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IMPROVING THE POWER OF UNIT ROOT TESTS AGAINST 
FRACTIONAL ALTERNATIVES USING BOOTSTRAP 

L. Bisaglia, I. Procidano 

1. INTRODUCTION 

In the empirical applications of Box-Jenkins ARIMA(p,d,q) models, the num-
ber of times that the observed time series must be differenced (parameter d) is 
usually determined by intuitive (but informal) methods, for example the analysis 
of the empirical autocorrelation function of the differenced series. However, for 
many observed time series, taking the first or the second difference may be too 
strong. Another approach, is to use models based on fractional integration that 
permit the difference parameter d to assume non-integer values. Since the seminal 
papers of Granger and Joyeux (1980) and Hosking (1981), this kind of models 
has received increasing attention because of their ability to capture the persistent 
temporal dependence that many empirical time series exhibit. At the same time, 
the unit root hypothesis is included as a special case of this kind of models. Typi-
cal features of such data are that, even if stationary, the sample autocorrelations 
decrease to zero like a power function rather than exponentially and also that the 
spectral density diverges as the frequencies tend to zero.  Thus, they can present 
spurious local trends and cycles that disappear after a while. So, specially for short 
time series, it could be almost impossible distinguish a stationary process with 
long-memory from a unit root process. Simple persisting trends can be distin-
guished from stationary behaviours only if we have a long enough time series.  

Sowell (1990) derives the asymptotic distributions for the Dickey-Fuller test 
under the hypothesis that the data generating process is a non-stationary frac-
tional integrated process, that is Xt  I(d) with d  (1/2, 3/2). He shows that the 
limiting distributions of fractionally integrated series are radically different from 
limiting distributions of series integrated of order zero or one and also that test-
ing for unit roots is complicated because the t-statistic in this model only con-
verges when d = 1.

Diebold and Rudebush (1991) examine the properties of Dickey-Fuller test 
under fractionally integrated alternatives and show by Monte Carlo simulations 
that this test has quite low power and can lead to the incorrect conclusion that a 
time series has a unit root also when this is not true. 
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Hassler and Wolters (1994) investigate the probability of rejecting the I(1) hy-
pothesis when unit root tests are applied to fractionally integrated time series. 
They find out that especially the Augmented Dickey-Fuller test (ADF in the fol-
lowing) performs poorly. In particular, they find that the ADF test loses consid-
erably power when augmented terms are added. They support their theoretical 
arguments with some Monte Carlo experiments. 

Kramer (1998), in contrast with Hassler and Wolters (1994), shows that the 
ADF test is consistent against fractional alternatives if the order of the autore-
gression does not tend to infinity too fast. His results are not supported by simu-
lation experiments in finite samples. 

In this work we want firstly to clarify, via Monte Carlo study, this apparent 
contradiction, and, secondarily, we want to see if a bootstrap approach can help 
to improve the power of ADF test when the alternatives are long-memory. 
Moreover, we will consider a different class of tests, usually used to determine if a 
series have long-memory, to test the null hypothesis of unit root against fractional 
alternatives. Since these tests are asymptotic, they often exhibit non negligible size 
distortion in small samples. To improve inference, in this work we propose a 
boostrap procedure to adjust critical values. 

The plan of the paper is the following. In section 2 we introduce the problem 
and recall some known results about fractionally ARIMA models. Section 3 in-
troduces the Augmented Dickey-Fuller test and some fractional unit root tests. In 
section 4 we consider the problems of bootstrap when the data generating proc-
ess has unit roots and/or long-memory, and we propose our bootstrap technique. 
Section 5 presents the Monte Carlo study and the results about the size and the 
power of the tests. Conclusions are offered in Section 6.

2. ARFIMA PROCESSES AND UNIT ROOTS 

The Autoregressive Fractionally Integrated Moving-Average (ARFIMA) proc-
ess generalizes the usual ARIMA(p,d,q) process by assuming d to be fractional. 
This generalization provides a more flexible framework to study empirical time 
series data. In fact, this class of processes can be used to model data dependence 
that is stronger than allowed in stationary ARMA processes and weaker than im-
plied by non-stationary unit root processes. 

More specifically, ARFIMA(p,d,q) processes are stationary and invertible proc-
esses of the form: 

( ) ( )( ) ( )t tB B X B

where the t are white noise with zero mean and variance 2, ( ) and ( )
are polynomials in the backward operator B of degrees p and q respectively, (B)
= (1 – B)d and d (-1/2,1/2) is the fractional parameter. Formally, the fractional 
difference operator (1 - B)d can be expressed by a binomial expansion, that is: 
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where ( ) is the Gamma function. We can see that if the parameter d is restricted 
to the set of integers we obtain the usual ARIMA processes. When d < 0 the 
process Xt is said antipersistent, while when d > 0 Xt is simply said to have long-
range dependence or long-memory. If d > 1/2 the process becomes non station-
ary, but it is always possible to transform it into a stationary process by taking a 
suitable number of integer differences (for details about ARFIMA process, see  
Granger and Joyeux, 1980 and Hosking, 1981). 

Now, let xt, t = 1,2,…,T, be a real-valued time series whose behaviour is gov-
erned by the following model: 

Xt = Xt-1 + t (1)

(1 - B)d
t = t

where d (-1/2,1/2) and the t are white noise with zero mean and variance 2,
that is t is an ARFIMA(0, d, 0) process or a fractionally integrated noise. Since it 
is possible to write (1) as 

(1 – B) Xt = t , 

that is, Xt is a random walk with fractionally integrated innovations, it follows 
that  

(1 – B)  Xt = t

where  = (1 + d )  (1/2, 3/2). Even if any fractional process can be written as 
one that includes an autoregressive unit root, following Diebold and Rudebush 
(1991) and subsequent papers, only I(1) processes, i.e.  = 1 (or equivalently
d = 0), will be said to contain a unit root. Then, our problem is to test the null 
hypothesis H0:  = 1 against fractional alternatives. In the next section we will in-
troduce some tests with this aim. 

3. FRACTIONAL UNIT ROOT TESTS 

Firstly, we consider one of the most popular unit root test: the Augmented 
Dickey-Fuller, or ADF test (Said and Dickey, 1984). This test is implemented in 
many software packages, it would be nice if it worked well also to distinguish unit 
root by fractional unit root.  

We consider the generating process Xt = Xt-1 + ut , where ut ~ARMA(p,q), 
Fuller (1976) demonstrates that, under the null hypothesis of a unit root (  = 1), 
Xt reduces to 
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where the t are i.i.d.(0, 2), and the ADF test is simply based on the regression 
t-statistic for the hypothesis  = 0. The asymptotic distribution of the original 
Dickey-Fuller statistic is not altered.  

Another approach is to apply some tests for fractional integration to the first 
differences of Xt. In fact, if Xt is a unit root process (  = 1) its first differences 
will be a white noise process and d = 0. If Xt is a fractionally integrated process 
then  (1/2, 3/2) and its first differences will be a stationary fractionally proc-
ess with fractional parameter  d (-1/2,1/2). Thus the null hypothesis of unit root 
becomes H0: d=0  in the first differences. 

The tests we consider are the t-test based on the log-periodogram regression of 
Geweke and Porter-Hudack (1993), GPH, the modified rescaled range statistic 
derived by Lo (1991), MRS, and a LM type test recently developed by Lobato and 
Robinson (1998). 

The first test is based on a semi-parametric procedure to test for fractional in-
tegration. It is motivated by the log-spectral density of the ARFIMA process, and 
amounts to estimating the least squares regression 

2ln ( ) ln 4sin 1, 2, ,
2

j

j j

w
I w c d j m

where I( j) is the periodogram of  Xt at the Fourier frequencies wj = 2 j/T and m
is a positive integer, usually chosen as m = [(T )1/2] with [ ] denoting the integer 
part. There is evidence of fractional integration if dˆ , the least square estimate of 
the long memory parameter, is significantly different from zero. 

The second test is an extension of the range over standard deviation, or R/S statis-
tic proposed by Hurst (1951). This statistic, QT, is defined by 

1 1
1 1ˆ

1
( ) ( )

( )

k k

T j j
k T k T

j jT

Q Max X X Min X X
q

where X  is the sample mean over the T observations, 2ˆ ( )T q  is given by 

2 2

1

ˆ ˆ ˆ( ) 2 1
1

q

T x j
j

j
q q T

q

and 2ˆ
x  and ˆ

j  are the usual sample variance and autocovariance estimators of 

the data. Usually q is set equal to the integer part of 1/3 2 2/3ˆ ˆ(3 /2) (2 /(1 ))T ,
ˆ  being the  sample first-order autocorrelation coefficient. Extreme values of QT
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are regarded as signs of fractional integration. Under a set of conditions satisfied 
by a large class of short memory processes, Lo (1991) derives the asymptotic dis-

tribution of the statistic 
T

qQ
qV T

T

)(
)(  and gives the critical values. 

Finally, the third test we consider is a non parametric one and makes no as-
sumptions on spectral behaviour away from zero frequency. As far as our prob-
lem is concerned, the test statistic is given by 

1

1

( )

( )

m

j j
j

m

j
j

I
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1
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j
j

j j
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 and m (0,T/2) is a cutting parameter that we have 

set equal to the integer part of (T-1)/2. Under the null hypothesis (H0: d=0) the 
statistic  have an asymptotic standard normal distribution. 

Since for some of these tests, Cheung (1993) reports evidence of serious size 
distortions in small samples, our idea is to correct the distortions using the boot-
strap method. 

4. BOOTSTRAP UNIT ROOT TESTS 

In this section we firstly recall all the problems that can arise by using the 
bootstrap in presence of unit root processes and then we present our bootstrap 
scheme.

4.1. Bootstrap and unit roots 

The consistency of the bootstrap estimator of the distribution of the least 
square estimator of the autoregressive parameter in a simple first order autore-
gressive process, which may or may not have a stationary solution, has been in-
vestigated by several authors recently. 

Basawa et al. (1991a) show that, when the data generating process is 
Xt = Xt-1 + ut, where the ut are i.i.d. with zero mean and unit variance, then 
when  = 1 the bootstrap least square estimate is asymptotically invalid even if 
the error distribution is assumed to be normal. In this case, in fact, the consis-
tency of the bootstrap estimator is much more sensitive to how the bootstrap 
sample is drawn than when it is known that  < 1 . One way to overcome 
this problem is by resampling the restricted residuals under the null hypothesis 
of a unit root, that is by specifying that the true value of  is 1 (see Basawa et al.
1991b for details). 
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Datta (1996) considers a first order autoregressive process where the autore-
gressive parameter  may vary over the entire real line and shows that one way 
of fixing the problem when  = 1 is to reduce the bootstrap sample size m. In 
particular, he demonstrates that if one increases m to infinity in such a way that 
m/T  0, where T is the length of the time series, then the bootstrap will ap-
proximate the sampling distribution in probability. If [m(log log T )2]/T  0 as 
T , then the bootstrap will work almost surely. It remains open the problem 
of an optimal choice of m. A different modification of the standard bootstrap 
which retains the original sample size for the bootstrap is proposed by Datta and 
Sriram (1997). Their procedure employs a data dependent shrinkage of the least 
squares estimator towards the critical value  = 1 and it can be extended to the 
AR(p) model, p > 1. 

Ferretti and Romo (1996) develop a bootstrap resampling scheme to test H0:
 = 1 for the first order autoregressive models and establish the asymptotic valid-

ity of the bootstrap test statistic both for independent and for AR errors. In the 
former case, the bootstrap methodology approaches directly the asymptotic dis-
tribution, making unnecessary the usual corrections due to the dependence of in-
novations. 

In any case, it is not currently known if the bootstrap can provide improvements 
in accuracy when the DGP has unit roots and long-memory. In these cases, boot-
strap methods based on sieve or other non parametric approximations to the data 
generating process may work better even if much further research is needed to de-
termine if such approximations work well both in theory and in practice.  

The sieve bootstrap was first introduced by Kreiss (1992) and then developed 
by Bühlmann (1997). This method is based on the idea of sieve approximation: it 
approximates a general linear, invertible process by a finite autoregressive model 
with order increasing with the sample size and resampling from the approximated 
autoregressions. By viewing such autoregressive approximations as a sieve for the 
underlying infinite-order process, the bootstrap procedure may still be regarded 
as a non parametric one. Chang and Park (1999) consider a sieve bootstrap for 
the test of a unit root in models driven by general linear process. The resulting 
tests are shown to be consistent under very general conditions. Simulations sup-
port their theoretical arguments. Psaradakis (2001) uses sieve bootstrap tests of 
the null hypothesis of an autoregressive unit root in models which are driven by 
innovations that belong to the class of stationary and invertible linear processes. 
He shows that the sieve approach provides asymptotically valid tests and sup-
ports his results in small samples by simulations. 

The wild bootstrap was developed by Liu (1988) following a suggestion of Wu 
(1986). In his work, Liu shows that the wild bootstrap provides refinements for 
the linear regression model with heteroskedastic errors. Procidano and Rigatti 
Luchini (2001) propose this kind of bootstrap to test the hypothesis of  unit roots 
in time series with heteroskedastic innovations. In a related work Pizzi et al.
(2001) show that wild bootstrap applied to test the null hypothesis of unit root is 
also robust in the presence of outliers and non linearities. 
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Our idea is to combine sieve and wild bootstrap to see if this approach works 
better in the presence both of unit root and long-memory. The bootstrap scheme 
is presented in the next section. 

4.2. The bootstrap scheme 

Our procedure is motivated by the fact that, if d  (-1/2,1/2) the fractionally 
integrated process, t, admits the infinite autoregressive representation  

0

(1 )d
t j t j t

j

B

where 0 = 1 and 

1

1
, 1, 2, ,j j

j d
j

j

(see, for instance, Brockwell and Davis, 1991), 

Having observed the sample x1, x2, ..., xT, the algorithm we followed is defined 
in the following block diagram1:

1 The routine to perform these bootstrap tests are written in R and are available upon request by 
the authors. 

1.  Calculate the estimated residuals, t = xt – xt-1, under the null 
hypothesis H0:  =1. 

2.  Fit an autoregressive process to the estimated residuals 
xt= 1 xt-1 + 2 xt-2 + … + p(T) xt-p(T)

and estimate the coefficients 1, 2, ,
ˆ ˆ ˆ, , ,T T p T .

3.  Construct the residuals 

, 1, 1 2, 2 ,
ˆ ˆ ˆ , 1, , .t T t T t T t p T t px x x x t p T
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Steps 4 – 7 are repeated a large number of times yielding an empirical distribu-
tion for ADF*. 

Remarks. With regard to step 1, note that the residuals correspond to the first 
differences of the series, that is t = xt, where  = (1 – B),

With regard to step 2, i) to estimate the residuals, we prefer to use the Yule-
Walker method since it always yields an invertible autoregression, but other esti-
mation methods, like OLS or likelihood methods, are equivalent; ii) we fit the 
autoregressive process with increasing order p(T ) as the sample size T increases. 
Let p = p(T )  (T ) with p(T ) = o(T1/2+d ) (Kramer, 1998). In practice we 
fixed pmax = 10log10(T ) and then, following a suggestion of Bühlmann (1997), we 
chose the optimal p using the AIC criterion, p = pAIC so iii) in contrast with Has-
sler and Wolters (1994),  who fix in their experiments the order p of the ADF 
autoregression, our procedure selects for each series the suitable value for the or-
der p.

With regard to step 4, in the literature, the further condition that 3E( ) 1t  is 

often added. In our experiments we chose like auxiliary, or external, distribution, 

4.  Extract, with reintroduction, (T – p –1) elements of a random 
variable, e*, such that E(e*) = 0, E(e*2) = 1. 

5.  Generate an i.i.d. sample t,T*, t = p+1, …, T  in the following way 

t,T* = (1-diag(P ))-1
t,T et*

where P = X(X’X)-1X’ and X = [ xt-1, xt-p, …, xt-p].

6.  Generate bootstrap replicates, xt,T* , t = p+1, ..., T, according to 

, 1, 1, 2, 2, , , ,
ˆ ˆ ˆ

t T T t T T t T p T t p T t Tx x x x

, ,
1

t

t T j T
j

x x .

7.  Obtain the bootstrap version of the ADF test (hereafter ADF*) 
running the bootstrap ADF regression 
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e*  U(- 3, 3). In practice, the choice of the external distribution is not very im-
portant as Davidson and Flachaire (2001) show. 

With regard to step 6, i) it is important to base the bootstrap sampling on this 
regression with the unit root restriction  = 0. The samples generated by the 
same regression without the unit root restriction do not behave like unit root 
processes, and this will render the subsequent bootstrap procedure inconsistent 
as shown in Basawa et al. (1991a); ii) we have to chose appropriately p initial val-

ues of *
,t Tx . An obvious choice for the initial values, would be to use the initial 

value x0 for Tx ,0 , and generate the bootstrap samples ,t Tx  conditioned on x0.

Even if the choice of initial value may affect the finite sample performance of the 
bootstrap, however the effect of the initial condition would disappear asymptoti-
cally. We have therefore set x0 = 0. 

Finally, to compare the performance of the bootstrap test against ADF test, we 
do not use the critical values tabulated by Fuller (1976) but those more recently 
tabulated by Mackinnon (1991). 

5. MONTE CARLO SIMULATION STUDY 

In this section we use some Monte Carlo experiments to investigate the size 
and power properties of the described tests in finite samples. In particular we 
want: 1) to compare the performances of the ADF test against Mackinnon’s criti-
cal values and those obtained with our bootstrap test; 2) to investigate the size 
and power properties of the other fractional tests in finite samples. 

Simulation 1. The properties of the ADF and the ADF* procedure for testing 
H0:  = 1 against H1:  < 1 are assessed. We did not consider values of  > 1 be-
cause for these values the non-stationarity of the process is so strong that the 
ADF test always accept the null of a unit root. Thus, in this case, the test proce-
dure always says that it needs to differentiate the data. The Monte Carlo experi-
ments we conducted is based on the following data generating process: 

(1 – B)  xt = t ,   t = 1, 2, …, T

with  = 0.35, 0.45, 0.6, 0.7, 0.8, 0.9, 1 and t  i.i.d. N(0,1). Our  results are based 
on 1000 independent replications with T = 50, 100, 250 and 500 observations 
and for each simulated series we considered 500 bootstrap replications. The sta-
tionary fractional noise are generated using the recursive Durbin-Levinson algo-
rithm (Brockwell and Davis, 1991), and the non-stationary processes are gener-
ated autoregressively, xt = xt-1 + t. All series are generated with 100 additional 
values in order to obtain random starting values. All tests are one-sided with level 
0.01, 0.05 and 0.1. 

Tables 1 presents the empirical rejection probabilities for the 5% tests (results 
for 1% and 10% tests are quite similar and are available upon request by the au-
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thors). The most important results are: i) for fixed , the power of the two tests 
increases with  the sample size (even if it remains low for values of  > 0.5, non-
stationary case, and near one) reflecting thus the consistency of the ADF test ac-
cording to the theoretical results of Krämer (1998); ii) for a fixed sample size, T,
the power decreases with increasing : result that is not surprising since we are 
approaching the null hypothesis; iii) for all values of fractional parameter  and 
for all sample size considered the power of the bootstrap ADF test is (almost) 
always higher than the power of simple ADF test, while the estimated size (  =1) 
is fairly close to the nominal levels of significance. 

Table 2 reports (for sake of completeness) the Monte Carlo means for the es-
timated autoregressive order pAIC for each value of the fractional parameter and 
sample size. 

TABLE 1 

Estimate of power of adf tests 

DGP: ARFIMA(0, , 0), level  = 0.05 

T  (d = -1) 0.35 0.45 0.6 0.7 0.8 0.9 1.0 

50 ADF
ADF*

0.474 
0.479 

0.266 
0.271

0.164 
0.170 

0.108 
0.111 

0.074 
0.080 

0.055 
0.057

0.053 
0.056 

100 ADF
ADF*

0.618 
0.623 

0.356 
0.362 

0.219 
0.233 

0.178 
0.183 

0.086 
0.093 

0.082 
0.085 

0.053 
0.051 

250 ADF
ADF*

0.844 
0.837 

0.530 
0.539 

0.386 
0.400 

0.276 
0.285 

0.190 
0.198 

0.102 
0.109 

0.040 
0.045 

500 ADF
ADF*

0.939 
0.937 

0.680 
0.683 

0.508 
0.511 

0.389 
0.407 

0.263 
0.267 

0.133 
0.134 

0.053 
0.053 

TABLE 2 

Autoregressive order selection: PAIC

T 0.35 0.45 0.6 0.7 0.8 0.9 1.0 

50 3.094 2.737 2.215 1.765 1.267 0.92 0.641 

100 5.104 4.359 3.517 2.658 1.942 1.217 0.842 

250 0.853 7.728 5.835 4.767 3.226 1.769 0.766 

500 11.366 11.024 8.436 6.470 4.429 2.432 0.960 

Simulation 2. The size and power properties of the second class of fractional 
unit root tests we considered are explored. In this case the Monte Carlo experi-
ment we conducted is slightly different. We consider, in fact, the following 
model:

(1 – B)  xt = t ,   t = 1, 2, …, T

with  = 0.55, 0.7, 0.9, 1.0, 1.1, 1.3, 1.45 and t  i.i.d. N(0,1). Our  results are 
based on 1000 independent replications with T = 100, 250 and 500 observations 
and for each simulated series we considered 500 bootstrap replications. 
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Tables 3 presents the empirical power of the tests at a nominal 5% level of sig-
nificance. The simulation results suggest that in general, the bootstrap testing 
procedure is able to improve the tests, in fact: i) every bootstrap test has better 
size properties than any of the original test; ii) the bootstrap procedure does not 
impose distorsions where the original tests are well-sized; iii) the power properties 
suggest that the bootstrap LM test is superior when we are testing for unit root 
against fractional integration in small samples, in larger samples all the LM tests 
became equivalent. 

Remark. To choose the number of bootstrap samples, in both the simulation 
studies, so as to minimize experimental randomness, we have followed the so 
called p-value approach, as described, for example in Davidson and MacKinnon 
(2000).

6. CONCLUSION 

In this work we examine the performance of the sieve-wild bootstrap method 
to test the unit root hypothesis against fractional alternatives. The tests we con-
sidered are, firstly, a classical test for unit root, the Augmented Dickey-Fuller, in 
addition we considered a different class of tests usually used to determine if a se-
ries have long-memory. These tests are the modified rescaled range, the Geweke 
Porter-Hudack and a LM test. 

TABLE 3 

Estimate of power of unit root tests 

DGP: ARFIMA(0, , 0), level  = 0.05 

T (d = -1) 0.55 0.7 0.9 1.0 1.1 1.3 1.45 

100 MRS
MRS*

0.290 
0.132 

0.242 
0.118 

0.116 
0.046 

0.730 
0.060 

0.040 
0.110 

0.042 
0.146 

0.024 
0.070 

GPH
GPH*

0.230 
0.198 

0.142 
0.114 

0.068 
0.050 

0.048 
0.046 

0.068 
0.078 

0.152 
0.196 

0.276 
0.296 

LM
LM*

0.898 
0.980 

0.540 
0.802 

0.044 
0.164 

0.027 
0.050 

0.190 
0.220 

0.882 
0.906 

0.988 
0.986 

250 MRS
MRS*

0.672 
0.478 

0.486 
0.314 

0.166 
0.096 

0.065 
0.054 

0.114 
0.176 

0.232 
0.332 

0.120 
0.188 

 GPH 
GPH*

0.414 
0.380 

0.258 
0.210 

0.078 
0.066 

0.058 
0.053 

0.076 
0.092 

0.266 
0.322 

0.554 
0.564 

 LM 
LM*

1.000 
1.000 

0.994 
0.998 

0.262 
0.398 

0.036 
0.051 

0.504 
0.526 

0.998 
0.998 

1.000 
1.000 

500 MRS
MRS*

0.906 
0.814 

0.700 
0.554 

0.172 
0.116 

0.058 
0.052 

0.142 
0.210 

0.428 
0.502 

0.384 
0.406 

 GPH 
GPH*

0.684 
0.630 

0.398 
0.358 

0.078 
0.064 

0.060 
0.057 

0.082 
0.104 

0.434 
0.480 

0.746 
0.760 

 LM 
LM*

1.000 
1.000 

1.000 
1.000 

0.600 
0.692 

0.046 
0.052 

0.788 
0.790 

1.000 
1.000 

1.000 
1.000 



L. Bisaglia, I. Procidano 600

We find out that the ADF bootstrap works generally better than the ADF, 
even if the power of the test is quite low especially if the data generating process 
is a non stationary fractional integrated process (  > ½). Anyway the ADF test 
seems to be consistent. 

The MRS*, GPH* and LM* tests have nice size properties, however, because 
of his higher power, we suggest the use of LM* test.  

We conclude that the bootstrap testing procedure provides a practical and ef-
fective method to improve tests when we are searching for a unit root against 
fractional alternatives. 

For future research it would be interesting to analyse how this bootstrap ap-
proach can improve inference i) when the observed time series displays observa-
tions that are non-normally distributed and/or conditionally heteroskedastic, 
situations that can arise frequently in case of analysing financial time series data; 
ii) when we consider models such cointegrating regression and error correction 
models. Such extensions and applications are currently under way by the authors. 
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RIASSUNTO

Un approccio bootstrap per migliorare la potenza dei test di radici unitarie contro alternative frazionarie 

In questo lavoro vedremo come utilizzare alcuni test asintotici di integrazione fraziona-
ria per testare l’ipotesi nulla di radici unitarie contro alternative frazionarie. Dal momento 
che tali test risultano distorti in piccoli campioni, anche sotto l’ipotesi di Gaussianità, uti-
lizzeremo una particolare metodologia bootstrap per migliorarne il comportamento. I risul-
tati mostrano che l’approccio bootstrap migliora sia la distorsione sia la potenza dei test 
considerati.
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SUMMARY

Improving the power of unit root tests against fractional alternatives using bootstrap 

In this paper asymptotic tests for unit root hypothesis against fractional alternatives are 
considered. Since they are generally badly sized in small samples, even for normally dis-
tributed processes, we consider a new bootstrap approach to correct such size distorsion. 
We find out that the bootstrap approach always improves the size and the power of the 
considered tests. 


