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O N A LINEAR M E T H O D IN BOOTSTRAP CONFIDENCE INTERVALS

Andrea Pallini

Theoretical work has established that the bootstrap (Efron, 1979) can be ap-

plied to the construction of non-parametric confidence intervals in various ways. 

Bootstrap percentile-t confidence intervals may behave better than classical asymp-

totic confidence intervals (in terms of coverage error), for relatively small sample

sizes Bootstrap percentile-t confidence intervals require asymptotically pivotal 

quantities, where the asymptotic variance is estimated from each bootstrap

resample. Further enhancements may be produced by asymptotic corrections and

adjustments of specific terms in the empirical Edgeworth expansion, which rigor-

ously explains the asymptotic behavior of bootstrap percentile-t confidence inter-

vals, as n -. See DiCiccio and Romano Hall chapter 3 , Efron

and Tibshirani chapters 13, 14 and 22, Shao and Tu chapter 4,

DiCiccio and Efron (1996) and Davison and chapter 5 .
Focussing on smooth functions of means (cf. Bhattacharya and Ghosh, 1978; and

Hall, chapters and 3), most of these corrections and adjustments are difficult

to implement, beyond the univariate mean example. One needs accurate estimates of

the bootstrap mean, variance, symmetry and kurtosis of asymptotically pivotal and

non-pivotal quantities, where the numerator and denominator are typically functions

of several univariate means. A powerful linear approximation method for asymptoti-

cally pivotal and non- pivotal quantities can be a good answer to overcoming these

difficulties. The classical delta method (cf. Rao, 1973, chapter 6; and Serfling, 1980,

chapter 3) considers the first term in Taylor expansions of smooth functions, 

which is generally of order (with asymptotically pivotal quantities) or

(with non-pivotal quantities) and cannot be used to improve (in terms

of coverage error) over bootstrap percentile-t confidence intervals. The linear method

we wish to study in section below is based on an approximating rule, which simply

rewrites a smooth function as a sum of n independent and identically distributed

smooth functions, with an error of order or This set of smooth

functions can be imagined as an original random sample to be resampled, from which

it is simple to obtain the bootstrap mean, variance, symmetry and kurtosis of their

sample mean, which is indeed the basic linear approximation.



Let X = {V,, V,) be a random sample drawn from an unknown d-variate ran-

dom variable V with unknown population distribution function and mean

p = Let us construct a two-sided bootstrap confidence interval for a

real-valued population characteristic of interest, where g : R' is a

smooth function and E The confidence interval is to be constructed from 

the bootstrap distribution of the sample estimate where = .

Relevant examples are provided and studied in section 3 .
d

Let be the I-th component of any vector E . W e set = -

. . - g,, = .. The asymptotic variance of

8 is

We write to indicate a natural estimate of which follows by sub-

stituting p with and p,,,, with its sample counterpart A classical confidence

interval may be obtained from the asymptotic Normal distribution of the

quantity

Let X " = ..., be a generic bootstrap resample, drawn with replacement

from the original sample X . We denote by and the bootstrap version of

and 6 , computed from X * , not from Define = - to be the

bootstrap version of (2 ) .Two-sided bootstrap percentile-t confidence intervals with

nominal coverage a are defined as

where + and is the bootstrap yuantile, which is (cf. Hall, 1986) the

exact solution to the equation X ) = Bootstrap percentile-t confidence 

intervals (3 ) typically require Monte Carlo simulation of a sufficiently large number

m of independent resamples. Ignoring simulation error, their coverage error is

known to be of order that is P(8 E - =

Better two-sided bootstrap confidence intervals include Edgeworth-corrected in-

tervals, intervals constructed after removing skewness by a suitable transformation, 

bias-corrected, accelerated-bias-corrected confidence intervals and short confidence 

intervals. See section 4. Specifically oriented techniques have been proposed for 

simplifying the use of these and other asymptotic bootstrap confidence intervals.

See, for instance, and Efron (1992)and and Young (1995). Here, we

aim to obtain a simple and more flexible way of constructing the aforementioned

bootstrap confidence intervals. In section 4, we start the new linear approxi-

mation method for pivotal and non-pivotal smooth functions of

means proposed in section 2 . Bootstrap cumulants are easily approximated, without 

needing Monte Carlo simulation. The linear approximation method reproduces
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achievable coverage errors of the asymptotic bootstrap confidence intervals in

terms of order, which can be from to according to definitions in sec-

tion 4. In section 5 , we discuss results of a simulation study on empirical coverage 

probability with the examples in section 3.

A LINEAR

In order to construct bootstrap confidence intervals, we need to represent as-

ymptotically pivotal quantity as a unique smooth function of means which is a

function of both the numerator and denominator 6 in (2). Domain of .
becomes a vector of means, obtained by extending every random vector V, in sam-

ple X , i = l, . . ., from the dimension d to a specific dimension e, where e d. In

particular, we need to define vectors X, with d components =

= ..., d, and the remaining - d components, which equate specific transfor-

mations of V,, l , (cf. Bhattacharya and Ghosh, 1978; and Hall,

chapters and 3). See examples in section 3 below. For brevity, we still use X to

indicate the original 'sample' consisting of vectors X, with dimension = 1,

that is {X,, . . X,}. Accordingly, we set p = and p,, = - ...

(X, - With this notation, we assume that there exists a known smooth func-

tion of means h, which defines the asymptotic variance as = The natu-

ral estimate of may be written as 6'
Let A : R' be the smooth function satisfying = 0, defined as

= - where is the zero element in RC
and E R'. Asymptoti-

cally pivotal quantity given by(2)may be written as

W e assume the following conditions.

Function A has bounded continuous derivatives of order in a

hood of p, where

We may write partial derivatives of A as

where = e, and = It is easy to see that

The sample distribution of is asymptotically Normal as (cf. Kao,

1973, section and Serfling, 1980, section 3.3). We also assume that the
2tion of admits an expansion. We let = + ... + .

Briefly, what follows is required.



Condition holds if F has a non-degenerate absolutely continuous component.

Details for the validity of the Edgeworth expansion, under conditions (C l ) ,

and condition are fully explained in chapter See also

Bhattacharya and Ghosh Theorem 2, and Theorem 5.18.

W e denote by and the distribution function and the density function of a

standard Normal variate.

In Theorem 2.1, it is shown that the cumulant K; of has the

power expansion

where the constants depend on distribution F, for i = 2, ..., with

= and =

The Edgeworth expansion of the distribution of is

u E and

in u are of degree at most - They are an odd or

even according to whether is even or odd, respectively.

The linear

A preliminary standardization for location of original sample observations is

necessary for the linear approximation method we want to propose. It is
n

ient to take = X, - p , i = We let = . Observe that, trivially,

+ p) and + = Asymptotically pivotal quantity given by (4)

can be rewritten as

For every = 1, n, we define A,= + p) = (G, - where

= + and H, = + is so that H, Under condition (Cl ) , a

linear approximation to given by l) then is

Quantity approximates to with an error of order
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Standardizing the original observations in sample X for location p characterizes 

an invariance property which theoretically justifies the use of as a convenient

approximation. An asymptotically pivotal smooth function of means can be written

as a sum (mean) of independent and identically distributed smooth functions, 

with an error of order Keeping in mind that = = 0, linear

approximation is obtained using Taylor expansion of function = + p)

around p and approximating to it with the sum of Taylor expansions of functions

A, = + around p, i = . . , n. Appendix 7.1, (12) and (13) are proved 

with details. 

The essential point is that function A,, for every = . . ., n, has partial derivatives

a,, of order which equate partial derivatives (5 )of function A of the same or-

der, for every = l , ..., r , . From another theoretical perspective, compared with
n

= + p), linear approximation defines by transformation A,
-1

a different coordinate system with + p)-coordinates instead of + p)-coor-

dinates, u E R
C
, without varying order partial derivatives a,, .

Recalling it is easy to see that as is asymptotically Normal as

1973, section and 1980, section 3). I t follows that

u E (cf. Khattacharya and 1978; and section 2.7); in particu-

lar, expansions of disagree only in terms of order or

S ansmaller. From it that given (12) thus 

expansion parallel to with the same constants K , , ,
Appendix 7.2, for a different

The random sample is . . . , X,}, where observations X, have di-

mension c = is for n. Here, the random variable

under study is the first component = which has dimension l , while the

second component = helps to define the sample variance of The asymp-

totically pivotal mean of the variable function of

{E"' - %(")')li'. may also 

as T,, = + p ) ,



where = Approximation W, = is defined by
t=l

+

A, =
+ +

3.2. variance

The random sample is X = {X,, X,}, where = (V,, V,',

Here, dimension e = 4, while dimension d = 2; = V, and = are the com-

ponents which define the variance of the univariate random variable Recalling

(4) and + p) + - + p), the asymptotically pivotal variance 

T, = + p) of the random variable V, is defined by 

Approximation W, is obtained by = - where

3.3. Ratio of means

The random sample is X = {X,, where vector observations have di-

mension e i = I, n. Suppose that

ranges in a set of positive values. Note that dimension d = 2; = and

= are the components, which define the ratio of means of the marginals

and of the bivariate random variable Recalling (4) and

+ p) = + p) - + p), the asymptotically pivotal ratio of means

= + p) is defined by 

and + p), obtained from Variance and covariance estimates and

= in can be written as in Example That is,
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Derivatives and in may be set as

We also let = + p), after considering as any term in a smooth

function of means + p) to be approximated linearly. In particular,

= + - + ,

= + ,

= + - + +

Approximation = is defined bp A, ={G, - where

with defined in and

To define an pivotal correlation coefficient = + p), a

random sample X of vectors X,, i = 1, with = 17 components is needed. The

= components defining the correlation coefficient are = =

= = The = components are and

the + distinct products = 1, d. Recalling (4) and

+ p) = - + p), obtain the pivotal correla-

tion = + p) between the marginals and of the

random variable by



n

and + p ) , from Approximation = A, is defined by

A, = -

and H, given by (18). In particular, definitions of , = d, d = 5 , may

be deduced from (17). Derivatives p ) , = are

With this example, property O is always fulfilled, if we let + p )

+ and, finally, we determine as H, = +

BOOTSTRAP CONFIDENCE INTERVALS

The linear approximation given by ( 1 2 ) is easy to apply with the bootstrap.

We consider the original sample X in place of the unknown distribution function F
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and substitute the means p, and with the sample mean and the bootstrap

means and respectively. Denote by the bootstrap version of Recall-

ing it is convenient to write as the normalized sum (mean)

n

= + Hereafter, the basic idea is to apply the bootstrap to the set of

smooth functions B,}, which are independent and identically distributed

random variables. We denote by the bootstrap cumulant of obtained by

assigning mass to each function i = Since is embedded in mean

= the j-th cumulant of is such that = where the j-th

cumulant admits the expansion

= + + .

Considering it follows that = + and consequently that

= + Bootstrap estimate o X ) admits the em-

pirical Edgeworth expansion

where u E and and are the bootstrap counterparts of polynomials

and given (9 )and We approximate polynomials and

by replacing constants and in (9)and with , -

and respectively, with errors of order and only affecting terms of order

or smaller in (21).See Appendix 7.3 , for proofs of and (21).

Polynomials and u [W
1

, can be used to determine various well-

known bootstrap refinements on two-sided bootstrap confidence inter-

vals (3) with nominal coverage a Theoretical coverage errors are guaran-

teed straightforward applications of the bootstrap linear approximation

given by (19).See Appendix 7.4.

Let be the of the standard Normal variate, that is

= where = ( l and a E

4.1. Explicit Edgeworth correction 

A classical asymptotic confidence interval can be corrected in a standard fashion

(cf. Hall, section using the polynomial U in

(21).The Edgeworth-corrected (EC) two-sided bootstrap confidence intervals may

then be defined as

= - + - .

coverage error of two-sided confidence intervals shown to be

- a = See Appendix 7.4 .



4.2. to

We start from the linear approximation given to define the

transformed statistic suggested in Hall section 3.9, and Hall 

W e let = - Then, f (U;) = - + +
admits an Edgeworth expansion in which the first term is of order

not Note that equation = R , has a unique solution, 

f = - - - Set =

u The transformation-based (TB) two-sided confidence intervals 

can then be obtained as

= - hi,, 8 - ,

where, inversion of expansion -

- approximates the bootstrap- I
so that = The coverage error is a = O ( n See

, dix 7 .4 .

The bias-corrected (BC) and the accelerated bias-corrected (BC:,) two-sided

bootstrap confidence intervals of Efron (1987) can be obtained as follows (cf.

Konishi, 1991; and section We the asymptotically

pivotal statistic D, = - as D,= + - Under a condition parallel to

( C l ) ,the linear approximation to D,now is

=

where G, = + that

of (24)and (25)are similar to in 7.1 and 7.2.

Recalling (l), denote by and polynomials of the same analytical

as and given by (C)) and except for the fact that they are 

derived from 

= n

from Under conditions and polynomials and E

characterize an Edgernorth expansion parallel to expansion (X)

chapter 2). Let us Q, where estimates asymptotic variance 

= and C, - with We define by

and the bootstrap counterparts of polynomials and u E

strap cumulants of C, in and E can be deduced Appendix 7.3.
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Let be the bootstrap quantile, is the exact solution (cf. Hall, 1986) to

the equation I X ) = Set = The bias-corrected

(BC) and the bias-corrected-accelerated bootstrap confidence intervals can 

then be obtained as

where, Cornish-Fisher inversion, = - +

- - approximates the bootstrap so that

We observe that a a = and

a = See Appendix 7.4.

4.4. Short confidence intervals 

Short bootstrap confidence intervals (Hall, 1988; and Hall, section 3.7)

can be defined as

= ,

where and are the minimizers of the interval length + subject to

X ) a. Using approximation it follows that =

= - - - Short two-sided

confidence intervals are given by the solutions = + +
The coverage error is a= See

Appendix 7.4.

SIMIJLATION STUDY RESULTS

5.1. bootstrap linear 

In order to see the effectiveness of the linear approximation given by (19) to

pivotal bootstrap quantities we plot the difference -
from a set of m = 500 independent resamples, drawn with replacement from original

samples, generated from different population distributions. For the univariate mean

(example above) and variance (example 2) we consider original samples from the

Normal distribution of sizes n = 30 and = 25, 100, respectively. For 

the ratio of means (example 3) we generate original samples of sizes = 10, 30 from

the bivariate Folded-normal distribution, with correlated marginals I and

correlation coefficient p = 0.5. For the correlation coefficient (example 4) we gener-

ate original samples of sizes = 15, from the bivariate Lognormal distribution,

with correlated marginals exp and correlation coefficient p = 0.3775. All

these sample sizes represent the ranges chosen below to study the empirical cover-

age probabilities of the bootstrap confidence intervals described in section 4.

Figures 1 and 3 show the good performance of in approximating to



- . From m 500

sizes panel) 30 (right of size drawn Normal

distribution

variance: from m =

sizes 25 (left and panel). Original samples of size drawn from the Normal

distribution.
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- Asymptotically ratio of means: of from m = of sizes

- n 30 Original samples of size Folded-normal

correlation coefficient p 0.5 between

3 pivotal =

sizes n - 15 panel) and = 50 panel). Original samples size

correlation p = 0.5775 between



whereas is the asymptotically pivotal version of the univariate mean and ratio

of means, respectively. Variability around zero of the difference - is very

small. Figures 2 and 4 show a slower convergence of toward as increases,

whereas is the pivotal version of the univariate variance and cor-

relation coefficient, respectively.

5.2. Empirical coverage probabilities

Here, we report on a simulation experiment conducted to investigate the cover-

age properties of the newly-approximated asymptotic bootstrap confidence inter-

vals (Edgeworth-corrected), !transformation-based), (bias-corrected),

(bias-corrected accelerated) and (short) studied in section 4. Empirical

coverage probabilities are estimated from 2000 independent original samples with

different sample sizes n, drawn from various population distributions. It should be

remembered that the new linear approximation method does not need Monte Carlo

simulation. In this sense the bootstrap is exact (without simulation error), being

automatically based on an ideal (infinite) number of Empirical coverage

probability of percentile-t bootstrap confidence intervals is obtained by perform-

ing repetitions of a single simulation round, which consists of m = 1300 inde-

pendent resamples. W e always consider a nominal coverage a = 0.9.

Table reports on the coverage probability of the bootstrap confidence interval

for the univariate mean (example We simulate original samples from population

distributions with various degrees of skewness and kurtosis. W e consider the Nor-

mal (symmetric distribution with no kurtosis) the Chi-square distribu-

tion (asymmetric distribution with no kurtosis), the Lognormal exp dis-

tribution (asymmetric distribution with kurtosis). Note that asymptotic bootstrap

confidence intervals and produce similar and satisfactory

results. The performance confirms the good behavior of as linear approxima-

tion to shown in figure Table also shows the coverage probability of

bootstrap confidence intervals for the univariate variance (example 2). Both classi-

cal asymptotic confidence intervals and bootstrap confidence intervals typically

have a small coverage probability in this case, whereas the population distribution 

is not Normal. Observe in this sense the clear variability of - around 0

shown in (left panel). particular, notice how confidence interval 

gives the worst performance of all.

Table illustrates examples and introduced above. We consider different

population bivariate distributions with different values for the correlation coeffi-

cient p between their marginals. We generate the bivariate Folded-normal

distribution (with correlation coefficient p = 0.5 between the marginals), the

bivariate Lognormal distribution (with correlations p = 0.3775 and p = and the

bivariate Normal distribution (with correlations p = 0.5 and p = Table 3 shows

the coverage probability of confidence intervals for the ratio of means

(example 3). Confidence interval may apparently be preferred to intervals

and In any case, confidence intervals and
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Empirical probabilities confidence

(with coverage = for variunce

mean 08150 0 08320 08360 8180

n = 30 08820 08790 08765 08855 8845 08770

10 07850 0 7955 7940 08165 08135 07935

30 0 08515 08545 08710 08665 08555

n l0 07400 07510 0 7395 0 7700 0 0

30 08050 0 0 7895 08240 0 0

probabilities of two-sided confidence

and

have a good coverage probability with this example (cf. also 3). Table

2 also shows the coverage probability of bootstrap confidence interval: for the

relation coefficient 4). confidence and

outperform intervals , interval tends to have an 

coverage larger than desired nominal level the bivariate Nor-

mal distribution and p = correlation coefficient example proves to be

difficult also for the linear The good performance in

coverage error is possibly the of values (both negative

positive) of the smooth function of means, which makes \L7,, more effi-

cient in estimating of Compare figure for instance, figure 2,

explains the behavior of in approximating variance. In

that case, we have a similar variability, but we have poorer coverage of

in situations.



As can be observed from the present simulation study, at least in terms of cov-

erage error, the linear approximation method can of

simplifying the use of bootstrap confidence intervals and

Such complicated bootstrap confidence intervals are equivalent to asymptotic con-

fidence intervals, simply determined by the bootstrap cumulants of a mean of

smooth functions. 

Software written in (cf. et al., 1988) is available from the Author

on request.

Empirical exponential families as formulated by DiCiccio and Efron (1992) 

serve as an elegant setting for studying application of the linear approximation W,

given by under the mean-value parametrization. DiCiccio and Efron (1992)

introduce these families of distributions to obtain approximations of bootstrap

cumulants of smooth functions of means by numerical differentiation of the

cumulant generating function. See also DiCiccio and Efron (1996). Application of

the bootstrap version does not require this specific procedure to be applied in

empirical exponential families and admits a more direct expression being a

mean) for its cumulant generating function.

Asymptotic iterated bootstrap confidence intervals in Lee and Young (1995)

which are based on the symbolic computation of bootstrap cumulants instead of

bootstrap resampling through Monte Carlo simulation, can alternatively be ap-

proximated by linear approximations W, or Q, given by (12) and (26) as well.

However, a slight increase in coverage error may result with the univariate mean, 

variance and the correlation coefficient examples discussed in sections and

Linear approximations W, and Q, both require a preliminary standardization

for location = of original sample observations X,, i = 1, ..., n. Recall defini-

tions and (26). A standardization for location and scale can be of interest, if

one accepts more difficult definitions for smooth functions and Q, and a sensi-

ble increase in computational burden. Notice that every component in X,

must be transformed into - where = -

= ..., e. O n the other hand, the order of error in approximations W, and Q,

does not vary, as may be deduced from (33)in Appendix 7.1.

The starting point of linear approximations W, and Q, given by (12) and (26) is

analytical, but W, and Q, do not represent an attempt to completely remove 

Monte Carlo simulation from the bootstrap. They behave as means and so they do

not require simulation in order to estimate their cumulants. A comparison with

more classical bootstrap approaches (based exclusively on Monte Carlo simulation),

such as in ought to confirm that W, and Q, are computationally

efficient and easy to run.

Keeping in mind that W, makes important bootstrap confidence intervals feasi-

ble (beyond the univariate mean case), W, may be further improved (in terms of

order of error) by Monte Carlo simulation. Let us write = where is
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given by (11)and R, = T, - = For a fixed we may estimate the
P

tribution of by Monte Carlo simulation of m independent bootstrap resamples,

where m = for some optimal function I, and then recover variability of R, in

the approximation of bootstrap cumulants. The same conclusions hold for D, and

given by with R, = and Q,. This idea may be related to recent

work et al. Lee and Young (1997)and Hall et al. (1999).

Alternative simulation-based bootstrap confidence intervals may be constructed 

substituting analytical approximations and in asymptotic intervals 

(27)and with bootstrap quantiles and estimated from a sufficiently large

number m of bootstrap resamples.

Transformations of the non-pivotal quantity D n able to produce some desired

effect, can easily be incorporated into the linear approximation given by (24) .

For instance, the variance-stabilizing bootstrap transformations of Tibshirani

(1988) (D,) produce the linear approximation = ( g + v ) ) . The use
2=1

of such transformations in bootstrap confidence intervals is discussed, among oth-

ers, in Canty, Davison and
It is sometimes useful to enlarge the domain of a smooth function of means or

consider irregular situations for its application. The linear approximations W , and

given by (12)and (26) is naturally flexible in most of these cases. Recent results 

in Kano for instance, could appropriately be combined with W, in the

present bootstrap context. 

APPENDIX

7.1. Proofs of 2) and (13)

Using the Taylor expansion of = + and = + p) around

= where mean and = - we may deduce

Keep in mind that p = - - and = For = 2 , 3 ,

Cross products and in with

= ..., are zero under expectation. If j 4 , the j-th term in Taylor



expansion of + p) around p is not equal (under expectation) to the term

in Taylor expansion of + p) around p. In particular, it can be observed that

and E {(T, - = Thus, approximation W, differs from by an error 

of order = W, +

7.2. Approximation satisfies (7) with the same constant5 K,,, and

Recall that K,, = 0 and = on and we may conclude that

where = because = 0. Considering we observe that

From it is known that -

= l , holds. Considering we observe that

Following lengthy algebraic calculations, it is similarly seen that has

with same constants and K,, as

Proofs and

Expansion of bootstrap of B, = can be deduced from ex-

pansion by the version + %) of + p) in place

the function + =
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Recall that and are the cumulants of and B , = respectively.

Since is embedded in mean

we observe that where confirms with = and = It

follows that 0 1 = l =
P

= = We define by

and the bootstrap counterparts of constants

and in respectively. Observe that = = 0 , =

1, K,, . Constants and can

thus be approximated by - l ) , and respectively, with an error of

order obtaining (21).

7.4. Coverage of intervals (28) and (29)

Recalling given by we let = + where = -

and + We let = + Notice that and

in expansions (8)and (21)are even functions of R' . Proposition

3.1 in Hall shows that two-sided bootstrap percentile-t confidence intervals 

have a coverage error with expansion - a = - +

A parallel expansion holds for S, = Q, + where Q, is given (26) and

A, = - Considering basic definitions of two-sided bootstrap confi-

dence intervals described in section 4 (Hall, chapter 3; and Hall,

coverage errors of asymptotic confidence intervals

similarly be obtained. In observe that and and

and E can be approximated through bootstrap linear approxima-

tions and with an error of order or smaller.

Dipartimento di statistiche Fortunati"

di Bologna
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proposto un mctodo di approssimazione per di intcrvalli di 

confidenza bootstrap asintotici. Vcngono approssimate pivotali c 

non pivotali, funzioni rcgolari di medic di n indipendcnti ed 

camente distribuite, di funzioni regolari indipendenti

errori rispettivamcntc di I1

re consente dirctta cumulanti bootstrap, considerando l'insieme di n

regolari indipendenti come originale da ricampionare con ripetizione.

SUMMARY

a linear method

linear construction of asymptotic bootstrap intervals is pro-

posed. approximate asymptotically pivotal and non-pivotal which arc smooth

functions of means of n indcpcndcnt and distributed random by using

a of n independent smooth functions of form. Errors are of

and The linear method allows a straightforward

tion set n smooth functions as an

original random sample to he resampled with


