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APPROXIMATING THE EXACT VALUE OF AN AMERICAN OPTION 

Stefano Herzel 

A mio padre, esempio di vita 

1. INTRODUCTION

Many of the options traded in financial markets are of American type, there-
fore the problem of determining their correct value, according to the noarbitrage 
principles, cannot be overemphasized. In continuous time models and under 
standard hypothesis on the market and on the underlying asset, it has been shown 
(see e.g. Karatzas, 1988; Myneni, 1992) that the arbitrage-free value of the option 
is the solution of an optimal stopping problem.  

It is often impossible to explicitly solve this problem, even in the apparently 
simpler case of American put options in the Black-Scholes model. Many algo-
rithms have been proposed to get an approximated price, in the Black-Scholes 
case, the Cox-Ross-Rubinstein (Cox et al., 1979) method is presumably one of the 
most popular1.

The Cox-Ross-Rubinstein method is a discrete time approximation of the con-
tinuous time market model in the sense that the underlying process is described 
by a Markov chain that weakly converges to the original diffusion. The discrete 
market model is complete, hence, once the Equivalent Martingale Measure is de-
termined, the arbitrage-free value of the American option is found by solving a 
discrete time optimal stopping problem with respect to such a measure. The good 
news is that the solution of the discrete problem can be computed exactly by us-
ing a finite-step algorithm; however, do discrete-time values converge to the con-
tinuous-time one when the discretization’s interval gets smaller? 

The last question, although carefully addressed by the general theory of con-
vergence of stochastic processes (see e.g. Kushner and Dupuis, 1992), has been 
neglected by the more specific financial literature. As Duffie (Duffie, 1992, page 
211) wrote in 1992: “A largely unstudied issue is the convergence of this algo-
rithm to the associated continuous time optional stopping problem characterizing 
the American security arbitrage free value”. In 1994, Amin and Khanna (Amin 
and Khanna , 1994) analyzed the problem in a financial setting2. This paper is a 

1 More recently a novel approach, based on Monte Carlo simulations, and well suited for more 
complex models, was proposed by Longstaff and Schwartz (Longstaff and Schwartz, 2001). 

2 A more recent contribution to this problem is due to Mulinacci and Pratelli (Mulinacci and 
Pratelli, 1998). 
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further attempt in that direction, providing sufficient conditions for convergence, 
with results that can easily be applied to most of the approximating methods em-
ployed in every day practice. 

I will consider contingent claims whose payoff is more general than that of the 
classical American options, so that my results will hold for more sophisticated 
claims (like exotic options), too. Amin and Khanna make slightly different as-
sumptions: sometimes they are more general, sometimes more restrictive. Since 
we are following a different approach, we differ in several important points that 
will be carefully noticed. Differences and similarities between the two approaches 
will be remarked along the way.  

The rest of the paper is as follows. In Section 2 a continuous time market 
model is introduced. Here it is assumed that the market is constituted by d divi-
dend-paying assets whose prices follow a d dimensional diffusion St and a “money 
market account” Bt with a stochastic interest rate. Such a model is fairly general 
and contains as a particular case the Black-Scholes one: it is just a little more gen-
eral than the one proposed by He in He, 1990. The Equivalent Martingale Meas-
ure is determined, and, following Karatzas (Karatzas, 1988), the American con-
tingent claim pricing problem is reformulated as an optimal stopping one.  

In Section 3 a Markov chain approximation of the process St is proposed, 
along with a corresponding optimal stopping problem in discrete time. It is 
shown that the Markov chains converge weakly to the diffusion St, while the solu-
tions to the discrete-time problems converge to the solution of the continuous-
time optimal stopping problem.  

In Sections 4 and 5 it is shown that the methods proposed by Cox, Ross and 
Rubinstein and by He satisfy the hypothesis given in Section 2 and therefore lead 
to convergent algorithms. This will prove that both methods provide a correct 
approximation of the exact value of an American option. 

2. THE MARKET MODEL

Let us consider a model of a “perfect market” with continuous time trading 
and no transaction’s costs: for a precise definition of these standard concepts 
see for instance Duffie, 1992. I assume the existence of d assets, whose prices 

at time t are indicated by i
tS  for 1 i d . The d dimensional vector of prices 

1: ( , ..., )d
t t tS S S  satisfies the following system of stochastic differential equations 

( ) ( )t t t tdS S dt S dW  (1) 

along with the initial condition S0=S0. Here Wt is a d-dimensional Brownian mo-

tion with respect to a probability space ( F,Ft,P) and Ft is the filtration generated 
by it. I also assume that (x) and (x) are continuous functions from Rd to, re-
spectively, Rd and Rdxd, satisfying global Lipschitz and linear growth conditions: 
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( ) ( ) ( ) ( )x y x y K x y  (2) 

2 2 22( ) ( ) (1 )x x K x  (3) 

for any x, y Rd, K being a constant (independent of x, y) and is a norm in Rd

or in Rdxd. Moreover, I assume that (x) is a nonsingular matrix for all x and, for 

any v, x Rd, there exists , a positive constant such that 

2
( ) ( )T Tv x x v v  (4) 

where the superscript T means transposition. 
It is well known (see e.g. Karatzas and Shreve, 1987; theorem 5.2.9) that such 

hypotheses are sufficient for strong existence and uniqueness of the price process 

St, for 0 t , that is, for a given probability space ( F,Ft,P) and Brownian 
motion Wt, there is a unique process St satisfying (1). 

Let Bt be the d+1-th security, called the Money Market Account indicating the 
value at time t of one currency unit deposited in a bank account at time 0 with 
interest rate ( )r  that is a function of time and possibly, of the vector of asset 

prices St. The money market account Bt is the solution of 

( )t t tdB B r S dt  (5) 

where r(x) is a strictly positive continuous and bounded function from Rd to R.
Let us set B0=1 as initial condition. 

To complete the setting let us introduce the function (x) Rd to denote the 

continuous dividend yield, i.e. ( ) i
i t tS S dt  is the dividend paid by stock i in the interval 

(t,t+dt). It is assumed that, for all x and i:

0 ( ) 1i x

An American Contingent Claim (ACC) is a security that can be exercised at any time 
t between 0 and its expiration time T and whose payoff at a time  is 

0
( ) : ( ) ( )uP k S du g S  (6) 

where k(x) and g(x) are positive, continuous functions form Rd to R. Moreover, 
they are assumed to satisfy a uniform integrability condition, i.e., for some  > 1 

0

sup ( )
t T

E P t . (7) 

The uniform integrability condition (7) is necessary to obtain a finite fair price for 
the ACC (see Karatzas, 1988). 
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This definition of ACC includes, as particular cases, American put and Ameri-
can call options. This general definition, however, will allow us to consider some 
exotic options (e.g. options whose payoff depends on the path of the underlying) 
as well. In practice, the possibility of early exercise is more important for exotic 
options than for others “vanilla” options where the difference from the prices of 
the corresponding Europeans is often negligible. 

To determine che artitrage-free price for the ACC we need to construct an 
Equivalent Martingale Measure for our market model. Following the lines of Girsa-
nov’s Theorem, let’s define the Rd-valued process 

1( ) : ( ) ( ( ) ( ( ) ( )) )x x x x r x x . (8) 

The real valued process 

2

0 0

1
: exp ( ) ( )

2

t tT
t u u uZ S dW S du  (9) 

is a P-martingale. For any finite T>0 we can define a probability measure on the 
sigma-algebra FT as 

( ) : ( )T AQ A E Z I               TFA .

Then P and Q are mutually absolutely continuous and 

( )
t

t t uo
W W S du

is a d-dimensional Brownian motion on ( F,Ft,Q). In the financial literature, Q is 
usually called Equivalent Martingale Measure because it is equivalent to the original 

measure P and the discounted (ex-dividend) price processes ( ) ( )i t tS r Si
tS e  are 

martingales with respect to Q.
The stochastic dynamic of St under the measure Q is given by 

( ) ( )t t t tdS b S dt S dW . (10) 

where 

( ) : ( ( ) ( ))t t t tb S S r S S .

Let V(t,x) be the no-arbitrage price at time t of the ACC when St=x. Then Karat-
zas (1988), theorem 5.4, shows that 

0,

(0, ) sup ( )Q
x

T

V x E P  (11) 
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where [0, ]T  is the set of stopping times with values in [0, ]T , Q
xE  is the opera-

tor of expectation with respect to Q when S0=x and ( )P  is the claim’s payoff 

discounted at time 0, i.e. 

0

( ) ( )
( ) : u

u

k S g S
P du

B B
 (12) 

To find the arbitrage-free price of an ACC one has to solve the optimal stop-
ping problem (11). This, in general, does not have a closed form solution, al-
though there are important exceptions, like, for instance, the case of an American 
call option written on a non-dividend-paying underlying asset. In fact in this case 
it can be shown that early exercise is never optimal and the problem is easily 
solved. For most of the other cases one has to resort to some kind of approxima-
tion.

3. A DISCRETE TIME APPROXIMATION’S METHOD

To determine an approximation for the value of the ACC expiring in T we will 
proceed by discretizing the time interval [0,T] into small intervals of length h.

We indicate with 0{ }h
n nS  the Markov chain approximation to the diffusion St.

h
nS  is a d-dimensional process defined on a probability space ( h h Qh); its tran-

sition probability at step n is indicated by h
nQ , while 0{ }h

n nF  is the filtration gen-

erated by it. 
Let bh(x); ah(x) be measurable functions on Rd such that, for any compact set 

K Rd,

( ) ( ) (1), 0hb x b x o h  (13) 

( ) ( ) ( ) (1), 0h Ta x x x o h  (14) 

uniformly for x K.

The process { }h
n nS  must satisfy the following condition: 

1( ) ( )h h h h
n n n nE S S b S h  (15) 

1( ) ( )h h h h
n n n nVar S S a S h , (16) 

where En and Varn are the mean and variance operators with respect to h
nQ .

Equations (15) and (16) state that the local mean and variance of the Markov 
chain and of the diffusion process are close to each other, for this reason in the 
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literature (see e.g. Kushner and Dupuis, 1992) they are sometimes referred to as 
local consistency conditions. Amin and Khanna (1994) impose conditions that are very 
close to these, only a bit more restrictive because they try to approximate a more 
general diffusion process. 

To insure convergence to continuous sample paths one has to impose that 

1
0 ,

limsup 0h h
n n

h n

S S  (17) 

where  is an event in . Note that conditions (15), (16), (17) do not uniquely de-
termine a Markov chain. See Kushner and Dupuis (1992) for a construction of 
some chains satisfying them. 

The approximation h
nB  to the process for the money market account Bt is 

given by the iterative formula 

1 (1 ( ))h h h
n n nB r S B h  (18) 

along with the initial condition : 1h
nB .

For : [ ]N T h , let [0, ]h N  be the set of h
nF -stopping times assuming values 

between 0 and N. The optimal stopping problem for the Markov chain h
nS  that is 

a natural translation of problem (11) is 

0
0,

(0, ) : sup ( ( ))
h

h h

v N

V x E P v  (19) 

where 0
hx S  and 

1

0

( ) ( )
( ) :

h hv
h n v

h h
n n v

k S h g S
P v

B B
 (20) 

is the discrete time version of (12). 

Remark 3.1 Is is not necessarily true that Vh(0,x) is the arbitrage-free price of an 

American option in the discrete time market model described by h
nS  and h

nB . In 

fact this holds only if the process 0{ ( )}h
nP n  is a h

nF -martingale. To get such a 

nice property one should follow the construction of the discrete model as given 
by He (1990); we will see later that it also satisfies our conditions. 

It is well known from the theory of optimal stopping problems in discrete time 
(for a nice exposition in a financial setting see chapter 2 of Lamberton and 
Lapeyre, 1992) that the exact solution can be determined by a finite iterative 
method solving 
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1( 1, ) ( )
( , ) max ( ),

(1 ( ))

( , ) ( )

h h
h n n

h

E V n S k x h
V n x g x

r x h

V N x g x

 (21) 

In words (21) states that the value at time n of an ACC is given by the best ex-
pected result between two opportunities: immediately exercise or hold. Moreover 
it provides an easy algorithm for computing Vh(0,x) by moving backward (in 
time) along the chain. 

In order to prove convergence of Vh(0,x) to V(0,x) we first need to show that 
the discrete process is a nice approximation to the diffusion, to this end we will 

construct a continuos time interpolation of the Markov chain h
nS . To do it we 

will use random jump times h
n  as in Kushner and Dupuis (1992). 

Let us set 0 : 0h  and let { }h
n n  be a real valued Markov process independ-

ent of 0{ }h
n nS , such that 

1:h h h
n n n n=1,2,...

have an exponential distribution with mean h, that is 

/( | ) 1h h h t h
n nQ t e n=1,2,...

Let Nt be the number of jumps from time 0 to time t, that is a Poisson process 
with parameter 1/h. We define the continuous time approximating process as

( ) :
t

h h
NS t S  (22) 

( )hS  is a process whose sample paths are Right Continuous with Left Limits 

(RCLL): in fact its trajectories are constant between jump times and take the val-

ues of the discrete time process { }h
n nS .

We also define a continuous time version of the money market account proc-
ess by setting  

( ) :
t

h h
NB t B  (23) 

Remark 3.2 Stochastic processes with jumps have been used several times in 
the Mathematical Finance literature: perhaps the closest model, in spirit, with the 
one we have just introduced is Dengler and Jarrow’s (1993). They show that a 
process with two independent and exponentially distributed jump times with con-
stant jump amplitudes, weakly converge to the Black-Scholes diffusion. 
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Here we use ( )hS  only for proving convergence: it doesn’t play any role in the 

algorithm. 

Of course the first step in proving convergence is to show that the process 

( )hS  is weakly convergent to the original process St with respect to the equiva-

lent martingale measure Q: the main tool we are going to use here is a version of 
the Martingale Central Limit Theorem as stated by He (1990), Lemma 1), that is 
just a translation of theorem 7.4.1 of Ethier and Kurtz (1986). 

Theorem 3.1 The RCLL process ( )hS  converges weakly to the process St with 

respect to the equivalent martingale measure Q.

Proof. Let t [0,T], suppose tN n , ( )h h
nS t S x . We denote by h

t  the 

sigma algebra generated by Sh(u), for tu0 . Let h
tE  be the expected value 

conditioned to h
t .

By independence we have: 

1( ( ) ( )) ( jump on[ , ]| ) ( ) ( ), 0h h h h h h h
t t n n nE S t S t Q t t E S S o

(24)

From the definition of h
n

( jump on[ , ]| )h h
tQ t t /1 he / ( ), 0h o  (25) 

By substitution of equations (15) and (25) into equation (24) we get 

( ( ) ( )) ( ) ( ) 0h h h h
tE S t S t b x o  (26) 

Hence,

0

( ) ( )
lim ( )

h h
h h
t

S t S t
E b x . (27) 

Therefore ( ( ))h hb S t  is the “predictable compensator” of ( )hS t , that is 

0
: ( ) ( ( ))

th h h h
tM S t b S u du  (28) 

is a h
t -martingale (see e.g. Ethier and Kurtz, 1986, Proposition 4.1.7). 

To compute the predictable compensator of the process h hT
t tM M  we use the 

same argument as above, 
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( )h h hT
t t tA M M

0

( ) ( )
: lim

h h T h hT
h t t t t
t

M M M M
E

0

( )( )
: lim

h h h h T
h t t t t
t

M M M M
E  (29) 

where (29) follows from the fact that h
tM  is a martingale. 

From the definition of h
tM  we get 

( ) ( ) ( ( ))
th h h h h h

t t t
M M S t S t b S u du . (30) 

For ( )hS t x  we have (a.s. and uniformly in x)

( ) ( ) ( ( ))
th h h h h h

t t t
M M S t S t b S u du ; (31) 

hence, from (27) 

( ( )) ( ) ( ) ( ), 0
t h h t h h

ht
b S u du E S t S t o , (32) 

where (32) also holds a.s. and uniformly in x. Substituting (32) into (30) we get 

( ) ( ) ( ) ( ), 0h h h t h h
t t hM M S t E S t S t o ,

hence from (29) follows 

( )h h hT
t t tA M M

0

[ ( ) ( )] [ ( ) ( )]
: lim

h h h h h h T
h t t
t

S t E S t S t E S t
E

 : ( )ha x  (33) 

where (33) follows from the same argument used to derive (27). Therefore the 
process

0
( ( ))

th hT h h
t tM M a S u du  (34) 

is a martingale. 
To show convergence we refer to the Lemma 1 in He (1990): point (a) is obvi-

ously true, while (b) follows from (28) and (34). Point (c) is verified because the 

jumps of h
tM  are the same as those of Sh(t) and therefore their amplitude uni-

formly goes to zero as h decreases because of (17). As for the last point, let h
t  be 

the first exit time of process Sh(t) from the sphere of radius r. Then we need to 
show that, for any r>0,
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00
lim sup ( ( )) ( ( )) 0, 1

h
r

t h h h
i i

h t T

b S u b S u du i n  (35) 

00
lim sup ( ( )) ( ( )) 0, 1 ,

h
r

t h h h
ij ij

h t T

a S u a S u du i j n  (36) 

in probability. Equations (35) and (36) hold for the uniform convergence over 
compact sets of bh(x), ah(x) to, respectively, b(x) and a(x).

Let ( , )hI t T  be the set of stopping times h
n T  where h

n  are jump times, 

with tn N . We define an optimal stopping problem for Sh(t) by restricting the 

set of feasible stopping times to ( , )hI t T , for x=Sh(t).

,

( , ) sup ( )
h

h

S h
t

I t T

V t x E P , (37) 

where P  is defined by (12), with Sh(u) and Bh(u) substituting Su and Bu.
Now we want to show that solving the optimal stopping problem for the dis-

crete time process h
nS  is almost the same as solving (37). To do that, we observe 

that, from the principle of optimality (see Kushner and Dupuis, 1992, pg. 44), 

0

1
(0, ) max{ ( , ), ( , ( )) ( ) } (1) 0

1 ( )

h h hS S h S hV x V x E V S k x o
r x

(38)

Using the hypothesis of independence, we can compute an approximation of the 
expected value on the right hand side 

0 1( , ( )) 1 ( , ) ( , ) ( ), 0
h h hh S h S h S hE V S V x E V S o

h h
.

Substituting it into (38) and setting =h, we get 

1

1
(0, ) max{ ( , ), ( , ) ( ) } (1) 0

1 ( )

h h hS S h S hV x V h x E V h S k x h o h
r x h

 (39) 

The optimality equation satisfied by Vh is 

1

1
(0, ) max{ ( , ), ( , ) ( ) }

1 ( )

h h h h hV x V h x E V h S k x h
r x h

.

Therefore we have proved that 

(0, ) (0, ) (1), 0
hS hV x V x o h  (40) 
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Amin and Khanna (1994) do not have to care about such an issue, since all 
their arguments are related to the continuous-time interpolated value function 

(the correspondent of our ( , )
hSV t x ).

Let h be the optimal stopping time for the problem (37), that is 

(0, ) ( )
hS h h

tV x E P ; (41) 

since the family h is tight (it is bounded), from the Prohorov’s Theorem, there 

exists a subsequence nh  that is weakly convergent to some random variable  as 

hn goes to zero. Note that  could depend on the particular subsequence chosen. 
We now want to show that  is a solution to the original stopping problem. 

Let us define a process wh(t) as 

1

0
( ) : ( ( ))

th h h
uw t S u dM . (42) 

Note that the integral can be computed path by path in the sense of Riemann-
Stieltjes: in fact Mh is a process with path of finite variation. Moreover, the jump’s 
amplitude of wh(t) goes to zero as h goes to zero. 

From (34) it follows that the quadratic variation process for t
hM  (see Protter, 

1990, pg. 65, Corollary 2) is given by 

0
[ , ] ( )

th h h h
t uM M a S du ,

therefore, 

[ , ]h h
tw w 1 1

0
( ( )) ( ( ))( ( ( )) )

t h h h h TS u a S u S u du

1 1

0
( ( )) [ ( ( )) (1) ]( ( ( )) ) 0

t h h h TS u a S u o I S u du h

 (1) , 0tI o I h  (43) 

where I is the n-dimensional identity matrix, and (43) holds for the hypothesis of 

uniform convergence of ( )ha  to ( )a  over compact sets. 

Since, from (43), for any h
t -stopping time hv ,

2
( ) ( ) ( )

h

h h h
v h hE w v w v O , 0 ,

then Theorem 9.2.1 of Kushner and Dupuis (1992) states that ( )hw  is tight. Let 

( ( ), )n nh hw  denote a weakly convergent subsequence of ( ( ), )h hw  and let 

( , )tw  denote its limit. From (43) and the continuity of its sample paths, it fol-
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lows that wt is a Brownian Motion. Since ( )h s  is independent of ( )h h
t sw w

for any 0st , it follows that ( )s  is independent of ( )t sw w . Hence we 

can say that  is nonanticipative with respect to wt. Then (see Chapter 8 of Kushner, 

1977) there exists a probability space ( , , , )tF F Q , with a Brownian Motion tw

and a random variable  such that ( , )tw  has the same distribution as ( , )tw .

Moreover, the filtration tF  is generated by tw , hence , being nonanticipative 

with respect to tw , is a tF -stopping time. From (42) we get 

( ( ))h h h
t tdM S t dw ,

hence, substituting into (28), we get the following differential form for Sh(t)

( ) ( ( )) ( ( ))h h h h h
udS t b S u du S u dw . (44) 

Let tS  be the solution of 

( ) ( )t u u udS b S du S dw

with 0 0S S . From the weak uniqueness of (1), tS  has the same distribution as 

tS . Therefore, for an alternative proof of Theorem 3.1, we could now use Theo-

rem 4.3 of Duffie and Protter (1992), to conclude that it is the weak limit of the 

sequence Sh(t). Observe that, unlike , tS  is not sequence-dependent. 

Remark 3.3 The optimal stopping time problem for the process tS  with the 

probability space ( , , , )tF F Q , is equivalent, from the market modeling point of 

view, to the original problem (11). In fact what is fundamental for the construc-
tion of the Equivalent Martingale Measure and therefore for the formulation of 
(11) is that the filtration Ft, that represents the amount of information available at 
time t, is generated by Wt; in this way all the information is carried by the price 
process St. Other particular features of the probability space are not important for 
the model, hence the equivalence of the two problems. 

We can now state the main result 

Theorem 3.2 Let 

0

( ) : ( ) ( )
n

h h h
i n

i

P n k S h g S

be uniformly integrable (with respect to h), for all n, Nn0 , then Vh(0,x), the 
optimal value for the discrete problem, converges to V(0,x) as h goes to zero. 
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Proof. Let h be given by (41), then 

0

limsup (0, )h

h

V x
0

limsup ( )h h

h

EP  (45) 

( )hEP  (46) 

 (0, )V x ; (47) 

where 0 0
hx S S  and E  is the expectation with respect to Q . The lim sup in 

(45) is necessary because of the sequence dependency of , (46) follows from the 

uniform integrability of ( )hP  (and hence of ( )hP ) and from the weak conver-

gence to . Equation (47) is a consequence of Remark 3.3 and the suboptimality 
of .

To show the reverse inequality we have to use the fact that h are optimal 
stopping times for Sh(t). Using a result by Shiryayev (1973) (see also Kushner and 
Dupuis, 1992), for any >0, we can choose  such that if we restrict the stopping 
times for the continuous time problem to take only the values { , }n n T  and 

we call V (0,x) the optimal value that we get, then 

(0, ) (0, )V x V x .

Moreover if  is the optimal stopping time under such a restriction, its probabil-

ity law is determined by Q( =0) and by 

( | , , ( 1) ) ( , )s n pQ n W s n n F W p n  (48) 

where Fn is a continuous function, p is an integer number and .

To construct an analogous of  for the approximating processes we proceed 

as follows: let h
k  be the jump times of Sh(t); let’s define 

min{ : }h h h
n k k

k
n

in words, h
n  is the first jump time after n . We can now define, for any h, the 

stopping time h  that takes value on the jump times only and whose probability 

law is given by 

( 0) ( 0)hP Q

and

1( | ( ), , ) ( ( ), )h h h h h h h h
k k k n kP w s s F w p p
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where wh(s) is defined by (42). 

Since h  are h-stopping times that are feasible for problem (37), we get, from 

(40),

(0, )hV x (0, ) (1), 0
hSV x o h

( ) (1), 0h hEP o h

We observe that 1
h h
k k  converges to  in probability. From this and the fact 

that the probability law of h  is a continuous function of wh(t), that weakly con-

verges to wt, it follows that ( , ( ))h hw t  is weakly convergent to ( , ( ))w t .

Hence we have 

0
lim (0, )h

h
V x

0
lim ( )h h

h
EP

( )QE P  (49) 

 (0, )V x  (50) 

where (49) follows from the weak convergence of ( , ( ))h hw t  to ( , ( ))w t  and 

from the uniform integrability of ( )hP . The result then follows from (47) and 

(50).

4. THE COX ROSS RUBINSTEIN APPROXIMATION

In 1979, Cox Ross and Rubinstein (Cox et al., 1979) constructed a discrete time 
approximation of the Black Scholes model 

t t t tdS S dt S dW

t tdB rB dt

Their model is still the most used approximation’s technique to price American 

Options in the Black and Scholes setting. It is given by a binomial process h
nS ,

where n = 1,...,N and h:=T/N is the time interval, defined by recursion in the fol-
lowing way: 

0
hS 0: S  (51) 

1
h
nS

with probability
:

with probability 1-

h
n

h
n

uS p

dS p
 (52) 
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where : exp( ), : exp( )u h d h  and p (0,1). The approximation for Bt is 

given by 

0 : 1hB  (53) 

1 :h h
n nB RB  (54) 

where R:=erh.
The transition probability for the discrete model in the risk-neutral setting is 

given by 

1( ) :h h h
n n n

R d
Q S uS

u d

while the dynamic of the stock price with respect to the Equivalent Martingale 
Measure in the continuous setting is given by 

t t t tdS S rdt S dW .

To check conditions (15) and (16) we have to compute 

1( )h h
n n nE S S  ( 1)h

nS R

 ( 1)h rh
nS e

 ( ),h
nS rh o h  0h

and

1( )h h
n n nVar S S 2 2 2

1 1( ) 2 ( ) [ ( 1)]h h h h h
n n n n n n nE S E S S S S R

2 2 2
1( ) ( )h h

n n nE S S R

2 2 2( ) [1 2 ] ( ),h rh
nS rh h e o h  0h

2( ) ( ),h
nS h o h 0h .

Therefore local consistency conditions (15) and (16) hold. Moreover, since the 
jump size uniformly goes to zero as h goes to zero, we can conclude from Theo-
rem 3.2 that when the Cox-Ross-Rubinstein method is applied to pricing an ACC 
and the uniform integrability condition for the option’s payoff in the discrete pa-
rametrization is fulfilled, then the approximation is convergent to the continuous 
time value. 
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5. THE HE MODEL

In a paper of 1990, H. He (He, 1990) proposed a discretization’s technique for 
general continuous time model based on the idea of preserving the properties of 
completeness for the market model (see Remark 3.1). He considered a security 
market consisting of N risky stocks St and one bond Bt, whose dynamic of prices 
is given by 

( ) ( )t t t tdS S dt S dW  (55) 

( )t t tdB B r S dt . (56) 

Here the probability space and the functions (x), (x), r(x), have the same prop-
erties as in Section 2. 

The discrete approximation is defined on the time interval [0,1] with n equally 
spaced time steps and it is determined by 

1 ( ) ( )h h h h k
k k k kS S h S h S  (57) 

1 (1 ( ))h h h
k k kB B hr S  (58) 

where h:=1/n and k  are independent and identically distributed N dimensional 
random vectors, with mean 0 and variance I (the identity matrix). He showed that 
the discrete model is complete and determined the Equivalent Martingale Meas-
ures Qh.

It is not hard to show that such a discrete approximation is locally consistent 
to the continuous parameter process when both are considered with respect to 
the Equivalent Martingale Measures. In fact it follows from (10) that the dynamic 
of the continuous process under the new measure Q is given by 

( ) ( )t t t t tdS r S S dt S dW

( )t t tdB B r S dt .

For the discrete process, we have 

1
h h

k k kE S S  (1 ( ))h h h
k k khr S S S

 ( )h h
k khr S S ,

that is condition (15). Moreover 

1( )h h
k k kVar S S ( ( ) )h k

k kVar h S

 ( ) ( )h h T k
k k kh S S Var ,

but
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k
kVar h kTQ kE

1 1( ( ) ( ( ) ( ) )) ( ( ) ( ( ) ( ) ))h h h h h h h h T
k k k k k k k kh S S r S S S S r S S

Hence, by substitution, we get 

1( )h h
k k kVar S S  ( ) ( ) ( ), 0h kTQh h T k

k kh S S E o h h

1/2( ) ( ) ( ( )) ( ), 0h h T
k kh S S I O h o h h

 ( ) ( ) ( ), 0h h T
k kh S S o h h

where convergence is uniform if (x), (x) and r(x) satisfy hypothesis of Section 
2. Hence condition (16) also holds. 

This proves that He’s method gives a correct approximation of the continuous 
time value when applied to pricing ACCs. 
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RIASSUNTO

Approssimare il valore esatto di una option americana 

Una option americana è un diritto derivato che può essere esercitato in qualunque mo-
mento prima della scadenza. Sotto ipotesi standard si può dimostrare che il suo prezzo 
arbitrage-free è la soluzione di un problema di tempo ottimale di stop. Solitamente la solu-
zione del problema di stop non ha una forma chiusa. Al fine di pervenire a soluzioni ap-
prossimate sono stati proposti modelli discreti. In questo lavoro si formulano alcune con-
dizioni sul processo discreto per assicurare la convergenza dell’approssimazione al valore 
esatto e si mostra come applicare tali condizioni per controllare la correttezza di alcuni dei 
più popolari schemi di discretizzazione. 

SUMMARY

Approximating the exact value of an American option 

An American option is a derivative security that can be exercised at any time before 
expiration. Under standard hypotheses it can be shown that its arbitrage-free price is the 
solution of an optimal stopping problem. Usually, if the underlying asset follows a diffu-
sion, the stopping time problem does not have a closed form solution. Therefore, discrete 
time models have been proposed to determine an approximated solution. I formulate 
some conditions on the discrete process to insure convergence of the approximations to 
the exact value. I also show how to apply such conditions to check the correctness of 
some of the most popular discretization schemes. 


