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CENTER SAMPLING: A STRATEGY FOR ELUSIVE 
POPULATION SURVEYS 

F. Mecatti, S. Migliorati 

1. INTRODUCTION 

Center sampling (CS) has been developed in Italy (Blangiardo, 1996) in connec-
tion with surveys on immigrant population formed by regular and irregular peo-
ple. The term regular refers to people with a residence permit according to Italian 
law while the term irregular indicates people illegally residing in the country. 

With this kind of population, traditional finite population sampling is not al-
lowed essentially due to the following reasons. The population size N is unknown 
and exhaustive lists of the target population are not readily available so that label-
ing is not possible; in addition units usually require to remain anonymous and in 
general there is a detectability problem. 

CS has been successfully employed in a survey conducted by the Statistical Of-
fice of European Communities and it has been applied at a local level since the 
first half of the 1990s by the Regional Research Institute of Lombardia, Italy. 
However, few systematic theoretical results exist in the literature to support em-
pirical findings (Blangiardo, 2000). One of the aims of the present paper is to 
formalize a theory for CS. 

The essence of CS relies upon the Italian immigrant habit to congregate in par-
ticular places for social contacts, health care, religion, leisure or simply for every-
day needs. The basic assumption is that every immigrant can be found, with some 
regularity, at one or more of these places. Therefore, the target population can be 
assimilated to the users of these sites which are then the natural and perhaps the 
only way to observe units. We shall refer to these sorts of places as “Centers”. 
For instance a mosque could be a center for Muslim people, the train station is a 
usual meeting point for homeless and irregular immigrants, but also a partial list 
from any official source (e.g. a hospital, a police office or a register of birth or 
marriages and so on) could be considered as a center. Notice that the framework 
described is also suitable to deal with problems different from the immigrant one, 
for instance homelessness as it is accounted for in Dennis and Iachan (1992). Al-
though it does not seem possible to give a formal definition of centers, neverthe-
less they have the following characterization. Though they are usually spread all 
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over the geographical area of interest, they have been identified purposively or by 
means of previous surveys, they are a finite number, say L, they usually overlap 
and they cover the entire target population. 

Some appreciable analogies with multiple frame pattern, as originally proposed 
by Hartley (1974), are evident: centers might be treated essentially as frames, sin-
gularly incomplete and together covering the entire target population. Neverthe-
less, multiple frame survey can be viewed as a particular case of CS: due to gener-
ality of center’s definition – as showed by the examples proposed above – both 
center sizes and overlapping among centers have to be assumed unknown. Thus 
multiple frame survey and CS are equivalent only if a particular definition of cen-
ter is stated, i.e. when incomplete lists with known sizes are used, while CS is 
more general than multiple frame survey in all the other cases where centers are 
not necessarily incomplete lists. 

Moreover, the number L of centers is usually taken greater than 2 in order to 
reach an adequate coverage. Consequently, dual frame estimators such as those pro-
posed by Hartley (1974), Lund (1968), Fuller and Burmeister (1972), Skinner and 
Rao (1996), Lohr and Rao (2000) are not trivially adaptable in the context of CS. 

In this article an estimation methodology capable of handling the CS frame-
work is developed. We focus on the estimation of the mean  of a quantitative 

or dichotomous characteristic; this seems the natural choice instead of the total, 
traditionally considered in the finite population literature, since both the popula-
tion size N and center sizes are assumed unknown.  

In Section 2 the formal context and a general estimation theory for CS is pre-
sented along with an unbiased estimator for  and its exact variance. General 

results of Section 2 are particularized in Section 3 to the case of simple random 
sampling and a suitable variance estimator in a closed and simple form is pro-
vided. Some practical remarks and the optimum allocation of the sample size 
among centers subject to linear cost constraints are discussed in Section 4. In Sec-
tion 5 single and double CS designs are considered. Finally, two illustrative appli-
cations to both artificial and real data are implemented in Section 6. Algebraic 
computations are gathered in the Appendix. 

2. A GENERAL THEORY FOR CENTER SAMPLING

Let y be the characteristic of interest and let 1{ , , , , }i NY Y Y  define the 

population values, i.e. the parameter of the population if the units were identifiable 
(Cassel, Särndal and Wretman, 1977, p. 6). 

In the CS framework units are not identifiable by a label and, in general, no al-
gebraic mapping between units and centers exists. 

Consequently it is proposed to join the traditional pair “set of labels” and 

“population parameter” to the N L  matrix U  where each thil  cell equals one 

if unit i  attends the thl  center and zero otherwise as described in the following 
scheme ( 1, , ;  1, ,i N l L )
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 set of  population 
 labels  U   parameter 

  1 … l … L

1        
1Y

       

i        
iY

       

N        
NY

1N
…

lN
…

LN

The center size lN  ( 1)lN  is given by the sum of each column and it is as-

sumed unknown in the general case. Moreover 
1

L

ll
N N  due to overlap-

ping. The rows of U  are named profiles. Profiles inform about each unit’s atten-
dance at each of the L centers and they are a fundamental tool in CS. Each unit 

has a unique profile which is one of the 2 1L  possible ordered collections of L-
tuples of the digits zero and one, whereas the null L-tuple is not a profile. The set 
U of such L-tuples always exists as the number of centers L is known; vice versa, 
since units are unidentifiable, the set of labels is unattainable. Besides, profiles are 
very important practical tools since they can be assumed observable by allowing 
units to remain anonymous. Particularly, profiles can be observed by simply ask-
ing the sampled unit the question «Which other centers – among the L consid-
ered and besides the one where the subject has been sampled – are you used to 
attend?». As a consequence a many-to-one mapping from the set of labels to the 
set U exists. 

Let ,( 1, , 2 1)
r

LN r
u

, denote the (unknown) number of units in the 

population with profile 1[ , , , , ]r r rl rLu u uu  where ru U and let 

{ ;   1, , }
rrqY q N

u
 be the subset of the parameter of the population with re-

spect to units with profile ru  according to the highlighted mapping. Hence, as r

varies from 1  to 2 1L , the sets { ;   1, , }
rrqY q N

u
 form a partition of the 

parameter of the population as outlined below 
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Notice that when centers are incomplete lists, i.e. in the multiple frame context, 
the sets of units with the same profile ru are domains (Hartley, 1974). 

Notice also that when the thl  element of profile ru  equals 1 (i.e. 1rlu  mean-

ing that all of units with associated profile ru  frequent the thl  center) then the 

entire set { ;   1, , }
rrqY q N

u
 belongs to the thl  center. 

The object of estimation is the population mean 

2 1

1 1

1
L

r
N

rq

r q

Y
N

u

.

Let
1

L

r rll
m u denote the number of centers attended by units with profile 

ru  so that it indicates the multiplicity of the thr  profile (Birnbaum and Sirken, 

1965; Thompson, 2002 , p. 173). 
By using profiles and multiplicity,  can be expressed as 

2 1

1 1 1

1 1
L

r
NL

rq rl

l r qr

Y u
N m

u

.

We define 

2 1

1 1

1 1
L

r
N

l rq rl

r ql r

Y u
N m

u

 (1) 

as the mean of y in the thl  center adjusted for multiplicity and by defining l lN N

as the weight of the thl  center with respect to the population size we have: 

1

L

l l

l

 (2) 

Notice that the weighted sum (2) has no counterpart with respect to the center’s 

means l i li l
Y N yet due to the overlap among centers. Whereas expression 

(2) is the convenient form for  we will consider in discussing estimation. 
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Indeed, dealing with (2) where the overlapping is definitely embodied into the 
terms l  by using profiles and multiplicities, we can rely upon general results 

from stratified sampling theory. Hence, if an estimator ly  unbiased for l  under 

a general sampling design is given, then 
1

L

l l

l

y y  is an unbiased estimator for 

 and, by assuming independence of samples among centers, it has variance 

2

1

var( ) var( )
L

l l

l

y y .

Furthermore, in real applications as cited in the introduction, it is usually pos-
sible to get information about the weight of centers, i.e. although the absolute 
sizes N  and lN  are unknown, the ratio l  is known, for instance from past 

data or as reported by experts and witnesses on the field. 
However, in constructing ly  the analogy with stratified sampling does not 

help any more: as a matter of fact in the CS framework sampling is from overlap-
ping centers, not from profiles so that some ad hoc adaptations are still called for. 

Under a general sampling design, let us now refer to the sample from the thl
center.

As noticed in the introduction, the population units are not identifiable by a 
label but only through their profile hence let ,rq l  be the first order inclusion 

probability of the thq  unit with profile ru  attending the thl  center. 

Data are formed through the simultaneous observation of both y values and 
units’ profiles. 

Let ,r lf
u

 be the sample frequency of profile ru  and let ,{ ; 1, , }
rrs ly s f

u
 be 

the set of sample values observed at units with profile ru .

As outlined above with respect to the population and by using a similar argu-

ment, as r  varies from 1  to 2 1L , the sets ,{ ; 1, , }
rrs ly s f

u
 form a partition 

of the sample data from the thl  center. 
We propose the following unbiased estimator for l

,2 1

1 1 ,

1 1
L

lr
f

rs
l

r sl r rs l

y
y

N m

u

 (3) 

Estimator (3) is a linear combination (across profiles) of standard Horvitz-
Thompson estimators (within profiles). Thus unbiasedness is readily proved. 

Nevertheless, we can not carry this analogy further and rely upon known re-
sults about Horvitz-Thompson estimator basically because, as sampling is from 
centers, data are not still independent with respect to profiles. 
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By introducing the random variable ,rq lI  as the sample membership indicator 

of value rqY  in thl  sample (Särndal et al., 1992, p. 36), with , ,E( )rq l rq lI  and 

, , ,E( )rq l tv l rqtv lI I  denoting first and second order inclusion probabilities, esti-

mator (3) has exact variance 

2 1
,

1 1 ,

1 1
var( ) var

L
r

N
rq rq rq l

l

r ql r rq l

Y u I
y

N m

u

2 1
,2

2 2
1 1 1 1, , ,

1 1 1
1 1

L
r r r

N N N
rqrv l

rq rl rq rv rl

r q q vrq l rq l rv ll r
v q

Y u Y Y u
N m

u u u

(4)

2 1 2 1
,

1 1 1 1 , ,

1
1

L L
r t

N N
rqtv l

rq tv rl tl

r t q vr t rq l tv l
t r

Y Y u u
m m

u u

In expression (4) it is noticeable a first addend, in square brackets, related with 
the variability within profiles and dealing with the usual variance of the Horvitz-
Thompson estimator but also an additional term clearly related with the variabil-
ity across profiles .r t

3. SIMPLE RANDOM SAMPLING WITHIN CENTERS

3.1 Estimation

In real applications, like the immigrant surveys mentioned in the introduction, 
CS has been performed by selecting a simple random sample of fixed size ln

from the thl  center where lN  units are present almost surely ( 1,..., )l L . This 

can be accomplished by sampling independently in each center at the moment of 
“maximum crowding” as suggested by the “nature” of the center. As an example, 
the shelters where homeless people can find a bed for the night will be visited at 
bedtime, the worship locations will be visited while rites are being officiated and 
so on. Obviously this is assured when centers are incomplete lists. Furthermore, 
we will assume l  is known for all centers. 

Some issues regarding the above assumptions and how to proceed in absence 
of frame, will be addressed in Section 4. 

According to the assumed sample design, the collection 

,{ , 1, , 2 1; 1, , }
r

L
rq lI r q N

u
 is a Multihypergeometric random variable 

with
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2
, ,E( ) E( ) l rl

rq l rq l

l

n u
I I

N

, ,

( 1)
E( )

( 1)
l l rl tl

rq l tv l

l l

n n u u
I I

N N
 (5) 

,var( ) 1l rl l rl
rq l

l l

n u n u
I

N N

Yet, by remembering (2) and substituting in expression (3), an unbiased estima-
tor for  is 

2 1
,

1 1 1

LL L
r ll

l l

l l rl r

y
y y

n m
 (6) 

where ,

, 1

lr
f

r l rss
y yu  is the sample total within the thr  profile in the thl  center. 

It follows from (4) that the variance of the estimator (6) is given by 

222 2 1 2 1

2
1 1 1 1

( ) 1
var( )

( 1)

L L
r

NL
rq rll l l r rl

l r q rl l l l rr

Y uN n Y u
y

n N N N mm

u

 (7) 

where 
1
r

N

r rqq
Y Yu  is the population total within the thr  profile (see the Ap-

pendix). 
In order to obtain an estimator of var( )y  given by (7), we first note that 

,
2

2 22 1 2 1
,

2 2
1 1 1 1

1
( 1)

L L
lr

fL
r ll l rs

l

l r s rl rl l r

yn y
n

N mn n m

u

 (8) 

is unbiased, as shown in the Appendix. A conservative variance estimator, 
not depending on lN  (assumed unknown), is obtained from (8) by replacing 

(1 )l ln N  by 1: 

,
2

2 22 1 2 1
,

2 2
1 1 1 1

ˆ( )
( 1)

L L
lr

fL
r ll rs

l

l r s r rl l r

yy
v y n

mn n m

u

. (9) 

3.2 Comparison with dual frame estimators

If the center sizes, lN , are known, we can obtain an estimator of the total, 

N , from (6) as 
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1

ˆ
L

l l

l

y N y  (10) 

Estimator (10) agrees with the estimator suggested by Hartley (1974) for a dual 
frame survey, assuming that partial lists with known sizes are used as centers. Set-

ting L=2 we have 2 1 3L  profiles: 1 (1, 0)u  referring to units belonging to 

center 1 only, 2 (0, 1)u  referring to units belonging to center 2 only and 

3 (1, 1)u , with multiplicity 2, referring to units attending both center 1 and cen-

ter 2, namely the overlap domain in the dual frame literature. Hence the estimator 
(10) reduces to 

1 2
1,1 3,1 2,2 3,2

1 2

1 1
ˆ

2 2

N N
y y y y y

n n
. (11) 

This estimator coincides with Hartley’s dual frame estimator with a simple 
choice of weights, p=q=1/2. 

Estimator (11) has been compared with some of its major competitors (Me-
catti, 2002). Theoretical considerations and simulation results indicate that estima-
tor (11) is a feasible alternative with respect to inferential properties. Moreover, 
from a practical point of view, estimator (11) may be preferable over the usual 
dual frame estimators due to its simplicity, the availability of an unbiased variance 
estimator in a simple and closed form, and its immediate generalisation to any 
number of frames as given by (10). 

4. REMARKS

4.1 Optimum choice of sample sizes ln

We first assume the simple cost function 
1

L

ll
n n  where n  is the overall 

sample size specified on the basis of available resources. 
In order to pursue the optimum allocation we first need the variance of y, say 

2 , to enter var( )y  as given by (7). The matter of concern is obviously the vari-

ability “within centers” since we sample from every center. Hence we suggest (see 
the Appendix) the following decomposition 

22 1
2 2

2
1 1 1

22 1
2 2

2
1 1 1 1 1

1

1 1

L
r

L
r

NL
rq rl

l l

l r q r

NL L L
rq rl rk

l l

l l k r q r
k l

Y u
N

N m

Y u u
N

N N m

u

u

 (12) 



Center sampling: a strategy for elusive population surveys 545

where the first addend in (12) clearly refers to the variability within center. In-
deed, if there were no overlapping among centers, the first addend in (12) reduces 
to the usual variance within stratum. 

On the other hand, the second addend in (12) has to do with the variability 
across centers: the first two terms in it are a measure of variability across centers 
adjusted for multiplicity while the third one is a sort of correction due to overlapping. 
In fact, if there were no overlapping among centers it is easy to prove that, in the 
second addend in (12), the third term vanishes while the remaining two terms re-
duce to the usual variance among strata. 

Notice that the first addend in (12) is always non negative but can be greater 

than 2  so that the second addend in (12) can be negative. This is because 2  is 
a definitely theoretical quantity since the parent population is not gathered in a 
unique set but it is spread over a number of overlapping centers. For instance, the 

first term in (12) results greater than 2  if 0l l  i.e. when the N  units are 

quite scattered over the L centers. This yields a variability within center greater 

than the theoretical 2 . Viceversa, if 1l l  each center is similar to the 

population of N units and, as a consequence, the variability within center results 

closer to 2 .
Let us focus on the variability within center. By the same argument used for 

the mean in Section 2, we set 

22 1
2 2

2
1 1

1
L

r
N

rq rl

l l

r ql r

Y u

N m

u

 (13) 

denoting the variance of y in the thl  center adjusted for multiplicity. Yet, the first ad-
dend in (12) reduces to the simpler form 

22 1
2 2

2
1 1 1 1

1
L

r
NL L

rq rl

l l l l

l r q lr

Y u
N

N m

u

 (14) 

which agrees with the structure of equation (2). 
Resorting to (14), equation (7) can be expressed as 

2
2

1

var( )
1

L
l l l

l l

l l l

N N n
y N

N N n
 (15) 

and ignoring the negligible factors ( 1)l lN N , (15) finally reduces to 

2
2

1

1
var( ) 1

L
l

l l

l l

N
y N

nN
.  (16) 
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Equation (16) is somewhat adequate since center’s overlapping is definitely 

embodied into the variances 2
l  defined by (13). The structure of (16) is now 

meeting the traditional form of the variance of the estimator of the population 
mean in the stratified random sampling (Thompson, 2002, p. 120). Accordingly, 
the optimum allocation can be identified by minimizing the following function 

2

1

( , , ) 1
L

l
l L l l

l l

N
f n n N

n

with respect to 1 , , Ln n  subject to the constraint 
1

L

ll
n n . This yields to the 

well known solution 

1

( 1, , )l l
l L

l l

l

n n l L . (17) 

Furthermore we can rely on a more realistic cost function assuming that the 
cost of sampling differs from center to center and the total cost is described by 

the linear relationship 0 1

L

l ll
c c c n where 0c  is a fixed cost and lc  is the cost 

per unit observed in the thl  center. It is well known that the optimum is achieved 
with

0

1

( ) ( 1, , )l l
l L

l l l ll

n c c l L
c c

. (18) 

Accordingly to the stratified sampling case, when no auxiliary information 

about 2
l  is available, a proportional allocation should be recommended, i.e. 

1
, ( 1, , )

L

l l ll
n n l L .

4.2 Circular systematic sampling 

In real applications of CS it is not unusual to deal with centers such as a city 
square, a rail station or other territorial places for which no frame is available or 
can be realistically built. 

In these practical cases CS is performed by taking a bunch of people for inter-

viewing, say the first ln  the interviewer is able to meet in the thl  center. 

Such a procedure can be formally treated as circular systematic sampling since the 
following issues yield: 

– the lN  units present (almost surely) in the thl  center at the moment of in-

terview can be considered in random order; 
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– the first unit met/interviewed can be considered as randomly selected out of 
the lN ;

– the remaining 1ln  units taken for interviewing besides the first selected in 

the random order, can be considered as systematically selected with unitary skip. 
The resulting sample of size ln  is circular systematic according to the Singh and 

Singh’s Multiple Distance approach (Hedayat and Sinha, 1991, p. 238) by putting 
{1, , 1}lu n  and 1. Hence it is equivalent to simple random sample as the 

inclusion probabilities are the same under both methods (Särndal et al., 1992, p. 77). 
As a consequence, the results in Section 3 remain unaltered and data can be treated 
as a simple random sample. In addition, a sufficient condition for second order in-
clusion probabilities to be positive is 2 1l ln N  (Hedayat and Sinha, 1991, p. 

238) i.e. center sample size has to be sufficiently large.

4.3 Hypotheses about lN  and l

Up to now we have dealt with the two assumptions 
i) the weights l lN N  are known for each center; 

ii) at the moment of selection all of the lN  units attending the thl  center are 

present almost surely. 
As these hypotheses could be difficult to respect in the applications, some 

practical indications are now provided. 
Assumption i) can be relaxed by resorting upon suitable estimation procedures 

already proposed in the literature (Migliorati, 2003). To start with notice that, in 
order to estimate weights l , simply an estimator for the relative profile size 

r
N N

u
 is required since 

2 1

1

L

rl rlr
N u N

u
. In fact, although estimating the 

profile size 
r

N
u

 is quite a difficult task, estimating the corresponding relative 

sizes might be easier. A solution consists to rely upon the expected value of the 

frequencies ,r r l

l

f f
u u

, ( 1, , 2 1)Lr , for they involve many quantities 

and the profile sizes are among them. So as r  varies from 1  to 2 1L , such ex-
pected values form a set of equations which can be simultaneously solved with 
respect to the unknown 

r
N

u
. Since the equation related to the unitary profile is 

not independent from the others, only a solution for the relative profile sizes 
/

r
N N

u
 can be found. Although dealing with a non linear system, so that an 

unbiased estimator for /
r

N N
u

 does not exist, we can achieve an estimator by 

solving it numerically and then substituting the unknown expected values with 
the corresponding sample values.  

With respect to assumption ii), if not all of the lN  units attending the thl  cen-

ter could be supposed present almost surely while drawing the sample, a possible 
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way to attack the problem relies on the following observation. If '
l lN N  units 

are actually present then it is possible to define a new set of unknown parameters 
'

, 1, , 2 1r

r

r

L
N

r
N

u

u

u

 and 
'

, 2, ,
l

l
N

l

N
l L

N
 expressing the detect-

abilities of units (Thompson, 2002, p. 185). Notably 
ru
 is the probability to de-

tect (i.e. that a unit is present at the moment of drawing) a unit with profile ru

and
lN  is the probability to detect a unit in the thl center. With those new 

parameters the fact that the exact number of units present at moment of 
sampling is unknown is concerned. On the other hand, they are nuisance quanti-
ties which have to be eliminated from the analysis. A possible solution is to con-
sider them as random variables and by incorporating any information about them 
in a suitable prior distribution finally integrate them out. This leads to an inte-
grated likelihood function, i.e. the fundamental inferential tool of this type of 
approach. 

The analysis of consequences on the estimation process is currently under in-
vestigation.

5. OTHER SAMPLING DESIGNS

5.1 Single-stage CS design 

In real applications, in order to achieve a complete population coverage it 
could be necessary to consider a large number of centers each with low sizes. In 
this case, a feasible sampling design seems to be a single stage sampling where n

centers out of L are selected under a specified design and a census of units at-
tending each selected center is then executed. Yet data are formed through the 
simultaneous observation of both y values and units profiles. 

With the purpose of estimating the population mean , the census of the thj

selected center ( 1, , )j n  provides the real value of the mean adjusted by mul-

tiplicity j  as defined by (1). Hence 

1

n
j j

j j

y  (19) 

where l  stands for the first order inclusion probability of center l, is an unbiased 

estimator for  according to known results from single stage cluster sampling 

(Hedayat and Sinha, 1991, p. 204). 
Notice that we can resort to standard results from single stage cluster sampling 

since overlapping among centers is overcome by means of multiplicity and pro-
files embedded into l .
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Notice also that a similar set up has been considered by Maiti, Pal and Sinha 
(1993) with the purpose of estimating the population size N. It is easy to see that 
estimator (19), by simply substituting the sample total instead of the sample 
mean, generalizes Maiti, Pal and Sinha’s estimator of N to the case of the total of 
any quantitative characteristic y and it coincides when y’s values are substituted by 
1’s. Furthermore, profiles are observable by insuring units to remain anonymous 
while although this seems an important issue in real applications, it is not guaran-
teed by the Maiti, Pal and Sinha procedure. 

If a simple random sampling design is adopted in selecting centers, estimator 
(19) reduces to 

1

n

j j

j

L
y

n
. (20) 

According to standard results of single stage cluster sampling, estimator (20) 
has variance 

2
2 2

1

( )
var( )

( 1)

L

l l

l

L L n
y

n L L
 (21) 

which can be unbiasedly estimated by 

2
2 2

2
1

( )
ˆ( )

( 1)

n

j j

j

n yL L n
v y

n L L
. (22) 

5.2 Double-stage CS design 

Due to budgetary constraints or in case of a number of centers substantially 
large in size or when centers are expected to be essentially homogenous with re-
spect to the characteristic y observed, it might not be practical to completely 
enumerate a selected center. In such situations we can take advantage of subsam-
pling into the selected centers. 

By combining results as proposed in Sections 2 and 5.1, a double stage CS can 
be performed. 

Particularly, under a specified design, n out of L centers are selected at the first 
stage with inclusion probabilities l , ( 1,..., )l L . At the second stage, jn  units 

are drawn from the thj  selected center, under a specified sampling design not 

necessarily equal to the first stage one. 
By using profiles, ,rq j  represents the second stage inclusion probability of the 

thq  unit with profile ru  attending the thj  center selected at first stage. 

Referring to the thj  center selected at first stage the following estimator 
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,2 1

1 1 ,

1 1
L

jr
f

rs
j

r sj r rs j

y
y
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 (23) 

is unbiased for j  under the second stage sampling design. Hence 

1

n
j

j

j j

y
y  (24) 

is an unbiased estimator for  according to standard theory for two-stage cluster 

sampling (Hedayat and Sinha, 1991, p. 209). 
Notice that estimator (24), by simply substituting sample totals instead of sam-

ple means, agrees with Maiti, Pal and Sinha’s estimator for the population size N
under two-dimensional sampling (Maiti, Pal and Sinha, 1993). As noted in the 
previous section, estimator (24) generalises Maiti, Pal and Sinha’s estimator of N
to the case of the total of any quantitative characteristic y and it coincides when 
y’s values are substituted by 1’s. 

Resorting to standard results from two-stage cluster sampling, estimator (24) 
has variance 

2 2 '
' '

1 1 ' 1 '
'

1
var( ) 1 1

L L L
ll

l l l l l l

l l ll l l
l l

y

2

1

var( )
L

l
l

l l

y  (25) 

where 'll  stands for joint inclusion probability of the pair of centers l and l’ at 

the first stage selection and var( )ly  agrees with the general form (4). 

Finally, by assuming ' 0, ( ' 1, , )ll l l L , an unbiased estimator of the 

variance (25) is given by 

2 2
' ' '

1 1 ' 1 ' '
'

1
ˆ( ) 1 1

n n n
j j j j j j jj

j j jj j jj j j
j j

y y y
v y

2

1

ˆ( ).
n

j

j

j j

v y  (26) 

6. ILLUSTRATIVE APPLICATIONS

In order to illustrate CS under operational aspects an example in the simple 
case of three centers (Section 6.1) based upon artificial data and a real application 
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(Section 6.2) based on data from a real survey on immigrant population con-
ducted in Milan, Italy, in 2002 are now proposed. 

In both cases the sample design is simple random sampling with proportional 
allocation. 

6.1 An example 

Let us consider a simple example involving 3L  centers. 

Then we have 2 1 7L  possible profiles with multiplicities rm  as shown in 

Table 1. 

TABLE 1 

Profiles and multiplicities for 3L

         r 
l

1 2 3 4 5 6 7 

1 0 0 0 1 1 1 1 
2 0 1 1 0 0 1 1 
3 1 0 1 0 1 0 1 

rm 1 1 2 1 2 2 3 

An artificial population of size 15N  has been randomly generated as well as
a quantitative characteristic y taking values over the integers between 16 and 60. 
The matrix U  of the profiles in the population, the population values iY , the 

center sizes lN  and the center weights l lN N  are summarised in Table 2. 

TABLE 2 

Artificial population with N=15

      i 
l

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 lN l

1   0   1   0   1   1   1   1   1   1   1   1   1   1   1   0 12 0.800 
2   1   0   1   0   1   0   1   1   1   0   1   0   0   1   0   8 0.533 
3   0   0   0   0   0   0   0   1   1   0   1   0   0   0   1   4 0.267 

iY 40 39 27 52 56 24 50 44 37 49 36 47 38 44 43   

The population values have been partitioned according to profiles as shown in 
Table 3. 

TABLE 3 

Partitioning the population by profiles 

r ( 1, , )
rrqY q N

u r
N

u rY

1 43 1   43 
2 40     27 2   67 
3  0     0 
4 39     52     24     49     47      38 6 249 
5  0     0 
6 56     50     44 3 150 
7 44     37     36 3 117 

15N 626rr
Y
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The above framework allows us to compute the means of each center adjusted 
for multiplicities l  and the population mean  as given by (1) and (2) respec-

tively:

1 2 330.25, 22.625, 20.5, 41.733

Let us now consider a sample of size 10n  proportionally allocated, i.e. 

1 5n , 2 3n  and 3 2n . Sample data are reported in Table 4. 

TABLE 4 

Sample data

l ln

1 sampled labels             8          11          7           1           4 
sampled values           49         38         37         39         24 
profiles                     1 0 0     1 0 0     1 1 1     1 0 0     1 0 0 
r                                  4           4           7           4           4 

5

2 sampled labels             8           7           2 
sampled values           44         36         27 
profiles                     1 1 0     1 1 1     0 1 0  
r                                  6           7           2 

3

3 sampled labels             3           1 
sampled values           36         44 
profiles                     1 1 1     1 1 1 
r                                  7          7 

2

10n

In Table 5 sample data are partitioned according to profiles. 

TABLE 5 

Partitioned sample data 

       r 
l

                          1               2                3               4                5               6                   7 ly ln

1
rsy                    –                –                –    (24, 38, 39, 49)      –               –                (37) 

,r ly                  0                0                0            150                0               0                37 

,r lf
u

                 0                0                0                4                0              0                 1 

32.467 

5

2
rsy                    –            (27)              –                –                –             (44)            (36)  

,r ly                  0              27                0                0                0              44              36 

,r lf
u

                 0                1                0                0                0                1                1 

20.333 

3

3
rsy                    –               –                 –                –                –               –           (36, 44) 

,r ly                  0              0                0                0                0                0              80 

,r lf
u

                 0               0                 0                0                0                0                2 

13.333 

2

10n

With the above results we can compute the sample value of estimator y  as given 

by (6) 40.373y

while the variance var( )y  as given by (7) results var( ) 24.893y
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Finally, the sample value of the unbiased variance estimator as given by (8) and 
the corresponding conservative estimate (in parenthesis) as given by (9) are 

ˆ( ) 18.895, (32.015)v y

6.2 An application to real data 

During the last 15 years, illegal immigration has become a key problem in Italy. 
Essentially because of its geographical position, immigrants come from Easthern 
Europe, from Northern Africa and from Middle East but also from Asia and 
from Latin America. The norther Italian regions, which are the heart of the eco-
nomic and productive activities, attracted the greater part of immigrants and the 
necessity of quantifying such a phenomenon has consequently increased. Particu-
larly in Lombardia, surveys based on CS have been carried out during the 1990s 
and in 2000 a permanent Observatory for Integration and Multi-Ethnicity has 
been founded. Hence, since 2001 an annual survey is conducted as a main tool to 
plan territorial and migration interventions in the region. Data from a survey car-
ried out in 2002 is now concerned as an application.  

Budgetary constraints led to 8000n . The sharing out among the different 
regional districts took into account activity and magnitude criterions under the 
constraint that at least 400 immigrants were sampled in each district. 

We shall focus on n 1100 immigrants sampled in Milan under a simple ran-
dom CS design with proportional allocation. Weights /l lN N  were deduced 

from 2001 data so that l l ll
n n .

Furthermore 13L  centers were purposively identified to cover the popula-
tion of interest as listed in Table 6. 

TABLE 6 

Centers

l Center type Sample size ln /l lN N

1 Reception centers 2     40 0.0992 
2 Welfare service centers 2     31 0.0769 
3 Language courses 1   152 0.3772 
4 Religious centers 3   139 0.3449 
5 Medical treatment centers 1     84 0.2084 
6 Legal and work aid centers 1     60 0.1489 
7 Cultural associations 2     36 0.0893 
8 Service and information centers 2   143 0.3549 
9 Public offices 2     70 0.1737 
10 Fun centers 2-3   111 0.2754 
11 Malls and ethnic shops 3     67 0.1663 
12 On the street 3   163 0.4045 
13 Private houses 3       4 0.0099 

Total  1100         2.73 

Center identification took into account administrative, social and private needs 
of immigrant people. Table 6 shows different typologies of aggregation points 
such as partial lists (type 1), centers where a list is not available nevertheless some 
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form of enumeration is possible (type 2) and also centers lacking of any frame 
and information about sizes (type 3). Notably, type 1 concerns centers where 
people is requested to give his/her personal data and usually refers to legal immi-
grant while type 2 refers to centers where attending people are given a ticket or 
where a fixed number of services is supplied (e.g. meals or beds). 

The questionnaire contemplates 32 items in addition to the profile request. We 
shall focus on two quantitative characteristics: the age ( )y A  and the monthly 

private income ( )y I  expressed in Euros. Notice that the number of possible 

profiles is 2 1L =8191 so that profiles’ arrangement can not be listed and some 
computational support is also needed. Implementation has been fulfilled by 
Mathematica 4.1. 

TABLE 7 

Estimates of center’s means adjusted for multiplicity (Age and Income) 

l  1 2 3 4 5 6 7 8 9 10 11 12 13 

( )ly A     8.64   15.90   16.85   13.01   10.62   15.54   24.79   10.15   14.11     6.29   10.95     8.40   6.92 

( )ly I 160.3 172.5 254.2 244.7 174.7 126.9 213.9 198.5 189.5 163.1 263.3 189.3 68.5 

For both characteristics in each center, the unbiased estimator (3) for the cen-
ter mean adjusted for multiplicity has been computed and estimates are reported 
in Table 7. Notice that, although center’s means adjusted for multiplicity have lit-
tle to do with center’s mean due to overlapping, comparisons are allowed so that 
they might be a useful source of information for demographic analyses as it is 
possible to discriminate among the different centers and to better understand 
their features. For instance, it clearly emerges that younger people need reception 
services (center 1) or look for amusement (center 10) while older people feel inte-
grated enough to be involved in cultural activities (center 7). 

By applying (6) and data in Table 7, the population’s mean estimates result  

( )y A 32.7435 ( )y I 553.304.

Finally, conservative variance estimates obtained from the unbiased estimator 
(8) by neglecting the finite population corrections (1 )l ln N for centers of type 

3 only are 

ˆ( ( ))v y A 0.3226 (0.5131) ˆ( ( ))v y I 282.199 (418.82)

where numbers in parenthesis are obtained by neglecting all the finite population 
corrections as given by (9). 
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APPENDIX: PROOFS 

A.1 Proof of equation (7)

By substituting in (4) simple random sample inclusion probabilities yields 
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A.2 Proof of unbiasedness of (8)

Expression (8) can be rewritten as 
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by using sample membership indicators, results 
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Recurring to (5), its expected value has the form 
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which coincides with var( )y  as shown in A.1. This yields to unbiasedness of (8). 

A.3 Proof of equation (12)
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RIASSUNTO

Campionamento per centri: una strategia per indagini relative a popolazioni elusive 

Il campionamento per centri è stato recentemente proposto per condurre indagini rela-
tive a popolazioni per le quali non esistono una o più liste esaustive e le unità sono in via 
naturale aggregate in ambienti o centri sovrapposti. E’ quanto accade, ad esempio, per la 
popolazione straniera illegalmente presente in una nazione. Tale tecnica di campionamen-
to è già stata utilizzata con successo sia in Italia (in particolare in Lombardia) sia a livello 
europeo. Tuttavia gli aspetti metodologici della medesima sono stati sviluppati solo par-
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zialmente. Il presente lavoro propone una formalizzazione di tali aspetti e fornisce uno 
stimatore corretto per la media di un carattere quantitativo presente sulle unità della po-
polazione nonché la sua varianza esatta. Inoltre vengono proposti: una stima della varian-
za corretta nell’ipotesi di campionamento casuale semplice, l’allocazione ottima della nu-
merosità campionaria nel caso di vincoli di costo lineari, l’estensione a disegni di campio-
namento a due stadi e, infine, una discussione critica degli aspetti operativi della tecnica 
considerata.

SUMMARY

Center sampling: a strategy for elusive population surveys 

Center sampling is useful in finite population surveys when exhaustive lists of all units 
are not available and the target population is naturally clustered into a number of overlap-
ping sites spread over an area of interest such as, for instance, the immigrant population 
illegally resident in a country. Center sampling has been successfully employed in official 
European surveys; nevertheless few systematic theoretical results have been given yet to 
support empirical findings. In this paper a general theory for Center sampling is formal-
ized and an unbiased estimator for the mean of a quantitative or dichotomous characteris-
tic is proposed together with its exact variance. A suitable estimator for the variance, un-
biased under simple random sampling, is also derived and the optimum allocation of the 
sample size among centers subject to linear cost constraints is discussed. Other sampling 
designs, useful under operational aspects, are also considered. 


