach in which we extend 



the traditional BVAR time varying parameter models: the intensity of parameter 
variation is governed by a time varying variance covariance matrix of the state 
equation error terms. We  achieve this by increasing the dimensionality of the 
hyperparameter space. We  provide some preliminary evidence on how this pro- 
posal works, based on a set of simulated data and on a restricted version of the 
EMU-1 1 model. 

The paper is organised as follows. In  section (2) we describe the structure of the 
models for EMU-11 area. In section (3) we discuss the most important choices that 
we have made when aggregating the single-country series in order to obtain area- 
wide series. In section (4) we comment on the results obtained and the forecasting 
properties of the estimated models. In section (5 )  we describe the methodological 
features of our proposal on how to deal with gradual transition phenomena and the 
results of some preliminary applications. Section (6) contains some concl~~sions and 
the directions of our future research. 

Our choice of working with the EMU-11 aggregates is strategically motivated: 
while we are aware of the usefulness of single country models, it is clear that the 
attention of policymakers, financial operators and academic researchers is increas- 
ingly focussing on the EMU area taken as a single entity. 

Moreover, the alternative choice of running separate country specific models 
and then pooling the forecasts has some obvious disadvantages. First of all, manag- 
ing 11 forecasting models could be extremely time consuming, especially when one 
takes into consideration that data updating is not synchronous across different 
countries. Secondly, it would be necessary to formulate (and defend!) 11 different 
scenarios on the exogenous variables, with the unavoidable consequence of multi- 
plying the possible sources of forecasting errors. Thirdly, running separate models, 
one loses the covariance structure across countries, so that the uncertainty around 
point forecasts is not properly measured: this is a big problem in the EMU area, 
where the single countries are deeply interdependent. When EMU-11 aggregates 
are used this cross-country correlation is synthetically accounted for. 

In the light of these considerations, we have chosen to work with the EMU -l1  
aggregates, as if we were dealing with a single country. Our forecasting model is 
articulated in two blocks. The first one is devoted to forecasting a set of real vari- 
ables (real variable section, henceforth RVS), whereas the second one (deflators 
section, henceforth DS) deals with the corresponding deflators and some other 
price indicators. Taking jointly into consideration the forecasts produced by the 
two blocks, it is possible to produce forecasts on nominal variables. 

The choice of splitting up the model into two blocks parallels the one made in 
Amisano et al. (1997) for the Italian economy and it is mainly justified by the aim 
of limiting the dimension of each single model for practical purposes. 

The type of interdependence between the two sections of the model is such that 
some variables which are endogenous in the first section appear as exogenous vari- 
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ables in the second one. In this way, we keep the need to produce scenarios for the 
exogenous variables at a minimum. 

The deflators section of the model is upstream and the real variable section is 
downstream. The real variable section (RVS) has 7 endogenous variables; six of 
them are the key quarterly accounts indicators, i.e. G D P  (Y) and its main constitu- 
ents: investments, disaggregated into business and machinery investments (MI) and 
construction investments (CI), private consumptions (C) and finally exports (X) 
and imports (Q). Of course, these two variables do not record intra-EMU trade, 
which is recorded as consumption or investment. The seventh variable is industrial 
production (IP). W e  include this variable in the model in order to verify whether 
our simplified forecasting structure can produce sensible indications on the tenden- 
cies of the productive system. 

T O avoid collinearity problems, the endogenous set does not contain all G D P  com- 
ponents: the excluded components are changes in stocks and public consumptions. 

The exogenous variables set contains 11 variables. A first block of variables is 
needed to measure the degree of competitiveness of the EMU-11 area products, 
and to forecast the international trade flows. In this group we have two exchange 
rates (German MarkIJapanese Yen, MY, and German MarkIUS Dollar, MD), the 
terms of trade (TOT), measured as ratio between EMU-11 import and export 
deflators, and an indicator of world demand (WDEM), which is obtained by sum- 
ming the imports of those areas ( l )  with high levels of imports from the EMU-1 1. 

A second block of exogenous variables aims at forecasting aggregate demand and 
activity. This group of variables comprises a measure of the degree of market con- 
fidence (MCONF), public sector revenues and expenditures ( 2 )  (PSREV and 
PSEXP), an area-wide measure of inflation (INFL) which is relevant for its effects 
on internal demand. In  this group we have also the EURO 3 month interbank in- 
terest rate (3ME), the 10 year German benchmark rate (IOYD), and a measure of 
degree of capacity utilisation (CU), which is very important to forecast IP  and usu- 
ally leads investment. 

All exogenous variables are included with their current values and the first two 
lags. 

I t  should be noted that the true number of exogenous variables is less than 11: 
in fact, TOT and INFL are exogenous in this section of the model but they are 
endogenous in the deflators one. Moreover, other 5 exogenous variables (MY, 
MD, 3ME, 10YD and the WDEM indicator) appear as exogenous variables in the 
DS section. 

The specification of RVS allows for a deterministic part formed by an intercept 
term and 3 impulse dummies (j). 

The deflators section has 8 equations. A first block of 6 equations deals with the 
deflators of the corresponding variables appearing in the first section of the model: 

(l) USA, UK, Switzerland, Japan, Brasil, Argentina, Russia, Poland and all Asia. 
(2) Comprising interest paid on public sector debt.  
(j) These step dummies are introduced to deal with abnormal observations, i.e. 1983Q4, 

1991Q1 and 1993Q1. 



the G D P  deflator (DGDP),  the deflators of the two investiment aggregates (DMI 
and DCI), the consumption deflator (DC), the import and export deflators (DQ 
and DX). 

The last two equations of the model are devoted to the harmonised CI'I index 
(CPI) and a PP1 index (PI'I). The role of PP1 is similar to that of IP  in the real 
variable section of the model, i.e. to anticipate productive tensions. 

There are 8 exogenous variables, five of which are in common with the other 
section (MD, MY, 3ME, IOYD and WDEM). In addition, we have two raw mate- 
rials price indexes, NONOIL and OIL, with obvious meanings. The last exogenous 
variable is a nominal wage variable, measuring the state of the labour market. 

As in the previous section of the model, exogenous variables are included with 
their current values and their first two lags, and the deterministic part includes an 
intercept term and some impulse dummies. 

All variables included in either section of the model are seasonally adjusted 
(when needed) and appear in logs, bar the interest rates. The two sections of the 
model are VAKs with 4 lags and the sample period is 1980Q1-1999Q1. All series 
concerning national or EMU-11 aggregates come from Eurostat or Datastream. 

Both blocks are modeled as time varying parameters BVARs. According to the 
standard RVAR approach (Litterman, 1979; Doan et al., 1984; Litterman, 1986, 
Sin~s ,  1989), each equation of the VAR is estimated separately and the prior distri- 
bution is Gaussian with unit prior mean on the first lag coefficients ot the depend- 
ent variable, whereas all other parameters are given zero prior mean (Minnesota 
pm). The prior variance-covariance matrix (Qzo, z = 1, 2,  . . . , n) of the parameters 
in each equation is diagonal with diagonal elements specilied by means o i  a small 
vector of hyperparameters: iocussing on the i-th equation, and calling v, the coef- 
ficient on the p th  deterministic variable, a,, and h,/,/, the coefficients on the k-th 
lag of the j-th endogenous variable and of the j-th exogenous variable rcspectively, 
the prior variances are set as follows: 

where o,, is the i-th diagonal elelncnt of 1, the variance-covariatlce matrix of tile 
disturbance terms of the VAK. 

As for parameter time \rariability, let us indicate P,, the coefficient vector of the 
i-th equation of the VAIZ; the state equation is: 

where P,,, is the prior expected \ d u e  of p,,,; the hyperparameter 4 tunes the decdy 
of the state vector towards its prior mean. The state equation variance-covariance 
matrix R, is specified by means of the hyperparameter K;: 
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The hyperparameters (collected in the vector 5) are chosen so as to optimise the 
forecasting performances of the model: in this case we maximize the Theil's-U in- 
dex at a given forecasting horizon h, i.e. the ratio between the h-step ahead Root 
Mean Square Errors (KMSE) of the model and the one of a random walk model 
(naive forecast). 

The hyperparameters of both models have been calibrated using the 1991:l- 
1999: 1 subsample as forecasting properties assessment period. Obviously, this 
subsample contains all the relevant turbulences that have affected the European 
economies in the last years. 

3 .  DATA DTSCRIPTION AND AGGKFGATION PROBLFhIS 

In order to deal with the EMU-11 area as a single country, it is necessary to 
solve some preliminary problems, concerning the construction of appropriate eco- 
nomic time series. 

Although in the EMU-11 case Eurostat already produces the relevant aggre- 
gates, we have chosen to re-construct them by aggregation of country indicators. 
W e  decided to do so for two reasons. Firstly, some Eurostat series are available 
only for the 1990s; secondly, we felt the need to explore the technical characteris- 
tics of the data set, and to make it possible to carry out a quick update of the 
aggregate series in the case of other economies joining the EMU. 

This choice meant that the following 2 problems had to be solved: (1) how to 
4 convert country data into a common currency; (2) how to aggregate ( ) the country 

indicators to obtain an area wide indicator. 
In  order to better understand the implications of how to solve ( l ) ,  we will start 

by describing (2). The approach we have chosen is coherent with the one adopted 
by many international organisations (such as Eurostat) and by many applied re- 
searchers (see for instance Bikker, 1998). All magnitudes expressed as pure num- 
bers and harmonised across countries (for instance national accounts indicators), 
the EMU-11 series were obtained as simple sums of the country values expressed 
in a single currency. Calling Y a given nominal variable, we have: 

The same holds for real aggregates so that the corresponding deflator is obtained as: 

As for the variables expressed as indexes (e.g. IP  or wages), the EMU-11 meas- 
ure is a weighted sum of the single country series, with weights given by the GDP 
(expressed in current prices, common currency) quota of each country: 

(4) IIaving solved (1). 



The problenl of how to convert all the single country series into a common cur- 
rency is more conlplicated. To this end, we can alternati~lely use the bilatcral nomi- 
nal exchange rates, or the bilateral PPl's ('1 with respect to the currency chosen as 
the denominator. In either case, the most important choice is the one between a 
constant rate and a time series of conversion rates. 'I'he literature on this topic (see 
for instance Winder, 1997) slggests that to obtain aggregate variables in real terms 

h it is necessary to use a constant conversion rate i 1.  In this way, we ensure that no 
price dynamics is introcti~ccd arbitrarily in the reaulting real aggregates. 111 iact, ii 
we used the ct~rrent exchange rate, the behaviour of the resulti~lg aggregate would 
bc directl! infl~icnccd by the evolution of the bilateral exchange rate. 

Moreover, the choice of a constant conversion rate, together with the aggrega- 
tion dcacribed by (3.1) and by (3.31, is supported b y  some general properties. 
wllich hold ior both resulting nominal and real aggreg'ttes To illustrate these prop- 
erties, let 115 comidcl a variable, for instance GDP,  ,lnd bv means of (3 .1 )  let 113 

contpute its EMU-l1 aggregate, by using the nominal cxchange rate of a base year 
( t7/>, 1 : 

h'ote that the percrn,:ige growth rate of tlic kMlJ-l1 C;DP IY/Y) can he written al .  

111 otlier w o t d ~ .  the F.hlT7-11 GP)P groa th rate (31x3 the g o v ~ 1 1  late of all area 
a ~ c k  aggrcgatei) I S  d wciglited : ~ c r a g e  01 the growth rdtes ot the single colirllrt 
componentr, wit11 wclglzts given bv thc quo t ,~  oi each coun t~y  v x i ~ b l e  or1 tire xerr  

widc aggreg,lte Note also that the res~dtirig growth rate is invari,n~t wti-1 respect t c i  

the ctroice of tllc conmon ctlrrency itsed for the aggrcgatiorl TIlese properties dis- 
,ippe:lr if the cnn\ersion rate is the curlent exchange rate (or PPP) 'I'hesc proper 
tics arc p a r t i c ~ l a r l ~  nppealing ior intclprcting the r t -d t ing forecasts in the light of 
those o i  its single country components. 

Tlte good propertics of using :t constant conversion rate hold also ~v11cn dcding 
with ilggrcgate dcilators, obtdned '1s the ~ a t i o  betweer1 current and constant price 
series. l'o provide an example, let us consider the EMU-11 CLIP ~lef la tor(DY~, ,~ ,  ) 



Expression (3.6) states that evcn the aggregate deflator (and, with a small approxi- 
mation ( l ) ,  also its variations) is a weighted average of the single country deflators, 
with weights given by the quota of each country variables on the area-wide aggre- 
gate. 

In the light of these considerations, in this paper we adopt as conversion rates 
the bilateral exchangc rates with respect to thc German Mark, using 1995 as a 
base year. 

4, TIII n t s i r  I S  or- I I I L  EMU-11 nioui I 

4. l .  General comments 

We havc already pointed out that the last part of the sample period is affected bq 
instability phenomena which are mainly (but not completely) concentrated in the 
1992/1993 period. This is particularly evident for the constant price variables, 
whereas the behaviour of the deflators seems to be less influenced by such phenomena. 

The turb~llence period starts immediately after the signing of the Maastricht 
rrcaty and thc completion of the Single Market, and it does not stop at the outset 
of the European recession of 1993 For these reasons, we suspect that it night sig- 
nal a deeper transition process brought about by the EMIJ 

The behaviour of the two modcls (as gaugcd by Thcil's IJ indexes and by control 
lorecasts) seems to be satisfactory. The frequent turning points are correctly antici- 
p ~ t e d  without significant delays, and the signs of predicted cluartcr-orer-corre- 
sponding quarter (qcy) growth rates (') arc almost always in line with those of the 
actual series. The forecasting performancc is uniformly superior to that of the cor- 
responding non-Hayesian VARs. 

IIowever, there are some signs of properties of the model which are not com- 
pletely satisfactory, which we s~~mlnarise as follows: 

1. In  the RVS, the C1 equation has Theil's IJ's nlarpinally above one. 
2. In some cases, hyperparameter configurations that are capable of reducing 

further Theil's U's have a negative influence on control forecasts in the last 4 quar- 
ters. In other words, the hyperparanleter configuration is not optimal with respect 
to the last 4 observations. Moreover, the optimal hyperparameter configuration is 
not robust to the insertion of new observations. 

(') Winder (1997) 
With this expresion, we mcan the growth ratc of a variable with respect to its value 

4 quarters before. 



3. Sometinles, some relevant trade-offs across different forecasting horizons 
arise. 

4. The forecasting performance is highly sensitive to the calibration of the 
hyperparameters on the deterministic variables and of those governing the degree 
of time variability. 

Taking all these points into consideration, we believe that in our context it is 
necessary to adopt a modified strategy to account for parameter time variability. 
W e  need to model the gradual transition processes connected to the EMU with a 
more appropriate framework, as documented in the proposal contained in section 
(5) of this paper. 

4.2. Forecasting properties of the real model 

In table 1, Theil's U indexes from 1 to 4 step ahead are reported. Table 2 con- 
tains the control forecasts for the endogenous variables in logs and table 3 for the 
qcq changes. 

In  general, the model has good forecasting properties for almost all equations. 
The first equation (U) has good Theil's U's values at all forecasting horizons (from 
0.712 to 0.534). The forecasts for the series in levels and the qcq changes show 
that the model can forecast GDP very well. 

The second equation (MI) also shows good results. Theil's U's are satisfactory 
(from 0.642 to 0.521), but we note that, although the model is capable of produc- 
ing forecasts very close to the actual values on the control period, the forecasts fol- 
low the slowdown in the growth rate of the actual series occurred in 1998:4 only 
with a delay. 

The third equation (CI) deserves the title of the "worst equation of the model". 
Beside the values of Theil's U's, which points at the difficult forecastability of the 
C1 series (from the 2 step ahead onwards, the indexes are marginally above l ) ,  we 
note a clear tendency of the model to over-predict CI, even if there is a gradual 
narrowing of the gap between forecasts and actual values. 

The forecasts produced by the fourth equation (C) have much better properties. 
Theil's U's are clearly satisfactory (from 0.704 to 0.615) and show that the esti- 
mated equation can closely mimic the behaviour of actual consumption data. This 
is particularly evident from the analysis of the qcq growth rates: the deceleration 
of the private consumption growth rate is correctly picked-up. 

'l't\liI.l~ l 

'l%eil's lJ's of the real motlcl 
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Equation 5 (Q) has some problems too: despite the fact that Theil's U's are 
more or less satisfactory (from 0.933 to 0.629), we can notice a persistent differ- 
ence between forecasts and actual values of the series. Note that the 4-step-ahead 
predicted qcq growth rate is very close to zero, whereas its actual value is negative. 
This could be due to the abnormal evolution of the EMU-11 imports in the last 
two years of the sample, which has negatively influenced the comparison between 
predicted and actual values. 

Equation 6 (X) has better forecasting properties than the previous one. Theil's 
U indexes are satisfactory (from 0.783 1 step ahead to 0.479 4 steps ahead). We  
notice that predicted values are close to actual values, although the forecasts em- 
phasise the decrease of X during the control period. In fact, the predicted qcq 
growth rates become negative one period earlier than the actual ones. In  any case, 
the exports trend is correctly picked up by the model. 

Equation 7 (IP) shows fair properties in terms of Theil's U's (from 0.602 to 
0.845) and the control forecasts follow the profile of the series, even if they tend 
to exaggerate the actual series evolution. The profile of qcq changes is correctly 
reproduced by forecasts. 

4.3. Forecasting properties of the deflators model 

In table 4 we report 1- to 4-step-ahead Theil's U indexes for all equations of the 
deflators model. Table 5 contains the control forecasts for the logs of the variables 
over the period 1998:2 -1991:1, while table 6 contains the control forecasts for the 
qcq growth rates. 

Although this section of the model has in general good performances for almost 
all equations, there are clearly two different groups of equations: those showing 
very good forecasting properties, and those with less satisfactory performances. 
The first equation (DGDP) belongs to the first group. Theil's U's are satisfactory 
(from 0.634 to 0.423) and the predicted values are close to the actual ones. The 
second equation (DMI) generates worse forecasts than the previous one. Theil's 
U's are relatively high (from 0.976 to 0.914) and the control forecasts are not satis- 
factory at all. In  particular, despite the fact that the actual series moves upwards, 
with a clear decrease in the last sample observation, the forecast series is slightly 
increasing throughout the whole control period. The DC1 deflator equation gener- 
ates better results than the previous equation, as far as Theil's U's are concerned 
(from 0.655 to 0.588), and we note that the predicted values are capable of tracli- 

Steps DGUI-' UhlI DC1 DC U(> 1)X C IJl lJ 1'1 
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TABLL 6 
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ing the evolution and the turning points of the actual series. Equation 4 (DC) has 
good predictive properties, especially for the 4 step ahead forecasts (Theil's U's de- 
crease from 0.688 to 0.461 as the forecast horizon increases). Taking into consid- 
eration both logs and qcq g o w t h  rates forecasts, this equation does better 4 steps 
than 1 step ahead. The same considerations hold for equation 5, which produces 
forecasts for the import deflator (DQ).  The sixth equation (DX) has very good 
Theil's U's (from 0.568 to 0.295), and the control forecasts are satisfactory, espe- 
cially those of the logs, from which one can see that the turning points are cor- 
rectly picked up. 

Equation 7 (CPI) is the most interesting one, since it can be used to forecast 
inflation. As we can see from table 4.3.1, this equation has very good Theil's U's 
(from 0.569 to 0.374). The CPI behaviour is correctly predicted, even if there is a 
slight systematic under-prediction. O n  the other hand, equation 8 (PPI) has very 
high Theil's U's values (from 0.988 to 0.9831, although the control torecasts show 
that the tendencies of this indicator are correctly predicted. In any case, the de- 
crease of production prices in the relevant period has heen very dramatic and it 
was a priori hardly foreseeable. 

5 .1 ,  Methodology 

In the BVAR context, a subset of 5, the hyperparameters vector, is particularly 
important for the econometric treatment of transition/structural change phenom- 
ena. These hyperparameters, which we indicate with k , ,  determine L>i, i = l ,  2, 
..., n, the variance covariance matrix of the transition equation error terms for each 
equation of the VAR. Coetens paribus, if we consider two possible configurations 
for LL,, sap LLdo and LL,, with L2,, - LL,,, positive definite, by using L2,, we have a 
potentially higher time variability of the parameters than that produced by L>,,,. In 
general, in the BVAR approach hyperparameters are calibrated and constant for all 
the sampling period. We believe that, in order to successfully model gradual transi- 
tion phenomena, it is necessary to use a specification in which hyperparameters de- 
fine a time varying i2, matrix: 

As a simple example, let us assume that the model being used has only one param- 
eter, at, with a transition equation affected by the error term r j t .  The variance of 
qt is m,, which is determined by the following modification of (2.3): 

W e  call this kind of model DV1 (Dynamic Variability Intensity). Note that in this 
way we have a discrete state variable, X,, which we can consider as an indicator 
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variable associated to the state of low (S, = 0) or high (S, = 1) parameters variability. 
The hyperparameters in the vector 0 = [01020J' define how the potential variability 
of the parameters is allowed to increase, via a corresponding increase in the transi- 
tion equation error terms variance, and in which way this variance evolves through 
time (see figure 1, showing some possible degrees of time evolution of wt). 

In our view, some aspects deserve special attention. Firstly, it is necessary to 
establish in which state (S, = 0 or st = 1) the system is at each sample (or post-sam- 
ple) observation. This could in principle be achieved in two different ways: 

a) it is possible to impose that the system moves from one state to the other on 
the occurrence of specific events, such as, for example, the transition from a higher 
to a lower wage indexation scheme. This entails imposing dogmatic priors on the 
state of the system for the different observations. 

h) I t  is possible to treat st as an unobservable variable, with some transition 
properties (2.e. Markovian), and let the model itself decide how to assign each ob- 
servation to different states, via application of an apt filter (see Hamilton, 1994; 
Lindgren, 1978), according to the smoothed probabilities 

Another problem is that of determining the hyperparameters. We  believe that 
the best way is to treat the model in hierarchical terms, as in Chib and Greenberg 
(1995), and to verify whether this approach yields good properties for the esti- 
mated models. 

5.2.  Choice among competing models 

This new proposal of tuning the parameters time variability intensity has to be 
compared with the traditional BVAK methodology. In Bayesian terms, the choice 
between two competing models, M1 and MZ, is made by constructing the posterior 
odds ratio (POR): 

o 70 40 fin ~n 4 no $71 

Figuw 1 - Palucs of CO, corrisponding to difierent configurations of O,, 0, m d  0,.  



In this case, we cornpare two models: (1) M ,  = HVAK model with DVI; 
(2) M2 = standard BVAR model. We choose M, if I'OR, 1, is higher than one. Note 
that H, is nested within M,, given that M, is obtained from M, just by imposing 
that the hyperparameters vector 8 (controlling DVI) is equal to a vector of zeros. If 
we assign to each model equal prior probabilities, the POIZ coincides with the 
h y e s  factor RF, l ? .  The evaluation of HFs is generally very difficult in most appli- 
cations, (see Geweke, 1999). For this reason, we resort to the asymptotic approxi- 
mation described by Bcrnardo and Smith (1994, p. 487), and choose the model 
with the minimum HIC: criterion: 

The properties of the approxinxttion used in this context are unkno\vn; in future 
research, me intend to use exact simulation techniques in order to directly evaluate 
the ITOR. 

5.3. Results 

In this subsection u e  show the restllts of some applicationc, u ~ e d  as an example 
to verify the applied properties of our proposal. In order to simplify comp~~tations,  
we decided to woilc with a nlorc "p:irsimonious" prior distribution, z e , taking into 
conrideration (2.1), we specify the prior distribution sr~nmctricallr across all the 
equations of the VAII, in the following way: 

Hence, we h a w  a very small set of hyperparameters which can be easily dealt 
with. 'She complete 5 vector is: 

Moreover, for the sake of simplicity, we have set E* = 1 and xi = xj. 
The properties of the method that we propose lia\re been assessed by rilnning 

two different applications. The first one is based on a simulated data set, whereas 
the second one uses a small subset of the EMU-1 1 real variables model. 

5.3.1. Applzcation on a simulated dataset 

The dataset being analysed has sample size equal to 300. The data have been 
generated by a time varying parameter VAR(1) with two equations, a stationary 
exogenous variable and an intercept term. The DGP parameters evolve over time 



according to (2 3) for the first 250 observation, with hyperparameters values 
corrisponding to our default configuration; [or the remaining 50 observations, 
we use a DV1 s c h n e ,  with a ltnown initial time ('l;, = 2511, and the val~les 
0, = 1 . 0 ~  - 006, O2 = 4.0,  O3 = 0.2.  In that way, the peak of the DV1 profile occurs 
at observation 269, with a value of 0.0033 

We have used this generated dataset to estimate 2 different KVAR moclels: the 
lirst one (Model 1) reproduces the original I X I ' ,  whereas the second (Model 2) 
associates a uniform degree of parameter variability to the whole dataset, ignoring 
any DV1 phenomenon (01 is  ons strained to zero). For both models, we have nu- 
merically optimiscd the hyperparameters configuration. The objective function is 
thc sum of the sample pseudo-likelilmods (see Doan et a l ,  1983). T o  compare the 
two modcls, we have used Schwartz's BIC criterion (cicscribed in (5.4)), which 
takes into consideration the modal pseudo-lilteliliood function and the 
dimenhnali ty ot the hyperaparameters vector 

As one can easily see in table 7 ,  the performance of Model 1 is clearly s~iperior 
to those of hloclel 2, since its HI(: value (-2122.26) is n~ucli smaller than that of 
the no-DITI nlodel (-2101.06). The values of 'I'heil's U indexes (table 5.3.1) re\,eal 
the superiority of Model 1 throughout the forecasting horizon (1 to 20 steps): for 
tlie lirst equation, l'heil's U's are below those of Model 2 in 18 cases out o i  20 
(the exceptions are 1 and 7 step ahead forecasts), whereas they show the superior- 
ity of Model 2 in all cases for the second equation. Tinally, alm on the grounds of 
control kctrccasts (figures 2 and 31, Model l scenis 10 exhibit the best behaviour In 



Figure 2 - Control forecasts, eq. 1 .  Fzguve 3 - Control forecasts, eq. 2 

particular, for both equations of Model 1 the means and standard deviations of the 
1 to 20 steps forecasting errors are always smaller than their counterparts obtained 
by using Model 2 .  

The capability of tracking the true DGP DV1 profile is very good; the estimated 
values of 0 correspond to an estimated peak at observation 270 (the true maximum 
is at observation 269), and the estimated maximum value of DV1 is 0.00293 
(whereas the true value is 0.0033). More generally, the entire estimated profile of 
DV1 is very similar to the true D G P  profile, as is evident from figure 4. 

These encouraging results are fairly robust with respect to simulated datasets 
with different DGPs, with different sample sizes, and different DV1 profiles. We  
have encountered some difficulties in the estimation and the forecasting steps, 
when the degree of DV1 is particularly high, far from the ones that we consider 
reasonable and appropriate for real world phenomena. 

5.3.2. A reduced EMU-1 1 model 

Our second application is on real data: we use a simplified version of the con- 
stant price section of the EMU-11 model, in which we have eliminated the cxter- 
nal trade flows. It is, in fact, a HVAK model with 3 equations, GDI) (U), total 
investments (I) and private consumption (C). We  inserted only one exogenous vari- 
able, the terms of trade variable (TOT). The sample size is the same as in the origi- 
nal model (72 observations, from 1990:l to 1999:1), and the last four observations 
have been put aside to generate the usual set of control forecasts. 

Figure 3 - Estimated m d  true DV1 profileu. P i p m  i - Estimated DV1 profile for the 
rcd~iced EMU-1 1 model. 



As in the simulated data set example, we specify two different models, Model 1 
and Model 2. Model 2 has 8, constrained to zero (no DVI), while Model 1 allows 
for DVI. In the case of Model l ,  the initialisation for the vector 8 reflects a priori 
beliefs on the transition process; our beliefs in this respect are that the transition 
started in 1990:l (observation 41), with the German i~nification process, and 
reached its maximum intensity at the end of 1993 (observation 56), alter the big 
currency crises that hit the European economies in 1992 and 1993. These hypoth- 
eses are accommodated by inilialising 8, = 0.0000001, C)? = 1.6, 8, = 0. l. The esti- 
mated DV1 profile is reported in figure 5. 

The advantages of dealing with a IIVI model are evident bp looking at the RIC 
criterion values for the two nloclels (table 8): Model 1 BIC is -2089.5, while Model 
2 has -2033.08. 

In general, the evidence gathered with this exercise leads us to make the follow- 
ing observations. 

1 .  In the gradual convergence towards EMU, the area-wide aggregates and their 
interrelations have been characterised by some major changes. 

2. We  note that the traditional time varying parameter BVAR mechanism is not 
fully capable of modelling these transition phenomena. This fact can be used to 
explain some of the less than fully satisiactory properties of the EMU-11 models 
presented in the previous sections of this paper 

3. The empirical evidence confirms that our procedure can be seen as a sensible 
solution to the problem. 

4. Our a priori beliefs concerning the DV1 process are substantially modified by 
the data. In fact, the 0 hyperparameters obtained by numerical optimisation 
(8, = l .3e - 007; O2 = 6.97; 8, = 1.01) locate the DV1 peak at 1991:3 (observation 
37), whereas we originally thought that the maximum would be at observation 56 
(1993:4). From 1991:3 on, the phenomenon gradually decreases, and it vanishes 
completely after the first half of 1994 (observation 58). 

Summing up, the two experiments we have run confirm the usefulness of model- 
ling gradual transition processes via time varying parameter schemes which are more 
articulated than the one of the standard BVAR approach. Our proposal in this re- 
spect, which is characterised by a DV1 mechanism governed by a small set of hyper- 
parameters, is preferable to the traditional BVAR parameters evolution scheme on a 
closed economy, stripped down version of the KVS section of the EMU-11 model. 

Considering each endogenous variable, we note that the Y and I forecasts are the 
ones that show the biggest improvements with respect to the no-DV1 model. In our 
view, this is quite interesting since we have seen in section (4) that the investment 
equations had the worst properties in the fully fledged, no DVI, EMU-11 model. 



In this paper, we present a quarterly forecasting model for the the EMU-11 
economies considered as a single country. The model has two sections: a constant 
price variables section and a section dealing with deflators. The model is a time 
varying parameter BVAli model which shows generally good forecasting perform- 
ances and a good ability of tracking turning points without delays. Its forecasting 
performances, as measured by Theil's U indexes are largely superior to those of a 
non-Bayesian VAR model. In particular, on some crucial variables, such as GDP,  
consumption, exports, and inflation, the forecasts are particularly satisfactory. 

The estimated models present some problems: the forecasting performances are 
not particularly brilliant for certain variables, such as construction investments and 
PPI. Moreover, the forecasting properties are very sensitive to the calibration of 
certain hyperparameters, and not robust with respect to the addition of new obser- 
vations. Our interpretation of this problem is that the European economies have 
entered into a gradual transition process that has been revealed by a sudden wors- 
ening of the forecasting performances of the models based on the traditional time 
varying parameter approach. 

Taking all these things into consideration, in the second part of this paper we 
present an innovative method for handling parameters variability in a KVAR ap- 
proach. We show that our procedure has good properties, by using two different 
applications. The first one is based on simulated data, and the second one on a 
stripped down version of the EMU-11 model. 

Some lines of research are at the top of our agenda. As for the EMIJ-11 model, 
we need to carefully assess the sensitivity of the model with respect to different 
scenarios by producing real out-of-sample forecasts. As regards our DV1 proposal, 
we still have to apply it to the fully fledged version of the EMU-11 model, and see 
how it works for that application. Moreover, we have to investigate the possibility 
of modelling the DV1 with different functional forms. 

A further evolution is that of moving to a fully Hayesian approach, based on a 
hierarchical structure, to be analysed by means of MCMC techniques, as in 
Amisano and Serati (2000). 
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AlodelIi A V A R  e previsione: un model/o tsirnestde pes Z'lJhlE a 11 paesi 

(Juesto lavoro it dedicato alla costruzione c alla ralutazione di un model10 previsivo tri- 
mestrale, appartencntc alla famiglia dei VAR bayesiani (RVAR), per il gruppo degli I l paesi 
aderenti all'unione Monetaria Europea IIJME) trattati come un unico paese. In  quests fase 
iniziale e transitoria del processo di completamento dell11JMF,, I'eroluzione di  molte variabi- 
li economiche t: caratterizzata da turbolenze e numerose relazioni macroeoconmicl~e sono af- 
flitte da instabiliti strutturale. Per questi motivi, i modelli utilizzati in questo lavoro sono 
modelli RVAR a paramctri variabili. Ad ogni modo, a fronte delle buone proprieti previsive 
di  questi modclli, rinlangono ancora segnali di una qualche loro parziale inadeguatezza. Alla 
luce di tali segnali, nella seconda partc del lavoro presentiarno im approccio innovative si~lla 
base del qualc la tradizionale metodologia BVAR a parametri variabili viene estesa c modifi- 
cata: I'intensiti di variazione dei parametri viene governata per mezzo di una matrice di 
varianza e covarianza dei termini d'errore dell'equazione di stato anch'essa rariabile nel 
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tempo. C:ib i. possihile ampliando (in misura minima) la dimensione dello spazio iperpara- 
metrico. L'evidenza empirica, prodotta sia sulla base di dati simulati, sia nell'amhito di una 

r iante version6 ristretta del model10 sull'UME a 11 paesi, seppur preliminare, appare incorag '  
per quanto riguarda l'efficacia della nostra proposta. 

SUMMARY 

BVAR models and fotecastzng: a quarterly modcl  for the Ehlli- I 1  

This paper deals with the cos~ruction and evaluation of a quarterly forecasting BVAR 
model for the EMU-11 countries treated as a siilgle country. In  the current stage of EMU 
completion, most variables are aifectcd by turbulences, and many macroeconomic relation- 
ships are characterised by structural instability. For this reason, the I'orecastitlg models ~lsed 
in this paper are time varying RVAR models. There are still signs that the models me have 
estinlated are affected by some limitations, in spite of their good forecasting properties. In 
the light of this, in the sccond part of this paper W present an innovative approach in 
which we extend the RVAR time varying parameter methodology: the intensity of pararn- 
eter variation is governed by a time varying variance covariance matrix of the state equation 
error tcrms. This is achieved by slightly increasing the dirnensionality of the hyperparameter 
space. WC show some preliminary, encouraging evidence on how this proposal works, based 
on simulated data and on a restricted version of the EMIJ-11 model. 


