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ON THE CONFIDENCE INTERVALS OF PARAMETRIC FUNCTIONS 
FOR DISTRIBUTIONS GENERATED BY SYMMETRIC STABLE LAWS 

D. Farbod, K. V. Gasparian 

1. INTRODUCTION 

The “Discrete Distributions Generated by Standard Symmetric Stable Densi-
ties” (DSSD in short) are employed as a model for applications in Evolutionary 
Large-Scale Biomolecular Systems (Astola and Danielian, 2007; Astola et al., 2007, 
2008, 2010). It is of interest to consider the statistical analysis of parameters esti-
mators for the DSSD. A major drawback of the DSSD is that neither theirs prob-
ability mass functions nor theirs cumulative distribution functions can be ex-
pressed in closed form. The main aim of this paper is to discuss asymptotic con-
fidence intervals of the ML Estimators for some parametric functions of such dis-
tributions. 

This paper is formed as follows. Section 2 briefly introduces Symmetric Stable 
Laws. Section 3 considers DSSD and presents the asymptotic properties of the 
ML Estimators for such distributions. The main results of the paper are proposed 
in Section 4. Section 5 concludes. 

2. SYMMETRIC STABLE LAWS 

The Stable Laws, introduced by Paul Levy in the 1920’s, form a rich class of 
probability distributions allowing heavy tails, skewness and have many other use-
ful mathematical properties (Farbod and Gasparian, 2008; Nolan, 2010). We de-
fine by ( , , , )S      the class of all stable distributions with the following parame-
ters: the index exponent (0,2],  the skewness parameter [ 1,1],    the scale 
parameter (0, ),    and the location parameter ( , ).     The index expo-
nent   is the most important parameter of the Stable Laws and it measures how 
heavy-tailed the distribution is. 

When 0,   the sub-family ( ,0, , )S     is symmetric about .  A symmetric 
stable distribution is called standard if 1   and 0.   It is possible without loss 
of generality to consider only standard symmetric stable distributions (Zolotarev, 
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1986, p. 60). It is well-known that a standard symmetric stable random variable 
X  is best defined by its characteristic function (Zolotarev, 1986): 

( ) exp( ), (0, 2].X t t      

In the present paper, we consider the class ( ,0,1,0), 1S     with parametric 
space (compare to DuMouchel, 1973):  

, , ,{( ) : 0 1 1 2, 0, 1, 0},or                     

where   is some small constant, and let D  be some subset of   whose closure 

D  is also contained in  .  
Then we know the following series expansion for density of the standard 

symmetric stable distribution from the class ( ,0,1,0), 1S     (Matsui and Take-
mura, 2004; Zolotarev, 1986): 
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If 0,x   the density function (1-a) is defined as ( ; ) ( ; ).s x s x    We know 
that for 0 1   the series (1-a) is convergent for each 0,x   and for 1 2   
may be justified as an asymptotic expansion as .x   For more on this see 
Zolotarev (1986). Moreover, for all x   

1 1
( ; ) (0; ) 1 .s x s 

 
    
 

 

3. DISTRIBUTIONS GENERATED BY SYMMETRIC STABLE LAWS 

There are different methods for constructing of parametric families of discrete 
distributions arising in Large-Scale Biomolecular Systems (see, for example, 
Kuznetsov, 2003; Danielian and Astola, 2004, 2006). One of them is based on 
discretization of Stable Densities (see, for example, Astola et al., 2010). Let us con-
sider the following class of the DSSD constructed from (1).  

For 0 1     or 1 2,   and 0   we have (see, for example, Farbod, 
2011): 

1( ; ) ( ; )p x c s x            0,1,2,...,x   (2) 
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where 
0

( ; ).
y

c s y 




  

The main goal of the present paper is to consider some functions of parame-
ters involved (2), and then to obtain the asymptotic confidence intervals of the 
ML Estimators for this functions.  

3.1. ML Estimator 

Let 1( ,..., )n
nX X X , with realization 1( , ..., )n

nx x x , be a sample from (2). 
Let us assume the following regularity conditions (compare to Borovkov, 1998): 

1. D   is a compact set of ;  

2. 1 2( ; ) ( ; )p x p x   for all 1 2   where 1 2,    ; 

3. Probability distributions   with probability mass functions as in (2) have 
a common support, i.e. the set 

Support { : ( ; ) 0},x p x     

does not depend on ;   
4. The function ( ; ) ln ( ; )l x p x   is twice continuously differentiable with 

respect to   for all 0,1, 2, ...x   In addition,  

2
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where 1[ ( )] ;E M X    

5. For all    the Fisher’s information quality ( )I   contained in observa-

tion 1,X  satisfies to the following condition 
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and is continuous in .  
It was proved (Farbod, 2007) that the regularity conditions mentioned above 

are satisfied by the model (2). Under this conditions, we have the following well-
known Theorem (Borovkov, 1998; Lehmann, 1983) about asymptotic behavior of 
the ML Estimators. 

Theorem 3.1: Suppose that the regularity conditions 1-5 are fulfilled. Then the like-
lihood equation 

ln ( ; )
0,

nL x 
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with 1( ; ) ( ; )n n
i iL X p X   has a unique solution ˆ ˆ ( )n

n n X   in .D  This 
solution is a ML Estimator for   and has the following properties: 

(I)  Consistency, i.e. 

ˆ ,n
  ˆ( ( ) 0 0 )n as n              

(II)  Asymptotic normality, i.e.  

2ˆˆ ( ) (0, ( )).d
n nu n N         (3) 

(III) Asymptotic efficiency: the asymptotic variance 2( )   in (3) is 
2 1( ) ( ),I    such that 

1ˆˆ ( ) (0, ( )).d
n nu n N I        

(IV)  Convergence of moments:  

ˆ[ ] [ ] 1.k k
nE u E k      (4) 

From (4), when 1,k   the property of asymptotic unbiasedness also holds, that is  

1
2ˆ[ ] ( ).nE o n      

(V)  If ( )h t  is a some differentiable function on   such that ( ) 0h   , then: 
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 (5) 

Remark 3.1: Substituting 2k   into (4) we have 

2ˆ
1 (1)
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E
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Also, (5) can be represented as 

2
2ˆ
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( ( ) ( )) (1 (1)).
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n I


 




     

Remark 3.2: The estimator ˆn  is asymptotically optimal (see, for instance, Leh-

mann, 1983), that is for all asymptotically normal   estimators which satisfy 

condition (II) with asymptotic variance 2( ( )) ,   the following inequality holds: 

1 2 2 2ˆ( ) lim [ ( ) ] lim [ ( ) ] ( ( )) .n n n nI E n E n         
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4. THE CONFIDENCE INTERVALS OF PARAMETRIC FUNCTIONS 

We consider the questions about estimators and their properties for some 
“useful” functions of the index .  Before that, let us prove the following Lemma: 

Lemma 4.1: The function ( )I   of the model (2) admits the following representa-
tion  

1( ) { ( ( ; ))},I Var U s X        (Var means Variance), 

where 1 1
1 1 1

1
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 is a 

contribution function of 1X  for the stable law (1), and 0 ( )I    .  

Proof. It is readily seen that 
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such that keeping in mind the representation  
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we have (compare to Farbod, 2011) 

2
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It is obvious ( ) 0.I    To prove 1( ) { ( ( ; ))} ,I Var U s X     it suffices to 
show that 
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which is met obviously. The Lemma 4.1 is proved. 
Let us now find the asymptotic confidence intervals for parametric function 

( )h  of  : 

Theorem 4.1: If the regularity conditions 1-5 are satisfied for the model (2) and 
( )h t  is some differentiable function on   such that ( ) 0h    (  is a true value 

of parameter), then the  -level (0< <1) asymptotic confidence interval for 
( )h   is 
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where 
2

z  is 
2


-level critical point for standard normal law. 

Proof. From property (V) of Theorem 3.1 one can obtain that if n   
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Then, by the Continuity Theorems (Borovkov, 1998) we have  
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such that 
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when .n   The proof is complete.  
We consider some useful parametric functions: 

Example 1. Let ( ) ( ).h I   Then by Theorem 4.1 we have the following 
  level asymptotic confidence interval for ( )I  : 
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where (see Lemma 4.1)  

1 1( ) 2 [ ( ( ; )), ( ( ; ))].I Cov U s X U s X         (Cov means Covariance). 

Example 2. Let 
( ; )

( ) ( ; ) ,x
s x

h p x
c


    where {0}x N   is fixed. Again us-

ing Theorem 4.1 we obtain: 
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where 
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x t
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     where (0, )t   . 

From Theorem 4.1 we have: 
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Example 4. Assuming 
0
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    By Theorem 4.1 we have: 
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where 
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Example 5. Let us have 
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  Using Theorem 4.1 we have: 
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5. CONCLUSIONS 

In this paper, the asymptotic confidence interval for the parametric function 
( )h   has been obtained (Theorem 4.1). We also considered some useful para-

metric functions of the index parameter   (Examples 1-5). With the help of 
Theorem 3.1, Lemma 4.1 and Theorem 4.1 the asymptotic confidence intervals 
for such parametric functions have been proposed.  

This theoretical results may be applied for obtaining the respective statistical 
inferences in Bioinformatics, and in other theories where the Stable Laws are used, 
for example, in Financial Mathematics and Economics.  
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SUMMARY 

On the confidence intervals of parametric functions for Distributions Generated by Symmetric Stable 
Laws 

In this paper we consider “Discrete Distributions Generated by Standard Symmetric 
Stable Densities” (DSSD in short) arising in Bioinformatics (Astola and Danielian, 2007). 
Using well-known asymptotic properties of the maximum likelihood (ML) estimators we 
obtain the respective asymptotic confidence intervals for some useful parametric func-
tions of the DSSD. 




