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SEASONAL AUTOREGRESSIONS WITH REGIME SWITCHING 

R. Paroli, L. Spezia 

1. INTRODUCTION 

Autoregressive processes can be extended to model non-linear and non-
normal time series by assuming that different autoregressions, each one depend-
ing on a latent regime, alternate according to the regime switching, which is 
driven by an unobserved Markov chain. These models, widely known as Markov 
switching autoregressive models (MSARMs), have been introduced in the 
econometric literature by Hamilton to study economic and financial time series 
(Hamilton, 1989, 1990, 1993). Krozlig (1997), Kim and Nelson (1999), and 
Franses and van Dijk (2000), provide generalizations and applications of this class 
of models. Bayesian analysis of MSARMs has been developed among others by 
McCulloch and Tsay (1994), Chib (1996), Billio et al. (1999), Frühwirth-Schnatter 
(1999, 2001). 

MSARMs are discrete-time stochastic processes {Yt;Xt}, so that {Xt} is a la-
tent, or hidden, finite-state Markov chain and {Yt}, given {Xt}, satisfies the or-
der-p dependence and the contemporary dependence conditions: we have a se-
quence of observed random variables {Yt} depending on the p previous observa-
tions, whose conditional distributions depend on {Xt} only through the contem-
porary state, or regime, of the Markov chain. 

Let {Xt} be a discrete-time, first-order, homogeneous, ergodic Markov chain 
on a finite state-space SX with cardinality m (SX={1,…,m}). =[ i,j] is the (m m)
transition matrix, where i,j=P(Xt=j|Xt-1=i), for any i, j SX and any t=2,…,T; 

=( 1,…, m)´ is the stationary distribution, so that ´= ´ ; xT=(x1,…,xT)´ is the 
sequence of the states of the Markov chain and, for any t=1,…,T, xt has values in 
SX.

Hence, given the order-p dependence and the contemporary dependence con-
ditions, the equation describing MSARMs is 

Yt(i) = i +
=1

p

(i) yt- + Et(i), (1) 
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where Yt(i) denotes the conditional variable Yt when Xt=i, for any 1 t T and for 
any i SX, and Et(i) denotes the Gaussian noise Et when Xt=i, with zero mean and 
precision i (Et(i) (0; i)), for any i SX, with the discrete-time process {Et},

given {Xt}, satisfying the conditional independence and the contemporary de-
pendence conditions. Any signal i, any precision i and any autoregressive coef-
ficient (i), for any  = 1,…, p, depend on the current state i of the Markov chain, 
for any i SX. From equation (1), the conditional distribution of Yt(i), given the p
previous observations and the current hidden state, is normal with mean 

i+
=1

p

(i) yt-  and precision i, while the marginal distribution of Yt is a mixture of 

normals, whose weights are the stationary distribution of the hidden Markov 
chain. 

A special MSARM with a seasonal component is proposed here in the Bayes-
ian framework, giving rise to Seasonal MSARMs (SMSARMs). The paper is or-
ganized as follows. SMARMs will be described in Section 2; Bayesian estimators 
of the parameters of SMARMs will be obtained in Section 3, by means of a 
Markov chain Monte Carlo (MCMC) algorithm; finally in Section 4 our method-
ology will be illustrated by analysing a data set about air pollution, also tackling 
selection of the identifiability constraint, model choice and forecasting. 

2. SEASONAL MARKOV SWITCHING AUTOREGRESSIVE MODELS

2.1. The basic model 

Our aim is the analysis of seasonal time series characterized by periodic varia-
tions with period s and we assume that different seasonalities occur, according to 
the regime switching. Seasonal components, depending on the hidden states, are 
modelled by parameters h(i), for any i SX and for any h=1,…,s, under the con-

straint
h=1

s

h(i) =0. 

It serves our purposes to replace the time t subscript with the d and h sub-
scripts, so that t=(d - 1)s+h, where d=1,…,D = T/s and h=1,…,s. Hence 
SMSARMs are 

Y[(d-1)s+h](i)= i +
=1

p

(i) y(d-1)s+h- + h(i)+E[(d-1)s+h](i). (2) 

2.2. Stationarity

A sufficient condition for the stationarity of the process (2) is that all the m
sub-processes generated by the m states of the chain are stationary, that is, for any 
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i SX, the roots of the auxiliary equations zp- 1(i)zp-1-…- p(i)=0, where z is a com-
plex variable, are all inside the unit circle. 

To automatically satisfy the constraint on any i=( 1(i),…, p(i))´, we 

reparametrize i in terms of the partial autocorrelations ri=(r1(i),…,rp(i))´ of any 

sub-process, for any i SX, according to Barndorff-Nielsen and Schou (1973), and 
Jones (1987). 

The functional relation between ri and i, for any i SX, is recursively defined, 
for J=1,…,p:

g
1
1(i) =r1(i)      if J=1

g
J
K(i) =g

J-1
K(i) - rJ(i) g

J-1
J-K(i) , for any K=1,…,J-1

g
J
J(i) =rJ(i)       if J>1         (3) 

i=(g
p
1(i), g

p
2(i), …, g

p
p(i))´.

Our inference will be based on the logarithmic transformation Rj(i), which maps 
any partial autocorrelation rj(i) from (-1; 1) to , for any j=1,…,p and any i SX:

Rj(i)=ln
1+rj(i)

 1-rj(i)
.

2.3. Identification 

Model (2) is unidentifiable in data fitting: when we have m states, we have m!
ways to label them; so different models are interchangeable by permuting their 
labeling. This is the so-called label switching problem (Richardson and Green, 
1997, Celeux, Hurn, Robert, 2000, Stephens, 2000, Frühwirth-Schnatter, 2001) 
and it can be overcome by placing some parameters in increasing or decreasing 
order. In this paper the special SMSARM with decreasing precisions is analysed 
( i > j, for any i, j SX so that i < j), but the procedures we shall introduce can be 
easily adapted to any other type of constraint. In Section 4 we shall see how and 
why we can derive suitable constraints by a data-driven procedure, based on ran-
dom permutation sampling algorithm (Frühwirth-Schnatter, 2001). Here it is im-
portant only to notice that the constraint is chosen ex post after simulations so as 
to respect the geometry and the shape of the unconstrained posterior distribu-
tion, that is different identifiability constraints can be derived by different data 
sets.

Furthermore to be able to estimate the state-dependent seasonal component, 

given that 
h=1

s

h(i) =0 for any i SX, we also need that the hidden chain visits the 

same hidden state i for all the s times of any sub-period d.
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2.4. Prior distributions 

Let  be the vector of the unknown parameters and latent data of the 
SMSARM to be estimated,  

 = ( , , , R, , xD, y*)´,

where  is the vector of the m signals i,  is the vector of the m precisions i, R is 

the matrix of the m vectors Ri, i.e. R=(R1´,…,Ri´,…,Rm´)´ with 

Ri=(R1(i),…,Rj(i),…,Rp(i))´,  is the matrix of the m seasonal coefficients vectors i,

i.e. =( 1´,…, i´,…, m´)´ with i=( 1(i),…, h(i),…, s(i))´, xD=(x1,…,xd,…,xD)´ is 
the sequence of the hidden states and y* is the vector of all the missing observa-

tions y*
(d-1)s+h occuring within the sequence ysD=(y1,…,y(d-1)s+h,…,ysD)´.

All the parameters and the latent data will be estimated by simulation, by per-
forming an MCMC algorithm (except for the stationary distribution  that will be 

estimated by the equality ´= ´ ).
For our Bayesian inference, we can place independent Dirichlet priors on each 

row of ; independent normal priors on each entry of vector ; independent 
gamma priors on each entry of vector , under the identifiability constraint; inde-
pendent normal priors on each entry of matrix R; independent normal priors on 
the first s - 1 entries of any vector i. By the label switching, we need priors that 
are invariant w.r.t. the m! ways of labeling the states, so that also the posterior dis-
tribution from which we sample is relabeling-invariant. 

2.5. Posterior distribution 

The posterior distribution of  is

( |ysD, y0) = f ( , , , R, , xD, y*| ysD, y0)
f (ysD, y*| , , R, , xD, y0) f (xD| ) p( ) p( ) p( ) p(R) p( ),

where y0=(y-p+1,…,y0)´ are the initial values fixed for the p-dependence condition,  

f (ysD, y*| , , R, , xD, y0)=

=
d=1

D

h=1

s

f (y(d-1)s+h|y(d-1)s+h-1,…,y(d-1)s+h-p, , , R, , xd, y0), (4) 

by the order-p dependence and the contemporary dependence conditions, with  

f (y(d-1)s+h|y(d-1)s+h-1,…,y(d-1)s+h-p, , , R, , xd, y0)=

=
xd

2
 exp -

xd

2  y(d-1)s+h - xd
 -

=1

p

(xd) y(d-1)s+h-  - h(xd)

2
,
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for any d=1,…, D and any h=1,…, s, and  

f (xD| ) = x1
d=2

D

xd-1
,xd

 = x1
i=1

m

j=1

m

i,j
Di,j , 

by the Markov dependence condition, where Di,j is the number of couples of 
consecutive hidden states i, j. Notice that in the r.h.s. of (4) there are no missing 
observations: if one or more missing observations occur within ysD, any missing 
observation will be replaced by the corresponding simulated value y*(d-1)s+h.

3. PARAMETER ESTIMATION OF SMSARMs

The Metropolis-within-Gibbs algorithm associated with the constrained per-
mutation sampling algorithm is now developed for the special SMSARM with de-
creasing precisions, noticing that this scheme can be easily rearranged whenever 
another type of identifiability constraint is imposed. To be able to perform per-
mutation sampling, all the priors must be invariant to relabelling the states, i.e. 
their hyperparameters must not depend on the hidden states. We shall not de-
scribe in detail the iterative scheme of the Metropolis-within-Gibbs algorithm, 
that can be seen for example in Gamerman, 1997. 

Here we can analyse the generic k-th iteration of the MCMC sampler only, re-
membering that at the (k-1)-th iteration the vector (k-1) has been generated,  

(k-1) = ( (k-1), (k-1), (k-1), R(k-1), (k-1), xD(k-1), y*(k-1))´,

and the identifiability constraint on the precision has been chosen, i
(k-1) > j

(k-1),
for any i, j SX so that i < j.

1) The sequence xD(k) of hidden states is generated in block from the full con-
ditional (xD|ysD, (k-1), (k-1), (k-1), R(k-1), (k-1), y*(k-1), y0), by means of the proce-
dure proposed by Chib, 1996, based on the forward filtering-backward sampling 
(ff-bs) algorithm by Carter and Kohn, 1994, and Frühwirth-Schnatter, 1994, for 
state-space models. The ff-bs algorithm is so called because first the filtered prob-
abilities of the hidden states are computed going forwards; then the conditional 
probabilities of the hidden states are computed going backwards, sampling the 
states from the full conditional, 

(xD|ysD, , , , R, , y*, y0) =

= (xD|ysD, , , , R, , y*, y0)
d=1

D-1

(xd| xd+1, ysd, , , , R, , y*, y0).

Let d+1|d be the m-dimensional vector whose generic entry is 
P(Xd+1=i|ysd, , , ,R, ,y*,y0), for any i=1,…, m; d|d be the m-dimensional vector 
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whose generic entry is P(Xd=i|ysd, , , ,R, ,y*,y0), for any i=1,…, m; d be the m-
dimensional vector whose generic entry is P(Xd=i|Xd+1=xd+1,ysd, , , ,R, ,y*,y0),
for any i=1,…, m. The iterative scheme of the ff-bs algorithm is the following. 

1.1) Compute 

(k)
1|0= ´

(k-1)= ´
(k-1) (k-1),

that is (k-1) is the left eigenvector of the matrix (k-1)=[ i,j
(k-1)], associated with the 

eigenvalue equal to one. 

1.2) Compute 

(k)
d|d=

(k)
d|d-1 F

(k-1)
d

1´(m) (
(k)
d|d-1 F

(k-1)
d )

    and  
(k)
d+1|d= ´

(k-1) (k)
d|d,

for any d=1,…, D-1, where F
(k-1)
d =diag[

h=1

s

f(y(d-1)s+h|y(d-1)s+h-1,…, y(d-1)s+h-p, (k-1),

(k-1),R(k-1), (k-1),y0,x
(k-1)
d =1), …, 

h=1

s

f(y(d-1)s+h|y(d-1)s+h-1,…,y(d-1)s+h-p, (k-1), (k-1),R(k-1), (k-1),

y0,x
(k-1)
d =m)] and 1(m) is the m-dimensional vector of ones. 

1.3) Compute  

(k)
D|D=

(k)
D|D-1 F

(k-1)
D

1´(m) (
(k)
D|D-1 F

(k-1)
D )

(for details on the derivation of formulae at steps 1.2 and 1.3, see Hamilton, 1994, 
pp. 692-693). 

1.4) Generate x
(k)
D  from 

(k)
D|D.

1.5) Compute  

(k)
d =

(k)
d|d

(k-1)

x
(k)
d+1

1´(m) (
(k)
d|d

(k-1)

x
(k)
d+1

)

and generate x
(k)
d  from 

(k)
d , for any d=D-1,…,1.

(k-1)

x
(k)
d+1

 represents the column of 
(k-1) corresponding to the state previously generated. 
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2) Placing a gamma prior ( ; ) on any i, the parameters i
(k), for any i SX,

are independently generated from a gamma distribution with parameters 

Di
(k)

2  +

and

1
2

{d 1: xd
(k)=i} h=1

s

y(d-1)s+h - i
(k-1) -

=1

p
(k-1)

(i)  y(d-1)s+h-  - 
(k-1)
h(i)

2
 +  , 

where Di
(k) is the number of observations corresponding to the contemporary 

hidden state i in the sequence xD(k) generated at step 1). 
The entries of the vector (k) must be in decreasing order to satisfy the identifi-

ability constraint: i
(k) > j

(k), for any i, j SX, so that i < j. If (k) is not ordered, in-
stead of rejecting the vector and going on sampling till we have an ordered one, 
we introduce the constrained permutation sampling algorithm (Frühwirth-
Schnatter, 2001): we have m couples (i, i

(k)); if the i
(k)'s are unordered, we apply a 

permutation (·) to order them; consequently also the corresponding i’s must be 
permuted according to the permutation (·), (SX)={ (1),…, (m)}; finally the 
permutation (SX) is extended to the generated sequence of states xD(k), (xD(k))
=( (x1

(k)),…, (xd
(k)),…, (xD

(k))) , and to the switching-parameters previously gen-
erated, ( (k-1)), ( (k-1)), (R(k-1)), ( (k-1)), ( (k-1)), where (k-1) are obtained from 
R(k-1) by means of (3). 

Notice that if we had had a different constraint, either on the means or on the 
diagonal entries of transition matrix, its corresponding full-conditional would 
have been placed at this step. 

3) Placing a normal prior ( M; M) on any i, the parameters i
(k), for any 

i SX, are independently generated from a normal distribution with mean  

( i
(k))

{d 1: (xd
(k))=i}

         
h=1

s

 y(d-1)s+h -
=1

p

(
(k-1)

(i) ) y(d-1)s+h-  - (
(k-1)
h(i) )  + M M

(Di
(k)) ( i

(k)) + M

and precision 

(Di
(k)) ( i

(k)) + M , 

where (Di
(k)) is the number of observations corresponding to the contemporary 

hidden state i in the permuted sequence (xD(k)).
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4) Placing a normal prior ( R; R) on any Rj(i), the parameters R
(k)
j(i) , for any 

j=1,…, p and any i SX, are independently generated from the random walk R
(k)
j(i)

= (R
(k-1)
j(i) )+U, where U is a Gaussian noise with zero mean and constant preci-

sion, for any k. Then any vector Ri is accepted with probability  

( (R
(k-1)
i );R

(k)
i )=min 1,

(R
(k)
i | (k), ( (k)), ( (k-1)), (xD(k)), y*(k-1), y0, ysD)

( (R
(k-1)
i )| (k), ( (k)), ( (k-1)), (xD(k)), y*(k-1), y0, ysD)

for any i SX, where 

(R
(k)
i | (k), ( (k)), ( (k-1)), (xD(k)), y*(k-1), y0, ysD )

 exp
( i

(k))
2

{d 1: (xd
(k))=i} h=1

s

 y(d-1)s+h -
(k)
i -

=1

p (k-1)

(i)  y(d-1)s+h-  +

 - (
(k-1)
h(i) ) )

2
 - 

R

2
j=1

p

 (R
(k)
j(i)- R)2

and

( (R
(k-1)
i )| (k), ( (k)), ( (k-1)), (xD(k)), y*(k-1), y0, ysD )

 exp
( i

(k))
2

{d 1: (xd
(k))=i} h=1

s

y(d-1)s+h - 
(k)
i  - 

=1

p

(
(k-1)

(i) ) y(d-1)s+h-  +  

- (
(k-1)
h(i) ) )

2
 - 

R

2
j=1

p

 ( (R
(k-1)
j(i) )- R)

2
 . 

5) Placing a normal prior ( B; B) on any h(i), the parameters 
(k)
h(i), for any 

h=1,…, s-1 and any i SX, are independently generated from a normal distribu-
tions with mean 

( i
(k))

{d 1: (xd
(k))=i}

    (y(d-1)s+h - i
(k) - 

=1

p (k)

(i) y(d-1)s+h-  ) + B B

(D
(k)
h;i) ( i

(k)) + B

and precision 

(D
(k)
h;i) ( i

(k)) + B , 
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where (D
(k)
h;i)  is the number of observations corresponding to the contemporary 

hidden state i, recorded in time h, in the permuted sequence (xD(k)). The last en-

try of 
(k)
i , i.e. 

(k)
s(i), is obtained by difference w.r.t. the constraint 

h=1

s

h(i) =0:

(k)
s(i) = - 

h=1

s-1
(k)
h(i) . 

6) Let i =( i,1, i,2,…, i,m), be the i-th row of . Placing a Dirichlet prior with 

parameter =( 1,…, m) on i , each row 
(k)

i  , for any i SX, is independently 

generated from a Dirichlet (  + (D
(k)

i )), where (D
(k)

i )=( (D
(k)
i;1) , …, (D

(k)
i;m) ) 

and (D
(k)
i;j )  is the number of couples of consecutive hidden states i, j in the per-

muted sequence (xD(k)), for any i, j SX.

7) Every missing observation y*(d-1)s+h is generated from the normal distribution 

(k)

(xd
(k))  + 

=1

p (k)

( (xd
(k))) y(d-1)s+h-  + 

(k)

h( (xd
(k))), (

(k)

(xd
(k)))  . (5) 

Now, at the end of the k-th iteration of the MCMC sampler, the vector (k) has 
been simulated from ( |ysD,y0), if k is large enough. We shall repeat these steps 
till we have an N-dimensional sample. This sample will be used to estimate each 
entry of  by means of posterior means, but the sequence of states, estimated 
through posterior modes. 

4. APPLICATION TO OZONE DATA

An application of SMSARMs to real data will be studied in the following: we 
shall analyse the time series of the hourly mean concentrations of Ozone (O3), in 
micrograms per cubic meter ( g/m3), recorded by the air pollution testing station 
placed in Via San Giorgio, Bergamo (Italy), from April 1st, 1998, 1 a.m., to Sep-
tember 30th, 1998, 12 p.m. (4392 observations). 

The analysed data are the natural logarithms of O3 concentrations, while the la-
tent data are made up both by the sequence of the hidden states and by 549 missing 
values occuring within the observed series. In the series (Figure 1a) a daily periodic-
ity (s=24) is evident and it is confirmed by the 120 hours correlogram (Figure 1b); 
moreover the non-normality of the series emerges from the histogram of the data 
(Figure 1c). Our data set is collected in the six warmest months, because O3 is a 
substance which is not directly emitted in the air, but it forms owing to complex 
chemical reactions in the presence of solar radiation and high temperature. 
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Figure 1 – Series of the O3 hourly mean log-concentrations with the log of the attention-level (a); the 
120 hours correlogram (b) and the continuous approximation of the histogram (c) of the data plot-
ted in (a). 

We shall develop our empirical analysis in four steps: i) constraint identifica-
tion, ii ) model selection, iii ) parameter estimation, iv ) forecasting. 

The following hyperparameters have been chosen for all the models and used 
in all the four steps of our empirical analysis: 
– i,j=m I(i=j)+0.6 I(i j), for any i, j=1,…, m, where I(A) is the indicator function 
that takes the value of 1 if A is true and the value of 0 otherwise, i.e. the probabil-
ity of persistence is greater than the probability of transition; the probability of 
persistence is about 0.7 and it slowly decreases as the number of states increases; 
– M=ln(180/2) and M=0.3, i.e. the concentrations of O3 are in the middle of the 
tolerance interval defined by the attention-level (180 g/m3);
– = =0.5, i.e. each precision is assumed a priori to follow a gamma with mean 
1 and variance 2, leading to low variabilty within each state; 
– R=0 and R=0.1, i.e the prior information on any Rj(i) is quite vague; 
– B=0 and B=0.1, i.e the prior information on any h(i) is quite vague. 

4.1. Constraint identification 

At the beginning of our analysis we have to investigate the consistency of the 
cardinality of the state-space of the hidden Markov chain and to select some suit-
able identifiability constraint. By plotting the couples of the outputs of the esti-
mates, obtained via unconstrained Metropolis-within-Gibbs algorithm performed 
associated with random permutation sampling (Frühwirth-Schnatter, 2001), we 
can check if there are as many groups as the hidden states and if these groups can 
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suggest special ordering in their labeling. When the MCMC sampler runs uncon-
strained, it takes advantages from random permutation sampling to explore the 
whole support of the posterior distribution and the sampling Markov chain ran-
domly switches from the current subspace, defined by the current labeling, to one 
of the other (m! - 1): w.r.t. the procedure described in Section 3, the permutation 

(·) is selected not to respect a special constraint, but it is randomly generated at 
each iteration. 
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Figure 2 – Some outputs of unconstrained Metropolis-within-Gibbs algorithm with random permu-
tations for p=2 and m=2 (a; b), m=3 (c; d), m=4 (e; f), m=5 (g; h). 
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We can compare the outputs of thirty competing models, henceforth said 
SMSAR(m;p), which differ for the cardinality of the state-space of the hidden 
Markov chain (m=1,…,5) and for the order of the autoregressive process 
(p=0,…,5). By graphically analysing the outputs of the unconstrained 
SMSAR(m;p), first we can notice that, for any p, m=4 and m=5 are not consistent 
with the data we are studying, because four or five groups do not emerge in any 
plot (Figures 2e - 2h), hence we shall develop our analysis for m=1;2;3 only. After 
that we can select the constraint on the precisions ( i > j, for any i, j SX, so that 
i < j) because the decreasing ordering is evident in any graph (Figures 2a - 2d). 
Decreasing precisions is a reasonable constraint, because when the low hidden 
state occurs, the variability of O3 data depending on it is low and the concentra-
tions of pollution are also low; by contrast when the high hidden state occurs, the 
variability of O3 data depending on it is high and the concentrations of pollution 
are also high. 

4.2. Model choice 

Model choice will be performed by means of Bayes factors (Kass and Raftery, 
1995) in which the marginal likelihoods, i.e. the normalizing constants of the pos-
terior densities, are computed according to Chib (1995), and Chib and Jeliazkov 
(2001), through the relabeling of the hidden states by means of constrained per-
mutation sampling. 

The natural logarithm of the marginal likelihood, lnf (ysD| y0), is estimated in a 
special point ( *, *, R*, *, *) , the posterior mode of ( , , R, , ) , and we ob-

tain the estimate ln f̂  (ysD| y0):

ln f̂  (ysD| y0) = ln f ( ysD| *, *, R*, *, *,y0) + ln p( *, *, R*, *, *) +   

-ln ^( *, *, R*, *, *| ysD, y0). (6) 

The first expression in the r.h.s. of (6) is 

ln f (ysD| *, *, R*, *, *,y0) = 

=
d=1

D

h=1

s

  ln 
i=1

m

f (y(d-1)s+h| y(d-1)s+h-1,…, y(d-1)s+h-p, *, *, R*, *,y0, xd=i)

)P(Xd=i|yd-1, *, *, *, R*, *,y0)  (7) 

where P(Xd=i|yd-1, *, *, *, R*, *, y0), for any d=1,…, D and for any i=1,…,m,
is the filtered probability (see Section 3). 

The second expression of r.h.s. of (6) becomes 

ln p( *, *, R*, *, *) = ln p( *) + ln p( *) + ln p(R*) + ln p( *) + ln p( *)

and the third can be decomposed as 
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ln ^( *, *, R*, *, *| ysD, y0) =  

=ln
1
N

k=1

N

 ( (R(k);R*) q(R(k);R*|ysD,y0, (k), ( (k)), (k), (k), (xD(k)),y*(k)))  + 

-ln
1
N

k=1

N

(R*;R(k)) +ln 
1
N

k=1

N

( *|ysD,y0, ( (k)),R*, (k), (k), (xD(k)),y*(k)) + 

+ ln 
1
N

k=1

N

( *|ysD,y0, *, ( (k)),R*, (k), (xD(k)),y*(k))  +  

+ ln 
1
N

k=1

N

( *|ysD,y0, *, ( (k)),R*, *, (xD(k)),y*(k))  +  

+ ln 
1
N

k=1

N

( *|ysD,y0, *, R*, *, *, (xD(k)),y*(k)) , 

and estimated using 6·N extra-iterations, labelled by k, of the MCMC sampler, where 
q(R(k);R*|ysD,y0, (k), ( (k)), (k), (k), (xD(k)),y*(k)) is the probability density function (pdf )

of multivariate normal with mean R
(k)
j(i) and precision matrix U evaluated in R

*
j(i);

(R(k); R*) =min  1; 
(R

*
i | (k), ( (k)), (k), (xD(k)), y*(k), y0, ysD )

(R
(k)
i | (k), ( (k)), (k), (xD(k)), y*(k), y0, ysD )

(R*; R(k)) =min  1; 
(R

(k)
i | (k), ( (k)), (k), (xD(k)), y*(k), y0, ysD )

(R
*
i | (k), ( (k)), (k), (xD(k)), y*(k), y0, ysD )

.

Notice that all the values, labelled by k, are drawn from their respective full 
conditionals, except those used to build (R*; R(k)) which are drawn from the 

multivariate normals R
(k)
j(i)=R

*
j(i)+U, for any j=1,…, p and i=1,…, m.

When a current observation y*(d-1)s+h is missing, its corresponding pdfs in (7) are 
replaced with 1, for any i=1,…, m. Hence, we introduce in the recursive computa-
tions of the filtered probabilities the powers of the transition matrix, which, by 
the Chapman-Kolmogorov equations, represent a skip of the missing observa-
tion. By contrast, when missing observations occur among the p previous obser-
vations, they are replaced by the expected values 

E(Y(d-1)s+h|yd-1, *, *, *, R*, *,y0) = 

=
i=1

m

 E(Y(d-1)s+h|yd-1, *, *, *, R*, *,y0,xd=i) P(Xd=i|yd-1, *, *, *,R*, *,y0),

for any i=1,…, m.
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From the values of the marginal likelihoods in Table 1, we can notice that the 
SMSAR(3;2) is the best among all the competing models. 

TABLE 1 

Marginal likelihoods of the competing SMSARMs 

m\p 0 1 2 3 4 5 
1 -5148.514 -2349.522 -2377.124 -2263.395 -2363.223 -2350.491 
2 -3767.218 -1819.074 -1816.076 -1753.605 -1797.981 -1656.859 
3 -3457.887 -1651.769 -1410.689 -1746.917 -1559.064 -1527.177 

4.3. Parameter estimation 

Now we can deal with the results we obtained for the best model, SMSAR(3;2). 
The estimates of the transition matrix of the hidden Markov chain are 

=
335.0514.0151.0

044.0714.0242.0

039.0227.07340.

,

from which we have the estimate of the stationary initial distribution, by ´= ´ ,

=(0.466; 0.476; 0.058)´,

while those of the parameters of the three Gaussian pdf are 

i i i 1(i) 2(i)

1 0.701 18.769 0.832 -0.001 
2 0.558   4.006 0.862 -0.039 
3 0.830   0.333 0.496  0.160 

where the i's have been obtained by 

i R1(i) R2(i)

1 2.390 -0.001 
2 2.379 -0.078 
3 1.359  0.324 

and

i

i\h 1 2 3 4 5 6 7 8 
1  0.055  0.030  0.199  0.026 -0.123 -0.299 -0.363  0.002 
2  0.078  0.235  0.133  0.018 -0.110 -0.600 -0.557 -1.564 
3 -0.620 -0.456 -0.372 -0.580 -1.338 -0.242  0.510 -0.253 
         

i\h 9 10 11 12 13 14 15 16 
1  0.153  0.219  0.200  0.232  0.189  0.134  0.111  0.098 
2  0.175  0.356  0.288  0.255  0.246  0.180  0.213  0.097 
3  0.562  0.507  0.434  0.475  0.662  0.367  0.104  0.195 
         

i\h 17 18 19 20 21 22 23 24 
1  0.044 -0.023 -0.150 -0.312 -0.256  0.015  0.032 -0.037 
2  0.038 -0.077 -0.433 -0.486 -0.121  0.073 -0.022  0.031 
3  0.136  1.628 -0.390 -0.551 -1.640  0.667  0.388  1.415 
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We can see the precisions are ordered and the variability within each state in-
creases as the unobserved level of pollution increases. Moreover the O3 hourly 
dynamics of the series, described by the i’s, presents peaks which become more 
evident as the unobserved level of pollution increases (Figure 3a). 

The dynamics of the hidden states can be observed in Figure 3b, where we 
have the sequence of the posterior modes of any generated state xd, for any 
d=1,…, D: state 1 underlies the observations with the lowest level of pollution, 
while state 3 underlies those with the highest level of pollution. 

The probability of persistence in states 1 and 2 is greater than the probability 
of transition; by contrast the probability of persistence in state 3 is less than the 
probability of transition, that is the mean time of persistence in the dangerous 
state is the lowest one. 
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Figure 3 – The daily component from 5 a.m. to 5 a.m. (a); the sequence of the hidden states (b); the 
sequence of the residuals (c); actual and fitted values of the sub-series of days 8 - 12 (d), 98 - 102 (e), 
172 - 176 (f). 
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Within the sequence of observations, we have 549 missing values which can be 
grouped in three sets: 37 missing observations gathered in 21 small blocks of 4 
data at maximum, 311 missing observations gathered in 8 medium blocks whose 
number of elements is between 13 and 75 and 1 huge block of 201 observations. 
Missing observations are simulated according to (5): we can see from Figures 4a 
and 4b these simulated values correctly fill the series according to the dynamics of 
the twenty-four hours. 

0

2

4

1 24

0

2

4

1 24

Figure 4 – Actual (triangles) and fitted (circles) values of days 7 (a) and 161 (b). 

In order to assess the fitting accuracy of SMSAR(3;2), the fitted and actual val-
ues are analysed through two descriptive statistics: the root mean squared error 
(RMSE) and the mean absolute error (MAE). We obtain RMSE=0.406 and 
MAE=0.259: by these values we can argue that the fitting ability of the model is 
satisfactory. By comparing three subseries of five days (Figures 3d - 3f) we can 
see the dynamics of the fitted values respects the dynamics of the real data. 

Another interesting result of our analysis is the comparison between observed 
and fitted values with regards to the concentrations of O3 exceeding the atten-
tion-level (180 g/m3). In the observed series there are 37 values greater than the 
attention-level, splitted in 10 days, and SMSAR (3;2) captures 5 day out of 10 in 
which the threshold is exceeded. 

Residual analysis has been graphically performed through histograms and QQ 
plots (Figure 5), showing that for any state the normality of the residuals is re-
spected.

4.3. Forecasting 

The model we fitted by the series of O3 concentrations recorded from April 
1st, 1998, 1 a.m., to September 30th, 1998, 12 p.m., is now used to obtain the 
one-day ahead hidden state predictions and the k-hour ahead pollutant predic-
tions (1 k 24), for the data from April 1st, 1999, 1 a.m., to September 30th, 
1999, 12 p.m.; this problem is tackled considering future values as missing. 

Let d* be the generic future day (d*>D); we have to forecast the future state 
xd*, given the observations up to day d*-1 (y24(d*-1)), and the future observations 
y(d*-1)24+1,…,y24d*, given the future state and the observations up to k times before, 
assuming parameter  as known because it has just been estimated. 

Gibbs sampling procedure for k-hour ahead forecasting is the following. 
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Figure 5 – Continuous approximations of the histograms and QQ plots of the residuals, given state 
one (a; b), two (c; d) and three (e; f). 

1) Generate state xd* through ff-bs algorithm by means of the observations y24(d*-1),
considering the observations y(d*-1)24+1,…,y24d* as missing values, that is their cor-
responding pdfs are replaced with 1. 

2) For any h=1,…,24, generate the missing observations y(d*-1)24+h,…,y(d*-1)24+h+k-1,
given the observations y(d*-1)24, the previously forecasted values y(d*-1)24+1,…,
y(d*-1)24+h-1 and the hidden state contemporary to any prediction; then collect 
y(d*-1)24+h+k-1 as the k-hour ahead prediction. 

3) Repeat steps 1) and 2), for any d*>D.

To evaluate the forecasting ability of our model we used the O3 spring and sum-
mer 1999 data to compare them with all the k-hour ahead predictions. We also 
considered different values for k (k=1,2,3,4,5,6,9,12,18,24) and, for any k, we 
compared the predictive MAE (PMAE) and the predictive RMSE (PRMSE): by 
Table 2 we can notice the forecasting statistics slowly increase, as k increases. 
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Figure 6 – The sequence of the predictive residuals for k=1 (a); k=6 (b); k=12 (c); k=24 (d). 

In Figure 6 we can see the dynamics of the predictive residuals for 
k=1;6;12;24.

Finally we are interested in the ability of the model to forecast the exceedings 
of the attention-level (180 g/m3), given that the alarm-level has never been 
reached. The threshold has been exceeded by our observations nine times in five 
different days: one hour in days 276, 293 and 294; three hours in day 277 and 
295. For any k up to six, we have that the threshold is never exceeded by the pre-
dictions, by contrast when k is greater than six the predictions exceed the thresh-
old more times than real data do. 

TABLE 2 

Predictive mean absolute error (PMAE) and predictive root mean square error (PRMSE) 
computed between the actual values and the k-hour ahead predictions 

k 1 2 3 4 5 6 9 12 18 24 
PMAE 0.550 0.571 0.617 0.666 0.713 0.754 0.838 0.864 0.881 0.883 
PRMSE 0.798 0.822 0.872 0.932 0.987 1.036 1.133 1.171 1.194 1.198 

5. CONCLUSIONS

We recurred to Bayesian seasonal Markov switching autoregressive models to 
analyse and predict a time series about the mean concentrations of ozone, whose 
dynamics is characterized by seasonality, non-normality and non-linearity. Model 
choice, inference and forecasting have been performed through Metropolis-
within-Gibbs algorithm, considering the label switching problem, which has been 
efficiently tackled by permutation sampling. 
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The models we considered can be extended in many ways (i.e. time-varying 
transition matrices, multivariate pollutants and multisite recording analysis) to ap-
ply them more extensively to air quality control; these extensions concern the au-
thors’ current researches. 
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RIASSUNTO

Autoregressioni stagionali con cambiamenti di regime 

I modelli autoregressivi con cambiamenti di regime costituiscono un valido strumento 
nell'analisi di serie temporali non lineari e non normali. In questo lavoro un particolare 
modello autoregressivo, con cambiamenti di regime di natura markoviana e con una com-
ponente stagionale dipendente dallo stato della catena di Markov latente, viene studiato 
per l’analisi di serie temporali periodiche. La selezione dei vincoli di identificabilità, la scel-
ta del modello migliore, la stima dei parametri e dei dati latenti e la previsione dei valori 
futuri sono affrontati utilizzando algoritmi di tipo Metropolis-within-Gibbs, che tengono 
conto anche dei differenti ordinamenti possibili degli stati latenti. La metodologia propo-
sta è illustrata con l’analisi della dinamica di un inquinante dell'aria. 

SUMMARY

Seasonal autoregressions with regime switching 

Markov switching autoregressive models (MSARMs) are efficient tools to analyse non-
linear and non-normal time series. A special MSARM with a hidden state-dependent sea-
sonal component is proposed here to analyse periodic time series. We present a complete 
Metropolis-within-Gibbs algorithm for constraint identification, for model choice and for 
the estimation of the unknown parameters and the latent data. These three consecutive 
steps are developed tackling the problem of the hidden states labeling, by means of ran-
dom permutation sampling and constrained permutation sampling. The missing observa-
tions occurring within the observed series and the future values are respectively estimated 
and forecasted considering them as unknown parameters. We illustrate our methodology 
with an example about the dynamics of an air pollutant. 


