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A TEST FOR COMPARING DISTRIBUTION FUNCTIONS
WITII STRONGLY UNBALANCED SAMPLES

Piotr Kulezycki

1. INTRODUCTION

In statistical practice the problem of testing a hypothesis which states that two
independent random variables have the same probability distribution occurs rather
often. In typical applications, especially in the fields of economics and the life sci-
ences, the sizes of the random samples obtained from populations with comparable
distributions are similar, and this fact was the fundamental premise used in con-
structing the classical non-parametric tests (see ¢.g. the textbooks by Fisz, 1763, or
Wilks, 1762). Yet with the expansion of computer technology in modern engineer-
ing, e.g. during work in the on-line regime in automatic control systems, the need
has appeared for statistical inference regarding the equality of two distributions on
the sole basis of one current value of the selected vector quantities, and thus in a
case when one of the random samples is one-element. The present paper will be
devoted to this issue. A new test is proposed based on the kernel estimators tech-
nique and the methodology of order statistics. Simulation investigations indicate
that its properties are more advantageous than in the case of the classical tests fa-
miliar from the literature.

The paper is organized into 5 short parts. In section 2 the form of the proposed
test will be presented. The next two sections, 3> and 4, contain descriptions of the
kernel estimator of the density function and the order estimator of the quantile,
which are used to determine the form of the statistic and the critical set. Final
comments and the results of empirical verification of the test developed here are
found in section 5.

2. THE TEST

Consider the independent n-dimensional random variables X and Y, assuming
that the distribution of the first of them has a density function. Let the random
samples x;, x,, ..., x,, and y (therefore of sizes m and 1) ,obtained respectively from
the above variables, be given. At significance level r, the hypothesis of the equality
of the distribution functions of the variables X and Y will be verified.
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In the proposed form of the test, the criterion for the above hypothesis is the
statistic

A

Sy, %50 %, 00 = Lo (), (1)

where & . denotes the kernel estimator of the density function of the random
i R )

variable X generated on the basis of the sample x,, x,, ..., x,,- The falsehood of the

hypothesis being verified is shown by small values of the statistic S, and so the
critical interval will be accepted in the left-sided form:

A= (~co,d], (2)

where the critical value a is accepted to be the quantile estimator of order # of the
distribution of the statistic S, obtained from the sample S(x,), S(x,), ..., S(x,,) (for
the definition of the quantile, see e.g Fisz (1963); in practice this means such a
real value g that the probabilities of the intervals (- <, 4] and [g, e) amount to »
and 1 - #, respectively).

The next two sections will briefly present the procedures for constructing the
kernel estimator of the density function and the order estimator of the quantile,
which completes the test proposed above.

3. KERNEL ESTIMATOR OF DENSITY FUNCTION
The kernel estimator of the density function of the n-dimensional random vari-

able X, calculated on the basis of its m realizations x,, x,, ..., X,, is defined by the
dependence

mﬂ

Flx) = L det(D)ZK(Dx;”i], (3)
=N ’

where the measurable and symmetrical function F : R” — [0, <) with a unique in-
tegral and a weak global maximum in point O is called the kernel, the positive con-
stant h is known as the smoothing parameter, and D means the n X n-dimensional,
diagonal matrix of the inverses of the variable X's standard deviations

1 bi73 . 1 I ) ' .
}0 =k

while x/ denotes the j-th coordinate of the vector x;. Detailed information concern-
ing the rules for choosing the function K and fixing the value of the parameter h is
found e.g. in Silverman (1986).Most often used in practice is the exponential kernel

Kix) = (2m)"1? exp[- JL;"_} B



A test for comparing distribution functions with strongly unbalanced samples 41

If the density function being estimated is of the class ¢**, and moreover both
this function and its second derivative are bounded, then the value of the smooth-
ing parameter 1S most often determined using the mean square criterion. The ap-
proximate value can then be calculated by assuming the normal distribution of the
random variable X; in this case, for the exponential kernel (3}, one obtains

= ——4 B 1 \1{n+4)
“(Fhiw) (6)

In many applications, it proves to be particularly advantageous to introduce the
concept of modification of the smoothing parameter. The construction of the esti-
mator can then be done in the following manner:

A) the kernel estimator £ is calculated in accordance with basic dependence (3);

B) the moditying parameters s >0 (z=1, 2, ..., m) are stated as

];‘ et 14

(x;) -
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where ¢ denotes the geometric mean of the numbers f(x ), f(x,), . , flx,), given in

the form of the logarithmic equation

7
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C) the kernel estimator with the modified smoothing parameter is defined by
the formula

ﬁm:m@,QMJZ ﬂ/ 7%?. (9)

mh = s \ bs; )

The use of the modification procedure improves the quality of the estimator, but it
also noticeably decrecases its sensitivity to the exactness of the choice of the con-
stant A, Accordingly, in practice this property gives grounds to accept the approxi-
mate value given by dependence (6)

An illustrative description of the above methodology can be found in Silverman
(1986) In particular, proposals arc contained there tor other forms of the matrix
D, different tvpes of kernels diverging from the normal (5), as well as a methodol-
ogy for determining the smoothing parameter when it proves impossible to apply
the simplified [ormula (6). These issues are also presented in mathematicixed form
by Prakasa Rao (1983); a differing concept has been given by Devroe and Gyorti
(1985). A detailed review of the methods used to fix the smoothing parameter is
also presented in the survey paper by Jones and Maron (1996).
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4. ORDER ESTIMATOR OF QUANTILE

In view of the features of the test here proposed, a modified concept of the or-
der estimator, based on the form recommended in the survey paper by Parrish
{1990), will be proposed below for estimating the quantile.

Consider the 1-dimensional random variable Z, its m-element random sample z,,
Z5, ...y %, and a non-zero natural number k no greater than the size of this sample:
1 S k €£m. Let Z, denote the k-th order statistic of the random variable Z (for its
definition see e.g. the textbook by Fisz, 1963; the value of the statistic Z means in
practice the k-th element, in terms of magnitude, of the random sample z;, z,, ...,
z,,). If the size of the random sample m and the order of the quantile R fulfill the
condition

0,5< mR<m—0,5, (10)

then the quantile estimator 4 may be defined by the following formula (Parrish,
1990):

g=05+i-mRYZ +(0,5-i+mR)Z,,,, 11
given that
i =R+ 0,5, 12

where [b] constitutes an integral part of the number b ER. If the support of the
random variable Z is of the form [0, °), then in the case

mR < Q,5, (13)
formula (11) can be supplemented by

g =2mRZ, . (14)
It is obvious, in fact, that in such case

lim g=0 (15)
mR—0"

lim g=2Z = lim g4 (16)
mR—0,5" mR—0,5%

Ultimately, the generalized order estimator of the quantile can be proposed in
the form

. 2mRZ, when R
g = 5

<
0,5+i—-mR)Z, +(0,5~i+mR)Z,,, when0,5< mR<m~-0,5  (17)

where the number ; is given by formula (12).
For the purposes of the test designed here, the random variable Z introduced in
this section should be defined as

(18)

whereas its m-element random sample by



A test for comparing distribution functions with strongly unbalanced samples 43

4 = foo (%)
Ty = X Ym('XZ) (19)
zm = Xjyos X (xm)

The degree of the quantile is identical with the assumed level of significance of
the test:

R=r. (20)

Finally, the quantile estimator (17) obtained above is equal to the test's critical
value introduced by formula (2):

a=q. (21)

In conclusion, it should be noted that, taking into account the levels of signifi-
cance r applied in practice, typically 0,01, 0,05 or 0,1, which in the task at hand
determine - through equality (20) - the degree of the quantile R, conditions (10)
and (13)exhaust all the possibilities actually encountered.

Differing concepts of the quantile estimators can be found in the survey paper
by Parrish (1990), which deals with order estimators, and by Sheather and Marron
(1990), where kernel estimators are considered.

5. SIMULATION RESULTS AND FINAL COMMENTS

The material presented above provides the complete procedure necessary to con-
struct a non-parametric test of significance regarding the equality of the distribu-
tion functions of two independent n-dimensional random variables, in a case where
one sample is one-element. Having obtained the random samples x|, x,, ..., x,, and
y, after assuming the level of significance #, one should succesgively:

A) generate the kernel estimator of the density function f, ., 1n accordance
with the instructions given in section 3: "

a) calculate the value of the smoothing parameter, using formula (6);

h) give the basic form of the kernel estimator (3) along with (4)-(5);

o) introduce a modification of the smoothing parameter, on the basis of algo-
rithm (7)-(9);

B) define the values of the random sample for the distribution of the statistic S
using dependence (19);

C) calculate the quantile of order R (taking into account formula (20) equal to
the assumed level of significance ), applying dependence (17) together with (12);

D) thanks to the results of item (A), deline the form of test statistic (1) and -
on the basis of item (C)- critical set (2), making use of equality (21);

E) from formula (1) calculate the value of the test statistic J}xl, ” (y); if it be-
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longs to the critical set, then the hypothesis of the equality of the distribution
functions should be rejected; in the opposite case, there are no grounds to do so.

The correctness of the results obtained by using the above test has been posi-
tively verified by means of comprehensive simulation investigations. In order to as-
sure a stable outcome with the precision presented below, the results here de-
scribed were obtained by testing from 10.000 to 100.000 samples.

Accordingly, table 1 shows the comparative results of the power of the test here
designed and the classic Smirnov test (see Fisz, 1963, or Wilks, 1962) for a typical
case when the random variables X and Y are I-dimensional and have normal distri-
butions with unit variance and expectations -s and s, that is, Ny{-s, 1) and
Ny(s, 1). (In the case of a one-element random sample, the Smirnov statistic has an
asymptotic (with respect to size m) uniform distribution on the interval {0,5; 1]).
In analyzing the contents of table 1, it should be noted that:

A) the test proposed here holds steady at the assumed level of significance for
smaller sizes of the random sample x, x5, ..., X than does the classic Smirnov test;

B) the test designed in this paper has greater power.

(Even if in one case or another the number of type 2 errors proves to be less for
the Smirnov test, this is always associated with a disproportionately large number
of type 1 errors). Similar encouraging results were obtained for many other tested
distributions, including also asymmetric and "long-tailed"; for an illustration, see
table 2, given for exponential distribution with unit variance and expectations - s
and s, that is, Ey(-s, 1) and Ey(s, 1). It should be emphasized that the Smirnov
test has been characterized as the most useful among the classical tests in the case
considered here of a one-element sample. Indeed, it can easily be observed that
- for example - the series tests popular in the literature (see e.g. Fisz, 1963, or
Wilks, 1962) are in this situation most often completely unsuitable for practical
applications. In their basic form, when the value of the statistic constitutes the re-
ceived number of the series, it can assume only the values 2 or 3, and so the infor-
mation assembled by this method is exceedingly scanty. Also in the case of other
series tests here examined, not so inordinately disadvantageous, e.g. Mann-
Withney (Fisz, 1963; Wilks, 1962), the results were significantly worse than those
presented in table 1. The lack of data which would enable the critical value to be
fixed constitutes a serious hindrance to the widespread application of the popular
tests of significance for the case of a one-element sample, since these tests do not
take such cases into account; not infrequently the distribution of statistics is given
in an asymptotic form with respect to the size of both random samples, and thus in
a form that is here utterly useless.

The crucial problem in using kernel estimators is the selection of the smoothing
parameter value. It should be underlined that the designed test proved to be only
very slightly sensitive for that value. Table 3> shows the results obtained for the
smoothing parameter h decreased and increased two- and four-fold (!) with respect
to the value given by dependence (6). Thus the power of the test and the minimum
sample size guaranteeing the assumed level of significance undergo only insignifi-
cant changes, for such an extreme differentiation. This very advantageous feature
can be explained by the empirical method of fixing the critical value (by estimating
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TABLE 1

Esmpivical power of: a) the test designed in this paper, b) the classical Smirnov test, for the 1-dimensional
random variables X and Y with normal standard distributions shifted by - s and s, vespectively,
given in percentages; the cases marked with bold are those whew the assumed level of significance v held steady
with 50-percent precision

r=0,01
e s=0 5= §=2
{a) (b {a) (b) {a) (b)
5 3,33 32,75 31,48 76,12 81,29 99,15
10 1,68 17.49 28,77 65,62 83,16 98,23
20 1,52 8,78 30,56 55,25 87,56 97,14
3Q 1,50 3,59 33,94 41,13 93,23 94,67
100 1,49 1,81 34,91 32,42 93,29 91,99
200 1,24 0,92 33,58 24,31 93,61 88,44
500 1,08 1,09 33,01 29,06 93,47 92,29
1000 1,05 1,07 32,61 27,37 93,54 91,71
¥=0,05
m 5= 0 s=1 $=2
{a) (b) (a) ib) (a) (b)
5 10,32 32,75 51,61 76,12 94,06 99,15
10 11,04 17,49 58,55 65,62 97,435 98,23
20 7,44 8,78 56,95 55,25 98,17 97,14
50 5,93 7,67 54,71 54,61 98,18 97,93
100 5,18 5,45 54,21 52,19 98,27 97,64
200 4,84 4,37 54,36 50,31 98,43 97,68
500 5,11 5,07 54,06 51,97 98,43 97,87
1000 5,01 4,89 54,00 51,76 98,44 97,92
r=0,1
m s=90 s=1 s=2
{a) {b) (a) (o) (a) (b)
b) 23,94 32,75 68,78 76,12 98,41 99,15
10 14,97 17,49 66,85 69,62 98,75 98,23
20 12,74 8,78 66,41 55,25 99,06 97,14
50 10,74 10,80 65,64 64,08 99,19 98,90
100 10,08 9,08 65,44 62,31 99,33 98,88
200 9,71 9,15 65,43 63,35 99,37 98,94
500 10,25 10,02 65,25 63,84 99,37 99,02

1000 9,69 9,52 65,03 63,92 99,39 99,09
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TABLE 2

Empisical power of: a) the test designed in this paper, b) the classical Smirnov tat, for the 1-dimensional
random variables X and Y with exponential standard distributions (A = 1) shifted by - s and s respectively,
given in percentages; the cases marked with hold are those where the assumed level of significance ¥ held steady
with 50-percent precision

r= 0,01
m s=0 s=1 5=2
{a) (b) (1) (b) (a) (b}
5 5,47 34,70 38,11 71,19 74,28 95,59
10 3,32 18,98 27,05 52,96 67,34 91,55
20 2,42 9,73 20,18 3309 63,25 83,76
50 1,63 4,06 18,22 14,11 66,76 63,15
100 1,48 2,13 15,28 7.27 65,70 45,50
200 1,31 1,06 13,25 3,72 63,19 26,58
500 1,15 1,16 12,02 4,22 60,03 32,57
1000 1,05 1,03 11,55 3,61 58,22 27,46
r= 0,03
# =0 g1 §=2
(a} {b) {a) (b {a) {b)
3 10,89 34,70 54,82 7119 87,26 93,59
10 9,82 18,98 33,28 52,96 94,11 91,53
20 7,39 2,73 52,10 33,09 96,86 83,76
30 5,97 7,9 44,79 28,83 98,77 90,93
100 5,50 6,02 42,29 21,55 99,98 90,92
200 5,09 4,94 40,60 18,17 100,00 91,82
500 5,03 5,27 39,53 18,97 106,60 97,85
1000 5,04 5,04 39,34 18,43 100,00 99,04
¥ O,l
2 su () s 1 $=2
(a) (b (a) (b {a} ik
3 21,91 34,70 71,82 71,19 97,78 95,59
10 14,06 18,98 74,89 52,96 99,08 91,55
20 12,18 9,73 74,97 33,09 99,96 83,76
50 10,74 11,94 75,23 42,80 100,00 98,24
100 10,37 2,94 75,40 36,36 100,00 99,21
200 10,17 9,79 75,76 36,78 100,00 99,95
300 16,12 10,00 75,16 36,99 100,00 100,00

1000 10,07 9,89 74,54 36,97 100,00 100,00
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the quantile), which prompts a sort of self-adaptation of tlie procedure. This posi-
tive property was precisely the reason for the earlier forcing of an approximate for-
mula (6)instead of the highly sophisticated selection rules suitable Tor use in other
applications of kernel estimators (seeJones and Maron, 1996).

The data displayed in table 1 can also be used to ascertain the minimal size of
the random sample that should be obtained from the variable X before applying
the test designed in this paper, i e. the smallest permissible value m. It results from
the above data, then, that the test proposed here guarantees the assumed level of
significance at the minimal size of the sample m,,,,,, given by the approximate de-
pendence

m =1 (22)

min ¥
Table 4, in turn, shows the minimal size of the random sample M(x) assuring the
10-percent precision of tlie kernel estimator of a density function at the zero point
{or the standard normal distribution, depending on the dimension of the investi-
gated random variables # (Silverman, 1986, p. 93). Thus in cases of greater
dimensionality, formula (22)may be generalized to

1 M(n) _ Mn)

r ML) T dr

(23)

min

Simulation tests have confirmed the correctness ot the criterion formulated in
this way In interpreting tlie above dependence in conjunction with the contents of
table 4, attention should be drawn tn the very rapid increase in the requisite sam-
ple size in tandem with the increase of the dimensionality # This property, as a
general characteristic of kernel estimators, is of course transmitted ro their applica-
tions in the case ot the test proposed, tortunately onlv in linear proportion.

The test conception here presented has been applied to the task of fault detec-
tion in automated sy stems working in the on-line regime (Kulezycki, 1998) in gen-
eral outline. the compared random variables X and Y characterized respectively tile

TABLE 4
Minimal size of the vandom suwmple assurmg Wi-percent procision
of the kevnel estimatoy of the density function at the zero point
foi the n-dimensional standavd novmal distribution (Sifverman. 1986 p. 93)

n Miz)
i 4
2 19
3 67
4 223
3 768
6 2790
b 10700
8 43700
9 187000

10 B42000
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correct and current operating conditions of the device being supervised. (In prac-
tice no limitations occur on the size of the random sample obtained from the vari-
able X, whereas in view of the requisite speed of operation of the fault detection
system, the random sample obtained from the second variable Y should be one-
element ) In a case when the hypothesis of the equality of the distributions of the
random variables X and Y is rejected, one inters device malfunction. The test de-
signed in this paper was fully satisfactory under conditions of practical application
in such a task of automatic control.

Polish Academy of Sciences, Systems Research Institute PIOTR KULCZYCKI
Warsawe, Poland
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RIASSUNTO

Un test per il confronto di funzioni di distribuzione in campioni fortemente shilanciati
L'articolo presenta un test non parametrico per saggiare uguaglianza di funzioni di di-
stribuzione di due variabili indipendenti #-dimensionali, sulla base di campioni di cui uno
~con un solo elemento. Per risolvere questo problema sono stati usati stimatori Kernel ¢ stati-
stiche dordine. Viene presentata una procedura per i calcoli numerici,

SUMMARY

A test fur comparing distribution functions with strongly unbalanced samples

The paper presents a non-parametric test of significance regarding the equality of the dis-
tribution functions of two independent n-dimensional random variables, on the basis of sam-
ples, onc of which is one-element. Kernel estimators and order statistics have been used to
solve this prablem. A fully elaborated procedure is provided for numerical computations.



