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ON NEYMAN-PEARSON THEORY: INFORMATION CONTENT 
OF AN EXPERIMENT AND A FANCY PARADOX 

Benito V. Frosini 

1. INFORMATION CONTENT OF AN EXPERIMENT

1.1. Ordinal and cardinal information measures 

Given two or more populations or random variables – univariate or multivari-
ate – an experiment, usually consisting of drawing a random sample of elements 
or observations from one of these populations or variables, is aimed at providing 
useful information on the population or variable the sample comes from. In 
mathematical statistics it is common to think of an infinite family of random vari-
ables, indexed by a parameter – uni- or multi-dimensional – whose domain is un-
bounded; controls about assumptions and approximations are of course neces-
sary when transferring the theoretical results to reality. The problem of compar-
ing several possible experiments, concerning the ability of discriminating between 
the parent populations, naturally arises. As for many other decision problems, 
one would dispose of a real valued function, taking values on the real line, able to 
finely discriminate the possible experiments, projected in order to support the 
above decision problem. Such a solution is not practically feasible, at least if we 
want an order preserving function, applied to a large set of random variables 
which are comparable according to a widely accepted criterion. 

One criterion devised by Frosini (1993, pp. 369-370) for the ordinal compara-
bility of distributions, is based on likelihood functions (or LFs). Let ( ; )f x  be 

the LF of given the sample x, and ( ; ) ( , ) sup ( , )R x f x f x  be the relative 

likelihood of given x; for two experiments E1 and E2 (possibly the same ex-

periment), with sample spaces 1S  and 2S , and two samples 1 1x S , 2 2x S , the 

relative likelihood is 1 1( ; )R x  and 2 2( ; )R x respectively. Then a comparison 

between LFs can be established by means of the following definition. 

Comparison of likelihoods: An LF 1 1( ; )f x  with corresponding relative 1 1( ; )R x

is said to be more informative than the LF 2 2( ; )f x with corresponding relative 

2 2( ; )R x , if the following subset relation is satisfied: 
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1 1 2 2{ : ( ; ) } { : ( ; ) }R x c R x c  (1) 

for every 0 < c < 1, with a proper subset relation valid for some c.
This definition is justified by the fact that the set of parameter values having 

plausibility c , given the sample, belongs to a smaller neighbourhood of the 
maximum likelihood estimate (MLE) in the former case than in the latter case. 

Generalizing this definition to every pair of samples 1x , 2x , yielding the same 

MLE, we obtain a partial ordering of experiments. 
Comparison of experiments: Based on the above reference, experiment E1 is said to 

be more informative than experiment E2 if relation (1) holds for every 0 < c < 1, and 

every sample 1 1x S , 2 2x S  producing the same MLE, with strict relationship 

in some case. 
Such an ordinal comparison – as well as other similar criteria – is of course ap-

plicable in rather special cases for a given sample size (Frosini, 1993, p. 370; Fro- 
sini, 1991), giving rise to a partial ordering of the kind “more informative than” 
for experiments sharing the same parameter space. Other partial orderings are 
feasible when embedded into a decision problem: “[the experiment] E is more 
informative than F, if to any decision problem and any risk function which is ob-
tainable in F corresponds an everywhere smaller risk function obtainable in E”
(Torgersen, 1976, p. 186). 

In most cases, nevertheless, it is possible to lean over simple functions, ensur-
ing cardinal comparability; we shall briefly report two such information measures. 
The older one is Fisher’s Information; if ( ; )L L X  is the likelihood function 

for  (uni-dimensional) given the random sample X produced by the experiment 

E, Fisher’s information is defined by 

2 2

2

log log
E EF

L L
I  (2) 

which corresponds to the reciprocal of the variance of an efficient unbiased esti-
mator. When  is multi-dimensional, the generalization of (2) leads to an informa-
tion matrix and inequalities between quadratic forms, scarcely useful for com-
parative purposes (Wilks, 1962, pp. 352 and 378). 

The application of Fisher’s Information requires the fullfilment of very strong 
mathematical conditions, inside a given parametric model. Of course it is not ap-
plicable to any finite set of distributions. 

Another well known measure of information is the Kullback-Leibler measure, 
especially aimed at discriminating between distributions belonging to a given set. 
If the hypotheses H0 and H1 imply probability distributions 0 and 1 , with den-
sities f0 and f1 over the points  of a space , the mean information per observa-
tion from 1 for discrimination in favour of H0 against H1 when H0 is true is de-
fined by 
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(Kullback, 1959, p. 6; 1983, p. 422). Although formal justifications and properties 
are well founded, this information measure lacks in meaning, where the values in 
the right side of (3) cannot be directly connected to probabilities or other charac-
teristics of distributions. 

1.2. The power of a test as an information measure 

One promising property of the Kullback-Leibler information is the following 
inequality, which relates the definition (3) with the error probabilities  and  of a 
Neyman-Pearson test. Let us assume that the space  relates to n independent 
observations of a random variable X,  = (x1 , ... ,xn), and consider a Neyman-
Pearson test with E0 the acceptance region of hypothesis H0 and E1 the accep-

tance region of hypothesis H1 ( 0 1E E ; 0 1E E ). As usual, let  and 

be the error probabilities; if H0 is the null hypothesis, we can put 

1 0( )P E H ; 0 1( )P E H .

If (0 : 1)I  refers to the space  just defined, the following inequality holds (Kull-

back, 1959, p. 74): 

1
(0 : 1) ln (1 )ln ( , )

1
I F . (4) 

( , ) 0F  for 1 ; for fixed , ( , )F  is monotonically decreasing for 

0 1 , or 1 1 , and monotonically increasing for 1 1 ,

or 0 1 . With increasing sample size, and maintaining a constant , we 

expect a regular reduction of , i.e. an increase in the power 1 ; the existence 

of an interval for 1  showing decreasing values of ( , )F  could be disturb-

ing; however, we can observe perfect coherence (although ( , )F  is only a 

lower bound for the information measure) if we refer to unbiased tests, as in such 
cases 1 . Thus, as n increases - with fixed  - we are bound to observe an 

increase in the power 1  from the power  calculable for n = 1, entailing 

increasing the lower bound ( , )F  for the Kullback-Leibler discrimination 

measure.
Now, resuming the observation that the values taken by this measure do not 

transmit any clear operational meaning, and also that no upper bound exists, for 
the same contest it is possible to take a step forwards, or perhaps backwards, 
leaning on the solid support of the power itself (or the complementary probabil-
ity  of the type II error). On the other hand, as back as 1935 Neyman called the 
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attention to the “errors of the second kind” in order to establish a sensible 
evaluation of an experiment; and about twenty years later (Neyman, 1956, p. 290) 
he stressed that “the numerical values of probabilities of errors of the second 
kind are most useful for deciding whether or not the failure of a test to reject a 
given hypothesis could be interpreted as any sort of “confirmation” of this hy-
pothesis”. 

This same viewpoint was taken by Blackwell (1951), and mostly by Lehmann 
(1959). As Lehmann (1959, p. 75) writes, “Let ( )  and ( ) denote the power 

of the most powerful level  test based on X and X . In general, the relationship 
between ( )  and ( )  will depend on . However, if ( ) ( )  for all ,

then X or the experiment (f, g) [X has probability densities f and g under the null 
hypothesis H and the alternative K, respectively] is said to be more informative 

than X ”.
In recent years I have been involved in the assessment of several epidemiologic 

studies, mostly for their relevance in civil and criminal cases; many of them have 
been published in qualified scientific journals. Of course they were not on the 
same footing on many respects, especially concerning sample sizes; the best 
summary for the assessment and comparison of the several “experiments” has 
been the power of these studies; “power quantifies the ability of a particular study 
to detect an excess risk that truly exists” (Beaumont & Breslow, 1981, p. 726). 
For the convenience of disposing of single numbers, as usual in occupational epi-
demiology I assumed a standard  equal to 0.01 or 0.05, and made a comparison 
of the situation of no excess risk for some causes of death (practically, what was 
known for the population at large) with a situation of double (or triple) risk, hy-
pothesized for the particular sample of workers. Considerations of power are of 
utmost importance, because the probability  of the type first error can be fixed 
at will – usually at standard values – and through these one cannot obtain any 
grasp on the information content of the experiment. 

In scientific research no preference should be given to any of the hypotheses, 
thus the equality  seems advisable. In such a case the problem of assessing 

the information content of the experiment leads to clearer solutions. For exam-

ple, if the hypotheses are 0H N 2
0( , ) , 1H N 2

1( , ) , 1 0 ,  and 

are equalized at 

1 0( ) 2
P Z

n
.

For 1 0 10 , and the two values for 10  and 20, Figure 1 shows the be-

haviour of the power (1 1 )  for sample sizes from 1 to 40. As the Kull-

back-Leibler  information (3) equals, in the case at hand, 

2 2 2
1 0( ) /(2 ) 50 /n n ,
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the two Kullback-Leibler information curves are – respectively for 10  and 
20  – (0 : 1) 0.5I n  and (0 : 1) 0.125I n . There seems to be no case for the 

choice of the power 1  instead of (0 : 1)I , in order to get a real and useful in-

formation about the experiments characterized by increasing values of n.
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Figure 1 – Power values for a test regarding the mean of a normal variable, under two hypotheses 
for the standard deviation , for n = 1, ... , 40. 

Some more examples, linked with the epidemiological problems referred to 
above, have to do with a given cause of death, and with distributions of deaths of 
the Poisson type. We can start with a Poisson distribution H1 = Poi(7.5) (with pa-
rameter  = 7.5), comparing it with the alternative H2 = Poi(15), then taking this 
as the null hypothesis and comparing it with H3 = Poi(30), and finally taking 
H4 =Poi(60) as the alternative to H3 (each time doubling the risk). Two  values, 

= 0.05 and  = 0.01, have been considered; as the Poisson distribution is dis-
crete, exact values were obtained by randomization. Crossing the three tests with 
the two  values, we have obtained the corresponding  values in Table 1. 

TABLE 1 

 values for tests comparing Poisson distributions, according to  = 0.05 and  = 0.01 
(exact  values, and corresponding  values, obtained by randomization) 

 Poi(7.5) vs Poi(15) Poi(15) vs Poi(30) Poi(30) vs Poi(60) 

 = 0.05 0.2510 0.0584 0.0024 

 = 0.01 0.4659 0.1691 0.0130 

Contrary to the case of normal distributions with same  – examined above – 
the information measure (0 : 1)I  reveals its very nature of directed divergence 
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when applied to Poisson distributions; in fact, if H0 = Poi( 0) and H1 = Poi( 1), 
we obtain 

0 0 1 1 0(0 : 1) ln( / )I

(Kullback, 1959, p. 73). For the three comparisons in Table 1 we can obtain the 
values for (0 : 1)I , respectively: 2.3014, 4.6028, 9.2056; reversing the order of null 

and alternative hypotheses, the calculation of (0 : 1)I  gives: 2.8972, 5.7944, 

11.5888. A symmetric measure, suggested by Kullback, is simply the sum 
(0 : 1)J (0 : 1) (1 : 0)I I . Also in this case the usefulness to resort to the couple 

( , )  appears crystal clear in order to appreciate the information contents of the 

experiments involved. 

2. A FANCY PARADOX

2.1. Point null hypotheses 

It is not surprising that Bayesian inference and Neyman-Pearson inference, be-
ing based on very distant assumptions and operational characteristics, can pro-
duce quite different results in specific contexts and problems; as the two ap-
proaches give different answers to different questions, it would be silly to make 
comparisons of the answers, without taking into account the fundamental gap in 
questions and assumptions. In my opinion, a sensible comparison can be made 
only with reference to: (1) a specific real context, taking into account all the in-
formation available, (2) a specific question that must be answered (e.g. within a 
case in court, the comparison of two drugs etc.), and (3) the persons that are ex-
pected to make use of the inferential conclusions. In particular, the relevance of 
points (1) and (2) must be evaluated with respect to the fundamental distinction 
between model and reality: when the inference is heavily founded on the specific 
assumptions of the model (which exists only in our minds), the theoretical con-
clusions may scarcely address the questions concerning the real problem. 

A well known disagreement between theory and practice, unfortunately with-
out due warning in most textbooks, regards point null hypotheses; for example: (a) 
the mean of a continuous random variable is equal to 5 (or another exact real 
number); (b) two or more random variables are independent; (c) the distribution 
of a certain characteristic is Normal, or Poisson etc. All such things have non-real 
existence; as for all other applications of mathematics to the real world, one must 
be careful to check the implications of such strong assumptions. A distressful im-
plication of point null hypotheses results as an outcome of the consistency property
usually required for all inference procedures (cf. Frosini, 2001, p. 374): it is well 
known that, if we take a sufficiently large sample, any point null hypothesis is 
bound to be rejected! This should not be surprising, as the chosen null hypothesis 
cannot be true, or at least its truth is impossible to recognize; as the information 
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increases, it is less and less likely to accept the null hypothesis, and this fact is ab-
solutely correct, as the null hypothesis – taken literally – is certainly false (or prac-
tically certainly so). 

All this means that classical tests of (point null) hypotheses are practically ac-
ceptable only for “small” sample sizes, where small is to be deemed according to 
the precision of the random variables involved; when the sample size is small, the 
sampling variability of the test statistic is generally so large as to dominate the im-
precise (being too precise) specification of the null hypothesis. As we let the sample 
size increase, we must acknowledge the growing unsuitableness of the test proce-
dure in order to answer the practical problem in the real world. Among the pos-
sible solutions: (1) avoid applications of such tests in case of large samples, and 
limit to estimation procedures; (2) restate the problem in more acceptable terms, 

e.g. by fixing intervals for parameters: 0 ( , )H a b .

2.2. A Bayesian approach to point null hypotheses 

One feature of the Neyman-Pearson inference for point null hypotheses is that 

no assessment is made of the probability attached to the null hypothesis – and let 

0 0:H . Such a statement could sound obvious, as the N-P approach does 

not have recourse to (usually subjective) probabilities of hypotheses; however, the 
question is not so sharp, being as much obvious that a research worker in an em-
pirical science, who judges appropriate the recourse to N-P approach for a spe-
cific problem, can nonetheless elicit subjective probabilities for the hypotheses at 
hand; and it is quite possible that the null hypothesis is not deemed as most likely. 
For example, in the quality assessment of an industrial product, or in the risk as-
sessment connected to the exposure to a chemical compound, it is perfectly al-
lowed that the reference parameter values under test are not the ones most likely 
(for the specific instance) according to the researcher’s opinion. Thus, the as-
sumption – made by some Bayesian scholars, to be discussed in the sequel – that 

the point null hypothesis 0 0:H  is judged the most likely is just a “mathe-

matical hypothesis” for dealing with a mathematical – not inferential – problem. 

Anyway, although accepting that 0  is the most likely hypothesis, the main 

problem remains: is it reasonable that our researcher attaches a finite value (for 

example 1/2) to the probability 0( )P , when 0  is a point null hypothe-

sis of the kind presented in section 2.1? No doubt that such an assessment is 

wholly unreasonable, given that the hypothesis 0  is certainly false (or practi-

cally so). In principle, this fact is recognized also by some Bayesians; for example, 
Berger (1985, p. 148) writes: “ ... tests of point null hypotheses are commonly 
performed in inappropriate situations. It will virtually never be the case that one 

seriously entertains the possibility that 0 exactly (cf. Hodges and Lehmann 

(1954) and Lehmann (1959)). More reasonable would be the null hypothesis that 
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0 0 0( , )b b , where b > 0 is some constant chosen so that all  in 0

can be considered “indistinguishable” from 0 ”. This last clarification by Berger 

must be evaluated, in our opinion, only as a possible instance of application, be-
ing true, in general, that the hypothesis 

0 :H 0 0( , )b b          b > 0 

must be given growing probabilities for increasing b values, i.e. by enlarging the 
set of parameter values. 

Although maintaining a critical approach, Berger (1985, p. 149) works out the 

sharp approximation 0 0:H with respect to 0 :H 0 0( , )b b , warn-

ing that “the approximation is reasonable if the posterior probabilities of H0 are 
nearly equal in the two situations” (a rather strong condition). Following the ap-
proach – and using some results – laid out by Jeffreys (1939, 1948), Berger (1985, 
pp. 150-151) obtains some posterior probabilities, which can lead him to speak of 
astonishing comparisons with N-P approach. Starting from a prior probability dis-

tribution over the parameter values given by a positive probability 0  attached to 

0 , and a density 1 1( )g  for 0 , with 1 01  and 1g  proper, the poste-

rior probability of 0  given the observation X = x with conditional density 

( )f x  , is easily obtained: 

1

0 1
0

0 0

1 ( )
( ) 1

( )

m x
x

f x
 (5) 

where 1( )m x  is the marginal density of X with respect to 1g . To continue, it is 

enough to stick to the example worked out by Berger, and largely exploited in the 
Bayesian literature. Suppose a sample (X1, ..., Xn) is observed from a normal dis-

tribution N 2( , ) , 2  known. Reduction to the sufficient statistic X  leads us 

to consider an observation of the sample average X  from a normal 

N 2( , / )n . The prior density 1g  is supposed normal N 2( , )  over 0 . In 

the special case 0  the above formula takes a very simple appearance, where 

0 /z n x  is the usual statistic employed for testing 0 0:H   against 

1 0:H   in the N-P approach: 

12 2 2 1
0

0 0 1 22 2
0

exp{0.5 [1 ( ) ] }1
( ) 1

{1 }

z n
x

n
 (6) 
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Making the further simplifying assumption , and putting 0 0.5 , Berger 

computes the values of 0 0( )x  for some couples (z, n). For example, the 

row of the table corresponding to the standard value z = 1.96 (P-value 0.05) is 
the following: 

n 1 5 10 20 50 100 1000 

0 0.35 0.33 0.37 0.42 0.52 0.60 0.80 

Berger (1985, p. 151) observes that “classical theory would allow one to reject 

H0 at level  = 0.05. ... But the posterior probability of 0H  is quite substantial, 

ranging from about 1/3 for small n to nearly 1 for large n. Thus z = 1.96 actually 

provides little or no evidence against 0H  (for the specified prior)”. With respect 

to this point, let it be sufficient to repeat that the above 0 probabilities are cor-
rect only in a mathematical sense, but are completely devoid of inferential mean-
ing – for any real problem – just because of the absurdity inherent in a prior dis-
tribution which attributes the value 0.5 to a specified real number, and a density 
integrating to 0.5 over the whole real line (excepting the fixed number). This and 
several related questions are treated in a paper by Shafer (1982), followed by a 
very interesting discussion. 

About 0  something was already said at section 2.1, but it is worth repeat-

ing that a point null hypothesis 0H  is simply a hypothesis of which the researcher 

wants to assess the conformity with respect to the available data (cf. Frosini, 
2001, p.347). About the comparative treatment of the complementary hypotheses 

0H  and 1H , it can be said that the researcher is impartial (not objective) when he is 

able to establish the equality between the error probabilities and  of I and II 
kind – when both hypotheses are simple – or between a sensible choice of such 

probabilities attached to representative hypotheses within 0H  and 1H , in case of 

composite hypotheses. Impartiality or objectivity are concepts non applicable in a 
case in which we make a comparison of a hypothesis comprising only one real 

number 0 , against an alternative comprising an infinite interval of real numbers 

(in the case at hand, the whole real line excepting 0 ). In any case, the choice 

0 1 2  for the above problem appears totally arbitrary, although admitting for a 

moment the attribution of a positive probability to 0 . All that can be said, in 

general, about 0 0( )P H , is that such probability is bound to increase with b > 

0 (or at least not decrease) if 0H  refers to the interval 0 0 0( , )b b ; with 

very small b, 0  can reasonably assume positive values very near to zero. 

Dwelling a little longer on formula (6), and evaluating it as an approximation 

with respect to a null hypothesis 0 :H 0 0 0( , )b b  with b very small 

(cf. Hill, 1982, p. 345), it is worth while making the following comments concern-

ing 0  as a function of 0 , z , 2 2 2 , and n:
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(a) 0  is increasing with 0 : this is quite correct, in the sense that with a very 

small interval 0  we should give the interval a very small prior probability 0 ,

resulting with a small or very small posterior probability  (contrary to what was 

obtained with 0 1 2 );

(b) 0  is decreasing with z: this is also correct, because a large standardized 

distance z (from 0 ) is an indication of data which do not comply (or agree) with 

the hypothesis 0H ;

(c) 2 2 2  and n are strictly tied in determining the behaviour of 0 ; as 
2 , or n, or both, increase, 0  increases too, at least from a certain point farther, 

becoming closer and closer to one. 
This last phenomenon – and especially the one depending on large n values – 

results from a likelihood ratio 0 1( , )L H H  tending to infinity: “This is the phe-

nomenon that Jeffreys (1939, 1948) discovered, and that was called by Lindley 
(1957) a paradox” (Hill, 1982, p. 345; Berger, 1985, p. 156). However this fact de-

pends heavily on 0( )  being degenerate at 0 , and is clearly the most out-

standing feature of an absurd choice for the prior distribution. 

From the points (a) and (b) above, it can be interesting to examine the iso- 0

curves, such as those in Figure 2, obtained by joining points ( 0 , z) with 

0 0.05 ; the curves in Figure 2 are computed for 20n  and two values for 
2 2 2 0.5 and 20. 
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Figure 2 – Iso- 0  curves of points ( 0 , z), given 0 0.05 , 20n  and two 2  values. 
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2.3. Sensible results from sensible hypotheses 

Although never forgetting the essential distinctive traits between Bayesian and 
Neyman-Pearson approaches, some possibility of making a limited comparability 

exists, provided we drop the strict sharp hypothesis 0 0:H , and accept a null 

hypothesis of type 0 :H 0 0 0( , )b b . Just to simplify mathematics at 

the outset (or else, a translation could be applied later), let 0 0 , so that our hy-

potheses in the N-P approach are as follows: 

0 :H 0 [ , ]b b ; 1 :H 0 , or 1 ( , ) ( , )b b

In the sequel iH   and i  (i = 1,2) will be used interchangeably. 

As before (see Berger’s example) the reference is to a random sample 

(X1,...,Xn) from a normal N( , 1). As the boundary set of 0H  is given by 

 = {–b, b}, the unbiased test of 0H  against 1H  requires fixing the same power 

of the test over the boundary (Lehmann, 1986, p. 134): (–b) = (b) (probabili-

ties of the sufficient statistic X  falling in the critical region, under b  and 

b , respectively). Owing to symmetry, the critical region will be the union of 
x  values ( , ) ( , )k k , with k determined by putting (being Z ~ N(0, 1)): 

( ) ( ) ( ) ( )P X k b P X k b P X k b P X k b

or

( ( )) ( ( ))P Z n k b P Z n k b  (7) 

By fixing, just as an example, = 0.05, the equation (7) has been solved for k,
for the seven cases of n = 1, 5, 10, 20, 50, 100, 1000, and b = 0.02, 0.10, 0.20, 
0.40. For each of these 28 cases, the power function – the fundamental tool of 
N-P approach – has been computed, according to the expression 

( ) ( ( )) ( ( ))P Z n k P Z n k ; (8) 

two examples are reported in Figure 3. 
Turning to prior and posterior distributions of the Bayesian approach, let 

– ( ) the density of the prior distribution for ( , )

– ( )f x the likelihood for the sample average; 

– ( )x   the posterior density of given x ;

– 0  the prior probability of the null hypothesis 0H

0 0
0 0 0 0( ) ( ) ( )

H H
P H d g d ,
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Figure 3 – Two examples of power function (8). A: n =1, b = 0.2; B: n = 5, b = 0.4.

0( )g being a proper density over 0H ;

– 1 01  the prior probability of the alternative hypothesis 1H

1 1
1 1 1 1( ) ( ) ( )

H H
P H d g d ,

1( )g  being a proper density over 1H ;

– 0 0( )p x  the posterior probability of the null hypothesis 

0 0
0 0 0 0( ) ( ) ( ) ( )

H H
p P H x x d g f x d ;

– 1 1( )p x  the posterior probability of the alternative hypothesis 

1 1
1 1 1 1( ) ( ) ( ) ( )

H H
p P H x x d g f x d .

Four prior distributions have been chosen; the first three appear as direct gen-
eralizations of the one applied by Berger for an analogous problem (see section 
2.2). The first has been built starting from a prior Z ~ N(0, 1) over the whole pa-

rameter space 0 1H H , then rising the central part over the interval [ b, b] by 

the multiplicative constants: 

0.5/P( 0.02 Z  0.02) = 0.5/0.0159566 for b = 0.02, 

0.5/P( 0.10 Z  0.10) = 0.5/0.0796556 for b = 0.10, 

0.5/P( 0.20 Z  0.20) = 0.5/0.1585194 for b = 0.20. 

0.5/P( 0.40 Z  0.40) = 0.5/0.3108434 for b = 0.40, 
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and lowering the tails from  to b  and from b to  by the multiplicative 
constants 

0.5/0.9840434 for b = 0.02;          0.5/0.9203444 for b = 0.10; 
0.5/0.8414806 for b = 0.20;          0.5/0.6891566 for b = 0.40. 

Figure 4A shows the prior density for the case b = 0.40. Such constants succeed 

in equalizing to 1/2 the prior probabilities 0  and 1 . All the calculations pre-

sented in Table 2 employ this choice of the prior probabilities, just as the ones 
used by Berger in the example commented  above. 

A B

Figure 4 – A: I type prior with b = 0.4. B: IV type prior with b = 0.4. 

Quite similar applications have been made for priors II and III, the II prior be-
ing built starting from the density of a normal N(0, 2 = 0.04), and the III prior 
derived from the density of a normal N(0, 2 = 25) (of course, the multiplicative 
constants have been changed accordingly). The IV density used in the calcula-
tions of Table 2, instead, is simply a normal density, chosen so that the integral 

between b  and b is fixed at 0  = 1/2. Figure 4 B shows such a density for 

b = 0.40. 
While the values of the posterior probabilities of H0 in Table 2, for b = 0.02 

and the first prior distribution, are – as expected – very near to the values com-
puted by Berger for the case of the point null hypothesis (see section 2.2), the 
other parts of the table show quite different values and behaviours of the poste-
rior probabilities, denying the presumed paradox advocated by the Bayesians. 

All the above calculations were made by the use of the prior probability 0  = 

1/2, whereas it should be reasonable to calibrate such probabilities according to 

the width of the interval 0 ( , )b b . In case one would change 0 , the final re-

sult for the posterior probability is simply obtained as a function of the value al-

ready calculated for 0  = 1/2. Calling I0 and I1 the integrals proportional to p0

and p1:
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TABLE 2 

Posterior probabilities 0 0( )p P H x  for the null hypothesis 0 : [ , ]H b b , b = 0.02, 0.10, 0.20, 0.40, 

concerning the mean of a normal distribution N( , 1), calculated on the basis of a sample size n, of an observed 

sample mean : 1.96x n  (P-value 0.05), and assuming four prior distributions for the parameter  (see text), 

all admitting a prior probability 0  = 1/2 for the null hypothesis 

n 1 5 10 20 50 100 1000 

b = 0.02        

I prior 0.3495 0.3285 0.3638 0.4201 0.5140 0.5883 0.7514 

II prior 0.4853 0.4388 0.3994 0.3545 0.3118 0.3060 0.3790 

III prior 0.0724 0.1395 0.1849 0.2415 0.3317 0.4069 0.5971 

IV prior 0.4995 0.4973 0.4948 0.4895 0.4747 0.4521 0.2533 

b = 0.10        

I prior 0.3412 0.3091 0.3300 0.3579 0.3828 0.3861 0.3802 

II prior 0.4799 0.4166 0.3624 0.2958 0.2096 0.1599 0.0947 

III prior 0.4416 0.6111 0.6749 0.7228 0.7566 0.7637 0.7645 

IV prior 0.4870 0.4417 0.3965 0.3311 0.2284 0.1614 0.0711 

b = 0.20        

I prior 0.3281 0.2673 0.2583 0.2481 0.2351 0.2289 0.2210 

II prior 0.4698 0.3747 0.2959 0.2078 0.1170 0.0774 0.0343 

III prior 0.4306 0.5662 0.6002 0.6137 0.6158 0.6155 0.6151 

IV prior 0.4521 0.3311 0.2533 0.1807 0.1162 0.0896 0.0589 

b = 0.40        

I prior 0.2935 0.1789 0.1502 0.1326 0.1199 0.1146 0.1073 

II prior 0.4318 0.2501 0.1531 0.0824 0.0341 0.0184 0.0050 

III prior 0.3914 0.4402 0.4402 0.4387 0.4375 0.4369 0.4362 

IV prior 0.3542 0.1807 0.1283 0.0966 0.0744 0.0655 0.0541 

0 00.5 ( ) ( )
b

b
I g f x d ; 1 10.5 ( ) ( )

b

b
I g f x d

the following equalities hold, with respect to 0p  computed with 0  =0.5, and to 
*
0p  computed with a generic 0 < 0  < 1: 

0 0 0 1( )p I I I

*
0 0 0 0 0 0 1[ (1 ) ]p I I I

1

* 10
0 0

0

1
1 ( 1)p p .

For example, by the choice of 0  = 0.1, for the cases b = 0.02 and b = 0.10 and 

the first prior distribution, one can simply obtain from Table 2 the following val-
ues for the posterior probabilities: 

 b = 0.02        

 n 1 5 10 20 50 100 1000 
*
0p 0.056 0.052 0.060 0.074 0.105 0.137 0.215 

 b = 0.10        

 n 1 5 10 20 50 100 1000 
*
0p 0.054 0.047 0.052 0.058 0.064 0.065 0.064 
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In conclusion, if one sticks to a Bayesian approach for the above problem, 
however with a sensible choice of hypotheses and related prior distributions, sen-
sible results would follow. No wonder – on the contrary – that (practically) ab-
surd assumptions can yield absurd or embarrassing outcomes. 

Istituto di Statistica BENITO VITTORIO FROSINI

Università Cattolica del Sacro Cuore di Milano 
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RIASSUNTO

Sulla teoria di Neyman-Pearson: Informazione contenuta in un esperimento, e un paradosso fantasioso 

Questo articolo tratta due argomenti collegati con la teoria di Neyman-Pearson sulla 
verifica di ipotesi. Il primo argomento riguarda l’informazione contenuta in un esperimen-
to; dopo un breve accenno alla comparabilità ordinale degli esperimenti, vengono consi-
derate dapprima le due misure di informazione più note, quella proposta da Fisher e quel-
la proposta da Kullback-Leibler. Almeno per i casi più comuni, in cui si richiede di esegui-
re una comparazione di due esperimenti alla volta, emerge la superiorità della coppia ( , )
delle due probabilità di errore nell’impostazione di Neyman-Pearson, a causa del chiaro 
significato operativo di tali indici. 

Il secondo argomento riguarda il c.d. paradosso di Jeffreys, o di Lindley; nel caso di 
un’ipotesi nulla puntuale si può mostrare che, se associamo una probabilità positiva a tale 
ipotesi, nell’impostazione bayesiana dell’inferenza le probabilità a posteriori possono as-
sumere valori molto contrastanti con le probabilità di errore dell’impostazione di Ne-
yman-Pearson. Viene argomentato in questo articolo che tali risultati sono prodotti sem-
plicemente a causa delle assunzioni assurde che sono state fatte nell’impostazione baye-
siana; è infatti mostrato, al contrario, che partendo da assunzioni ragionevoli riguardo a 
ipotesi intervallari (non puntuali) si possono ottenere probabilità a posteriori perfettamen-
te compatibili con l’impostazione di Neyman-Pearson (sia pure tenuto conto che tali com- 
parazioni richiedono molta cautela, dato che le due impostazioni a confronto sono radi-
calmente diverse sia rispetto alle assunzioni di partenza sia rispetto agli scopi dell’infe- 
renza). 

SUMMARY

On Neyman-Pearson Theory: Information Content of an Experiment and a Fancy Paradox 

Two topics, connected with Neyman-Pearson theory of testing hypotheses, are treated 
in this article. The first topic is related to the information content of an experiment; after 
a short outline of ordinal comparability of experiments, the two most popular informa-
tion measures – by Fisher and by Kullback-Leibler – are considered. As far as we require 
a comparison of two experiments at a time, the superiority of the couple ( , ) of the two 
error probabilities in the Neyman-Pearson approach is easily established, owing to their 
clear operational meaning. 

The second topic deals with the so called Jeffreys – or Lindley – paradox: it can be 
shown that, if we attach a positive probability to a point null hypothesis, some «paradoxi-
cal» posterior probabilities – in a Bayesian approach – result in sharp contrast with the 
error probabilities in the Neyman-Pearson approach. It is argued that such results are 
simply the outcomes of absurd assumptions, and it is shown that sensible assumptions 
about interval – not point – hypotheses can yield posterior probabilities perfectly com-
patible with the Neyman-Pearson approach (although one must be very careful in making 
such comparisons, as the two approaches are radically different both in assumptions and 
in purposes). 


