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1. INTRODUCTION  

The importance of the concept of cointegration (Engle, Granger, 1987) has in-
creased in the recent years and it received much attention in the literature. Some 
of the seminal works are those of Johansen (1988, 1996), Phillips and Durlauf 
(1986), Phillips and Hansen (1990), Xiao and Phillips (1999). 

The cointegration analysis is usually carried out for macroeconomic and finan-
cial time series that are often affected by heteroschedasticity. This aspect is ex-
tremely relevant considering that homoschedasticity is one of the conditions un-
derlying the applicability of the cointegration analysis procedures frequently used. 
So it is important to evaluate the robustness as regards heteroschedasticity of the 
procedures for the cointegration analysis and this is also the aim of this work. We 
consider and compare some traditional procedures and also an interesting pro-
posal of a bootstrap test for cointegration. This test is originally a test for unit 
root (Procidano, Rigatti Luchini, 1999, 2000) which employs the bootstrap 
method called Wild Bootstrap.   

Most of the results about the estimators for non-stationary series are asymp-
totic and their goodness has been evaluated by Montecarlo experiments, for ex-
ample Schwert (1989), Diebold and Rudenbush (1991), Dejong et al. (1992). If the 
samples are finite, it seemed that the most frequently used tests exhibit serious 
level of size distortion and different powers.  

These results oriented the most recent researches about this theme to the de-
velopment of new procedures of estimation and testing by using the bootstrap 
method. This is the context, where it is inserted the proposal of the Wild Boot-
strap test for unit root, that we want here to extend to the cointegration analysis.  

In this work we want to compare, working by simulations, the robustness as 
regards heteroschedasticity of different procedures for cointegration analysis and, 
in particular, to verify if the Wild Bootstrap test is robust also in the context of 
the cointegration analysis. We consider the Dickey-Fuller test (DF: Dickey and 
Fuller, 1979), the Sargan-Bhargava test (DW: Sargan, Bhargava, 1983; Bhargava, 

1986), the Johansen tests ( trace and max: Johansen, 1988) and the Wild Bootstrap 
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test (B) in hypothesis of GARCH errors. This typology of heteroschedasticity has 
been chosen because it is considered general enough to represent the major part 
of situations of non-stationarity in variance, typical of several economical and fi-
nancial time series. In this context, like in the unit root analysis (Procidano and 
Rigatti Luchini, 1999, 2000, 2001), the simulations show a robustness of the Wild 
Bootstrap test as regards heteroschedasticity, particularly for small samples. 

The article is organized as follows, section 2 introduces the notions of cointe-
gration, section 3 explains the algorithm for the implementation of the wild Boot-
strap Test, section 4 describes the simulation experiment, finally, section 5 con-
cludes.

2. THE CONCEPT OF COINTEGRATION

The idea of a cointegration relationship between two or, more in general n>2,
time series was intuitively proposed by Granger (1983) and then successively for-
malized in the following definition: given two time series x1,t and x2,t , both I(1), 
without drift and trend, if it exists a linear combination 

1, 21 2t t tz x x  (1) 

that is I(0), then x1,t and x2,t are cointegrated and =( 1, 2) is called vector the 
cointegration. 

Moreover, if x1,t and x2,t are both I(1) and cointegrated, they are always gener-
ated by the model ECM (Error Correction Mechanism) whose matricial formula-
tion is the following: 

1 1 1'( )t t t tX X X  (2) 

where Xt=(x1,t, x2,t), t=( 1,t, 2,t) is a white noise vector, 1 is a (2x2) matrix, = ’

is a (2x2) matrix of rank 1, =( 1, 2) is called speed of adjustment and =( 1, 2) is
the cointegration vector. 

Different procedures can be used to test for the existence of a cointegration re-
lationship and they can be classified in two groups. The first group includes the 
“two steps procedures”: in the first step the cointegration relationship is esti-
mated by a regression between the variables, in the second step the null hypothe-
sis of unit root in the residuals is verified by the usual tests for unit root. Among 
the “two steps procedures” there are the Dickey-Fuller Test (DF), the Sargan-
Bhargava Test (DW) and the Wild Bootstrap Test (B). 

More precisely, given the following model: 

1t t tx x t = 1,2,…T (3) 

where t is a white noise with 2 variance, the statistic of the Dicey-Fuller test is: 
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The statistic of the Sargan-Bhargava test is: 
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R x x x x  (5) 

The second group includes the formulations that work directly on the time se-
ries, for example the Johansen test proposed in 1988. In this procedure the hy-
pothesis of no cointegration is tested analysing the rank of the matrix = ’ by 
maximum likelihood techniques. 

Johansen proposed two statistics: 

trace
1

ˆlog(1 )
n

i

i r

T  (6) 

and

max 1
ˆlog(1 )rT  (7) 

where ˆ
i  are the eigenvalues of the matrix = ’ of the ECM model, T is the 

sample size and r, 0 r <n is the rank of the  matrix. 
From the several works with comparisons among different cointegration tests 

(for example Podivinsky, 1998; Haug, 1996) it results that the performances are 
quite different. These results imply for the applied researchers that more than one 
cointegration test should be applied. In general, most of the Monte Carlo studies 
reveal a trade off between power and size distortions of the cointegration tests, 
even though the least size distortion is exhibited (but only for high sample size) 
by the Johansen tests. 

3. THE WILD BOOTSTRAP TEST

The B test proposed by Procidano and Rigatti Luchini (1999, 2000) to test for 
a unit root refers to the resample method proposed by Wu in 1986. This method 
is robust as regards heteroschedasticity and it consists of carrying out extractions 
from an external distribution with zero mean and unit variance whose choice 
represents a subjectivity element (Davidson and Flaichaire, 2000) that does not 
seem to significantly modify the results. 

The following is the general explanation of algorithm for the implementation 
of the B test: 
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1 - We generate a time series xt from the model (3) in the null hypothesis =1;
2 - We calculate the value of the  statistics; 
3 - We generate a replication of xt with the wild bootstrap and then we calculate 
the value of the  statistics (indicated by *) on this replication; 
4 - We repeat the step 3 J times: so we obtain the empirical distribution of *;
5 - We calculate the percentile corresponding the level of the test (1- ): we obtain 
so the extreme limit of the acceptance region with the wild bootstrap; 
6 - We register if the statistics  does not belong to the MacKinnon acceptance 
region or to the acceptance region calculated with the wild bootstrap following 
step 5; 
7 - we repeat steps 1-2-3-4-5-6 N times: we obtain so the rejects proportion as 
regards the acceptance region calculated with the wild bootstrap. 

When the B test is inserted in a context of cointegration analysis, the algorithm 
above described is applied to the residuals of the regression among the variables 
with the aim of establishing if the same residuals contain a unit root i.e. if the 
variables are cointegrated. 

4. THE SIMULATION EXPERIMENT

In this section the performance of the B test is compared to that of the other 
cointegration tests. The comparison has been carried out by the simulation of 
5000 time series of length T = 25, 50, 100, 200 for each of the two following 
schemes, partially referring to what Lee and Tse did in their work in 1996: 

1) In the experiment for examining the size of the tests we generate non coin-
tegrated systems with GARCH (1,1) errors. Let Xt=(x1t,x2t, …,xNt)’ be an Nx1
vector of integrated series with 

tt
X  (8) 

The error vector t=(e1t,e2t,…,eNt)’ is assumed to follow an N-variate conditional 
normal distribution with E(eit Ft-1)=0 and E(eit

2 Ft-1)= it
2, where i = 1,2,…N, Ft-1

is the -field generated by all the information available at time t-1 and 

2
0 1 , 1 ,2 , 1it i i i t i i te  (9) 

2) In the experiment for examinig the power of the tests we generate bivariate 
cointegrated systems with GARCH (1,1) errors. The system generated is 

1, 1, 1 2, 1 1,

2, 2,

0.2( )t t t t

t t

x x x

x
 (10) 
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In the first case, the simulations permit to evaluate the size distortion of the 
different tests of cointegration expressed as proportion of rejects of the null hy-
pothesis, in the second case the power of the different tests is estimated. 

The parameters of the GARCH model have been chosen like in Procidano and 

Rigatti Luchini (1999, 2000, 2001) i.e. considering quasi-integrated ( 1+ 2  1) 

and quasi-degenerete ( 0  0) structures. 

5. RESULTS

In the following tables, for each choice of the GARCH parameters the size 
distortions of the tests are reported. 

TABLE 5.1 

Proportion of rejects ( 0=0.1 =0.3  2=0.6)
Proportions of rejects out of 5000 tests, nominal level 0.95 

500 replications, normal error distribution 

Test T=25 T=50 T=100 T=200 

0=0.1  1=0.3  2=0.6 

DF

DW 

Trace

B

max

0.0668 

0.0715 

0.0701 

0.0598 

0.0737 

0.0628 

0.0678 

0.0691 

0.0583

0.0652 

0.0621 

0.0631 

0.0591 

0.0569

0.0636 

0.0593 

0.0618 

0.0572 

0.0521

0.0609 

TABLE 5.2 

Proportion of rejects ( 0=0.05 =0.3 2=0.65)
Proportions of rejects out of 5000 tests, nominal level 0.95 

500 replications, normal error distribution

Test T=25 T=50 T=100 T=200 

0=0.05  1=0.3 2=0.65 

DF

DW 

Trace

B

max

0.0684 

0.0721 

0.0798 

0.0619 

0.0816 

0.0678 

0.0682 

0.0672 

0.0614

0.0705 

0.0659 

0.0628 

0.0622 

0.0593

0.0624 

0.0612 

0.0624 

0.0604 

0.0554

0.0607 

TABLE 5.3 

Proportion of rejects ( 0=0.001 =0.3 2=0.699)
Proportions of rejects out of 5000 tests, nominal level 0.95 

500 replications, normal error distribution

Test T=25 T=50 T=100 T=200 

0=0.001  1=0.3  2=0.699 

DF

DW 

Trace

B

max

0.0692 

0.0734 

0.0786 

0.0563 

0.0833 

0.0689 

0.0712 

0.0688 

0.0638

0.0677 

0.0678 

0.0695 

0.0646 

0.0621

0.0636 

0.0627 

0.0653 

0.0617 

0.0612

0.0621 



M. Gerolimetto, I. Procidano 608

From the analysis of tables 5.1, 5.2, 5.3, it is possible to see how the size distor-
tion of all the tests tends to approach the nominal level as the sample size in-
creases. Moreover, the size distortion exhibited by the B test is always the lowest 
for every sample size and for every parametric choice. This result is particularly 
important for small sample sizes (e.g. T = 25) where the test B permits to get pro-
portions of rejects closer to the nominal level than those got by the other tests. 
As the sample size increases the difference becomes less evident because the size 
distortion tends to approach the nominal level. 

As far as the power is concerned, in the following tables the powers of the test 
are reported: 

TABLE 5.4 

Estimation of the power ( 0=0.1 =0.3 2=0.6)
Estimation of the power of the tests, nominal level 0.95 

500 replications, normal error distribution

Test T=25 T=50 T=100 T=200 

0=0.01  =0.3 2=0.6 

DF

DW 

Trace

B

max

0.175 

0.194 

0.190 

0.201 

0.219 

0.492 

0.538 

0.412 

0.498

0.505 

0.628 

0.702 

0.850 

0.711

0.916 

0.915 

0.965 

0.926 

0.971

0.992 

TABLE 5.5 

Estimation of the power ( 0=0.05 =0.3 2=0.65)
Estimation of the power of the tests, nominal level 0.95 

500 replications, normal error distribution

Test T=25 T=50 T=100 T=200 

0=0.05  =0.3  2=0.65 

DF

DW 

Trace

B

max

0.171 

0.168 

0.193 

0.204 

0.200 

0.499 

0.532 

0.390 

0.513

0.466 

0.622 

0.697 

0.849 

0.709

0.936 

0.907 

0.968 

0.918 

0.978

0.984 

TABLE 5.6 

Estimation of the power ( 0=0.001 =0.3  2=0.699) 
Estimation of the power of the tests, nominal level 0.95 

500 replications, normal error distribution

Test T=25 T=50 T=100 T=200 

0=0.001  =0.3  2=0.699 

DF

DW 

Trace

B

max

0.179 

0.170 

0.184 

0.191 

0.190 

0.502 

0.490 

0.489 

0.507

0.517 

0.620 

0.692 

0.859 

0.698

0.927 

0.909 

0.965 

0.952 

0.970

0.989 
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Even though the power of the B test is not always the best, anyway it turns out 
to be high and compared to the DF test both compared to the other test in gen-
eral. For every test the power increases as the sample size increases. 

These results seem to confirm the robustness of the Wild Bootstrap test with 
respect to heteroschedasticity also in the interesting context of the cointegration 
analysis. In our opinion, these are very important results, particularly because they 
could be profitably employed considering other heteroschedastic structures. 
Moreover, these results can be employed also in the recent and challenging con-
text of fractional cointegration. 
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RIASSUNTO

La verifica di cointegrazione in ipotesi di eteroschedasticità: il test bootstrap esterno 

In questo lavoro si vuole confrontare, tramite simulazioni, la robustezza rispetto al- 
l’eteroschedasticità di tipo GARCH (1,1) di alcune delle principali procedure proposte in 
letteratura per l’analisi di cointegrazione. In particolare, si considerano il test di Johansen e 
alcune procedure a due stadi, cioè il test Dickey-Fuller, il test Sargan-Bhargava ed un test 
bootstrap esterno. Quest’ultimo, confrontato con gli altri, ha fornito una buona perfor-
mance specialmente alla bassa numerosità campionaria. 

SUMMARY

The cointegration analysis in hypothesis of heteroschedasticity: the wild bootstrap test 

We consider the problem of comparing, by simulations, the robustness as regards het-
eroschedasticity GARCH (1,1) of some of the most important procedures proposed in 
literature for the cointegration analysis. In particular, we consider the Johansen test and 
some “two steps” procedures”, i.e. Dickey-Fuller test, Sargan-Bhargava test and an Ex-
ternal Bootstrap test. The Bootstrap test performs very well, particularly for the lowest 
sample size. 


