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MULTIAUXILIARY INFORMATION WITH RANDOM NON-RESPONSE
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1. INTRODUCTION

It is well known that in the theory of sampling the precision of estimate is usu-
ally increased by the use of some auxiliary variables correlated with the variables
under investigation. Ratio, product, regression estimators and their several gener-
alizations have been discussed in literature. These estimators use information in
the form of known population means of the auxiliary variables. Srivastava and
Jhajj (1981) suggested a family of estimators which use not only the information
of the known population mean of the auxiliary variable, but also use the informa-
tion of its known population variance. The family of estimators of population

- 1 &
mean Y :NZYO ; of a finite population of size N, suggested by Srivastava
J=1
and Jhajj (1981) is defined by:
Jr = Jot(a,b) )

_ 1 7 _ 1 7 .
where 7, =— E Joj» X1 == E x;; are the sample means of size #» drawn by
=0 :
J=1

J=1
7

simple random sampling without replacement, %2«1 =(n _1)712(% y —%,)> is an
J=1

unbiased estimator of population variance Sil of the auxiliary character x, and

X, denotes its known population mean, @ = 9_61/}_(1 , b= xil /Si and #(a,b) is a

function of (a,/) such that #(1,1)=1 and satisfies certain regularity conditions as

given in Srivastava and Jhajj (1981).
A generalized version of the family (1.1) is given by

jT:T(jO’d7b) (12)
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where T(e) is a function of (J,,4,6) such that T(Y,,1,1)=Y,

T,(T, 1,1 = 2

0

I =1 and satisfies certain regularity conditions. It has

been shown that the asymptotic minimum MSE of 7, and 7, are the same. Us-
ing information on X, and § i , Upadhyaya and Singh (1985) suggested a family

of estimators of population ratio R = 170/?1 , Y, #0 as:
R, = Ri(a,b) (1.3)

where R = 70/ (3 #0) is the conventional estimator of R, 7, is the sample
mean of the study variable y,, 4(a,b) is a parametric function of (a,) such that

h(1,1)=1 and satisfies certain regularity conditions. A family of estimators wider

than lib is defined as:
R, =H(R,a,b) (14)

where H(e) is a parametric function of (ﬁ,a,b) such that, H,(R,1,1)=K, and
satisfies certain regularity conditions. It has been shown that the asymptotic
minimum MSEs of IA{Z/ and RH are the same. Quite often information on many
supplementary variables are available in the survey which can be utilized to in-
crease the precision of the estimate. Olkin (1958) has considered the use of multi-
auxiliary variables, positively correlated with the variables under study to build up
a multivariate ratio estimator of the population mean Y. Following Olkin’s

method of estimation several estimators using multiauxiliary variables have been
proposed by various authors; for instance, see Raj (1965), Rao and Mudholkar
(1967), Srivastava (1971), Tuteja and Bahl (1991), Agarwal and Panda (1994),
Singh and Rani (2005-2006), Tailor and Tailor (2008) etc. In this paper we suggest
a family of estimators for population ratio, product and mean when information
about population means and variances of 7 >1 auxiliary variables are available.
The properties of the suggested family are also discussed in the presence of ran-
dom non-response. In this context we refer to Tracy and Osahan (1994), Singh
and Joarder (1998), Singh ez a/. (2000, 2007), Dubey and Uprety (2008), Gamrot
(2008), and Harel (2008).

2. NOTATIONS

We assume that information on  auxiliary variables X,,X,,.., X are avail-
able for all the units in the population. Let U ={U,,U,,...,Uy} denote the popu-

lation of N units from which a simple random sample of size n is drawn without
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teplacement. Let Y|, Y}, and X denote the values of the variables Y[, Y,
and X, on the /-th unit of the population, /=1,2,3...,7;, j=12,..,N. Fur-

ther, let Doj> 1, and X denote the value of the sample, 7/=1,2,..,7;

J=1L2,..,n
We denote:
1 1 1 — 1 X - 1 &
EOZ_ZJO':%:_Z%'a’_‘,‘:_Z X oz_z Yz_z 1/
n5 / ni5 / n'5 v NS NS /
_ 1 N _ n _ _ 7 _
X=X 5, == 2 00, =30 6, = (=07 2 (0, =30
= = =

o= =07 ey =% s, = =D Y (0, = T0) (0, = 1)
/=1

=

S, ==DTY (0, = TNy =%, 5, = =17 (O = I, — ),
J=1 J=1

N

55, =( 12( TR D =<N—1>*1Z<Y1

52 S (NS1TYN, — K, S, =(N—1) Z( L =T, -,

j=1
[\j

S e =(N=DTY (Y, =YX, - X)),
/=1

N

th‘ :(N_l)ilZ(Yl/ _YD(Xg _}?i)> C» S / 0> :Sj] /le and
J=1
Cl =52 /X, i=12,m.

Further let p, -, p, ., p,. and p . denote the correlation coefficients

between (4, 1), (Jo>%;), (J1,%;) and between the variables (x; x,) respec-
tively, i #k=1,2,...m

Define:  #,=%,/X,,  i=12.,m  and  u=( )/(5I_),
i=m+Lm+2,..,2m

Let # denote the column vector of 2 elements #,u,,...,4,,. Supetsctipt T

over a column vector denotes the corresponding row vector.
Defining:

S =7,/Y,~1,6,=7,/Y, -1, &, =u,—1, i=1,2,..2m; and

T
& =(&,6,6,,)
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we have:

E(8,)=E(5,)=0, E(g)=0 Yi=12,..2m;

E(5)=0C’ |, E(5))=0C3 , E(5,6)=0p, ,C,C,, E@&)=0a,,,

i=12,..,m,

=12,...

E(e})=0C? | i=12,.,m; E(8,¢,)=0a,, ,i=12,

9”7’
E(gl.z) 249}/%% =0(B,(x)=V,i=m+Lm+2,..,2m;

E{(S,—ad)e;}=0(a,, —aa, )=0a,,i=12,m;

JoXi

E(g,e,)=0p,,C.C. =0a,__ , i#tk=12 ,m;

XX 2
-1
and up to terms of order 7, we have:

E(8,e)=04, _, i=m+Lm+2,..2m; E(S,6,)=04

Jox; 2 X2

i=m+1L,m+2,..,2m,
E{(6, —ad))e}=0(A, . —al, V=024, i=m+,m+2,.,2m;
E(gigk>=6fX,xk L =12 m k=m+ L, m+2,...2m,

E(se,)=06 Vs (Z,R)y=m+1,m~+2,...2m,

Where ﬂJ'UX/ _pJUX;C

Cx,; ﬂ]lk‘, :p‘)'M‘,CA C ez(l/”_l/N) ’

Jo X2
S ~ > \2 v 2
Ay =2 (Y0, =YX, = X)) /(N =1)Y,$2),
J=1

Ay, =i(Y1/ -Y)(X; —?_fz-)z/((N—DﬁSi,),

J=1

Fo =X, ~ X)X, — K, /«N ~1X,52)

/=1

and

I\T
Vin, =2 (X, = X)) (X, = X, /<<N —1)s3 82 )-1.
j:1
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Putting the above results in matrix notations, we have:
E(e)=0, E(ss" )=0D, E{(S, —ad,)e} =04,

where the vector d' =(aT :/IT)=(al,az,...,am,ﬂq,ﬂz,...,lﬂl) and the 2mx2m

matrix:

which is assumed to be positive definite. The matrices .4, F and y are of order

m X m matrices A z[‘lx,xk]’ F= [fx[xk], and y = [}/X/Xk].

3. THE SUGGESTED FAMILY OF ESTIMATORS OF R(a)

The parameter under investigation is K, = Y, / Y," , where a takes values 0,
+1, or —1. It reduces to:

i) Ry = 170/171 =R, for o =1 (Ratio of two population means)

i) Ry = Y,Y,; =P for a =—1 (Product of two population means)

(iif) R, = Y,, for @ =0 (Mean of single population)

The conventional estimator of Ry = Y, / Y, , is defined by:

A

Ry =J0/3¢, J1 #0 3.1)
which reduces to the following set of estimators:

@ li(l) =7,/ = R, for a=1 (Estimator of ratio of two population means)

(i) Ii(_l) =7, =P for a=-1 (Estimator of product of two population
means)

(iif) R(O) =7,,for a =0 (Estimator of mean of single population)

Let ¢! denote the row vector of 27 unit elements. Whatever be the sample

. . _
chosen, let (R(g)#" ) assume values in a closed convex subset, O, of the 27 +1

dimensional real space containing the point (K a) o).
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We define a family of estimators of Rig) s

RS = G(R g1y, 013,,) = G(R gy ") (3.2)

where G(ﬁ(a),u’]') is a function of (Ii(a),ﬂ”‘) such that:

G(R(yn") =R, forall R, (3.3)
and such that it satisfies the following conditions:

(1) The function G(ﬁ(a),u’]') is continuous and bounded in Q.

(2) The first and second order partial derivatives of the function G(ﬁ( a),%T)

exist and ate continuous and bounded in Q.

To obtain the minimum mean squared error (MSE) of R,(”Z), we expand the

function G(R(a),ﬂT) about the point G(R(a),eT) in second order Taylor’s series.

We obtain

dG(e )
8R(a “9
oG(e)

2 o’ 0°G(e) A T
{(R(a) @ ke, i) F2Ria) = Riay ) =€) Ry, R

+(n—e) GARG, ™" Y =e) } (3.4)

RIY = G(R e )+ (R = Ri) =l o, H=6) GV (R, ¢!

where R(*a) = R(a) + n(ﬁ(a) —R(a)) ,u =e+n(u—e), 0<n<1; G(l)(O) denote
the 2w elements column vector of the first partial detivatives of G(e) and G((Z))

denotes the 2z x 27z matrix of second order partial derivatives of G(e) with re-

spect to # . Substituting for 7,, 7, and # in terms of J,, J, and € using (3.3), we
have:

G(®)
O Ry

1 G
— 1+6,)(1+ 6, -1)— I
+ 2 {R(a) (( + (J)( + 1) ) aR(Za) |(R(a)’” )

= Ry + Ry (14 8,)(1+6,) 1) ) 76 G Rigyeh)
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. oG (e
2R ) (14 8))(1+68,)“ =)’ aﬁ(())lw o+ GAR 0 }

(3.5)

Taking expectation in (3.5) and noting that the second partial derivatives are
bounded, we have:

Theorem 3.1.
ER)) =R, +0(™)

From Theorem 3.1, it follows that the bias of the suggested family is of order

7" and hence its contribution to the MSE of RLZ) will be of order 7>

We now prove the following theorem:

Theorem 3.2. Up to terms of order 7", the MSE of }i,(,g) is minimized for

DR ,.e")=-R,Dd (3.6)
and the minimum MSE is given by
MSER) = MSE(R, )~ 0 R},yd" D™'d 3.7)
where
MSE(R(“)) =0 R(za) [Cju + a{ale - 2’0,70]1 CJ’u CJ’1 }] (38)

is the MSE of R( «) to the first degree of approximation.

Proof. From (3.5), we have up to terms of order 7",
MSER)= B[RS — R, T

= MSE(R(g)) + 0 [2R )" G (R )+ (G (Rige ) DG (Rt )]
(3.9)

which is minimized for
D(R,.c")=-R,Dd (3.10)

Substitution of (3.10) in (3.9) yields the minimum MSE of R,(,Z) as given in
(3.7). Hence the theorem.
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Theorem 3.3. Up to terms of order 7',

MSER')> MSE(R )~ 0 R}, yd" D™'d

mg

with equality holding if
GY(R e ) =R, D 4.

Any parametric function G(R( a),ﬂT) satisfying the conditions (1) and (2) can

generate an asymptotically acceptable estimator. The family of estimators is large.
Some examples are:

(1) RY =R, exp(¢’ logn) (2) RY) =R, (1+¢ (x—¢)

g mg

3 R =R, exp(¢’ (u—e)) () R\ =R, +¢" (u—e)
2m 2m
G) R =R g > w, exp((4; /w)logn,) (6) R =R, []uf
i=1 i=1

() RV =R}, /iRy +¢" (4—0)}, whete ¢ =(¢,,8,,...8,,) is a vector of

2m constants.

The optimum values of these constants which minimizes the MSE of R,(”Z) are

obtained from the conditions (3.6). The MSE of any estimator of the family (3.2)
is obtained from (3.9). From (3.7), the minimum MSE is not larger than the MSE

of the conventional estimator R( a)> since ' D7'd >0.

)

Remark 3.1. The suggested family of estimators R,(,Z reduces to:

(1) Stivastava and Jhajj (1983) estimator of ¥, :R"Y =G(7,,#"), for a =0
(2) the generalized version of Upadhyaya and Singh (1985) estimator of popu-
lation ratio R :sz) = G(R,uT) , for a =1

(3) the product estimator: ﬁfg) = G(ﬁ,ﬂT) for a=-1.

4. ESTIMATORS BASED ON ESTIMATED OPTIMUM VALUES OF CONSTANTS

Following the same approach as adopted by Srivastava and Jhajj (1983), we
suggest a family of estimators of R( a) (based on estimated optimum values of

constants) as:
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R\ =G (R " " 4.1)
where

v =D 4.2)

. . . T 1 .
is a consistent estimator of ¥~ =D 4 with:

D=\, . ,d =(a 4 ):(‘Zl’”2""’ﬂmaﬂ‘1’ﬂ'2"“’ﬂ’m)>A:[“x,xk]mx»n
F, y
: f,x X m></)1 > 7 [}/x,-xk_ ]mxm > éi/ = (&)(,xl - ﬁ)yx, ) > ﬂ‘i = (ﬂ’](,x, - 0.’/1),1& ) >

A A A A

a,. :pj,”xlC]”Cxl ,i=12,..,m;a, . = C, C', ,i=12..,m;

/A))W‘ J()X /( 70‘; ) i _1 2 o5 p,MX'
CJO :Uo/jo > C]] =5, /jl > 5y, :(”_1)712(]01 —%)(Xy -X;),
/=1
Sy = =0T n, =Ty =), 85 = (=17 D (00, — o)’ s
J=1 J=1

S = =0T (=) s == )T Y (=R i =12, m
j=1 j=1

S o, = Fo)(xy — 5,

A _ A o . . ) —j:]
ﬂj _(l i _a/lﬁx,)’ Z_m+1y”7+27""2m’ 1}’09"1 -

(n=1)7,s2,

Z(J/u = J(x; _9_51‘)2

2 =1 . oA A
= ya,. =p . C C ,i#zk=12,.,m;
X (ﬂ_l)j]fi Xk Xk i %
A Jx,-x 1
Pre =5 S, =(11) Z(x,/ )y =)
X Xk
— — 2 « _ 2 _ 2
Z(X XZ')(XK?/_X'@) Z(Xy‘_xi) (X@_Xk)
. ) —
fx.xk: _22 ’73«3%:/ _1’
(n=15, (-1 7,

G (Ii(a),uT,l/?T) is a parametric function of (R(a),ﬂT,l/}T) such that:
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G (Rt w') =Ry, forall R, 4.3)

which implies

2G (o)
. I (4.4)
(Rigyse” W)

o R(a) Riayoe ¥
56*(-) ~

Ou R(oz ot _R(a)l// (4.5)

and

26 (%) 0, 4.6)

EALUIS

Expanding the function G (Ii(a),u”‘,(/}’lv) about the point (R(a),e”‘,y/’l') in
Taylor’s series and using (4.3) to (4.6), we have

a) _ T T A 0”6 ( ) T 0”6 (.)
R =G Rty )+ Rigy =Ry ) === |(R( Lyt HE =) |ty )
, + 0G (®)
+y —v) Py |<R(a>,e"',u/’") + second order terms
=Ry + Ry (65 —ad) )+ e’ (=Ryyy) + second order terms (4.7)

Since y is a consistent estimator of y , the expectation of the second order

terms in (4.7) will be O(z™") and hence
ER\) =R, +0(™)
The mean squared error of IA{Z) up to terms of order 7', from (4.7) is

MSER\))= B[R\ =R, T = MSE(R, )~ 0 R},,d" D™d

g
which is same as (3.7). We thus have proved the following theorem.

Theorem 4.1. If the optimum values of constants in (3.6) is replaced by their con-
sistent estimators and conditions (4.5) and (4.6) hold, the resulting estimator

Ak -
nga) has the same mean squared error up to terms of order 7™, as that of op-

timum Ii(a)

myg
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5. RANDOM NON-RESPONSE AND SOME EXPECTED VALUES

If 2(=0,1,2,..,(n—2)) denotes the number of sampling units on which in-

formation could not be obtained due to random non-response, then the remain-
ing (7—%) units in the sample can be treated as SRSWOR sample from U . Since

we are considering the problem of unbiased estimation of variance of the estima-
tors of general parameter K a)> therefore, we are assuming that g should be less

than (#—1), thatis, 0<z <(7»—2). We assume that if p denotes the probability
of non-response among the (7 —2) possible values of non-responses, then g has

the following discrete distribution given by

P(g) =R w2y 5.1)
ng + 2p

where ¢=(1-p), 2=0,1,2,..,(n—2) and ﬂiZCz denote the total number of

ways of obtaining z non-responses out of the (#—2) total possible responses,

for instance, see Singh and Joarder (1998).
Let us define:

5; :7(*)/}70_1’ 51* :7;(/171 -1, ej:”: —1,and €;=#, -1,
where

L ®/XL i=12em %/X,, i=12m
"= *2 .2 . > Hi = 2 2 .
5 /5 i=m+ L m+2,..2m S /Sx, i=m+ L m+2,..,2m

i
Ni-m Xi

n=x

T *T * * * *D -1 —*\2
€ =(€,6,-45,,), € =(§,6,.,5,,) where s =(n—-3-1) Z(Xy‘ -x;)
i=1

is  conditionally  unbiased  estimator  of Sf,i (i=12,...,m) and
» S . S . s ‘
To==3)" 2 00, T =(1=%)" Xy, X =(n=) Xy, i=12,m.
J=1 j=1 =1
Thus under the probability model (5.1), we have the following results:
E(8,)=FE(5,)=0, E(€,)=E(€,)=0 forall i =1,2,....2m;

E(5)=0'C’ , E(5,°)=0C3 , E(6,6,)=6p, ,C,C,,

1



460 H.P. Singh, P. Chandra, 1.S. Grewal, S. Singh, C.C. Chen, S.A. Sedory, ].-M. Kim

0C.,i=12,.,m

E(€) =10y, =0 (By(x,)-1),
i=m+ L m+2,..,2m

. ‘a, . i=1,2,m
E(@, €)=4 ,
O, i=m+lm+2,..2m.
a*fxxl,’
. % =12, mk=m+ 1 m+2,.,2m
E(g, )= "
ik=m+1,m+2,..2m.
L a, L i=12,,m
E@, €)= .
O, i=m+tlm+2,..2m.

E((6, —ad, )& )=1 . .
O (A, . —al V=04,

JoX; D1

i=m+1L,m+2,.2m.

Oa,,i=12,.,m

E((S, —ad, Ye.)=
(0, 1) E;) {9/11-,2'27%4‘1,”7"‘2:""2”7'

0 a i=12,...m

Jox; 2

i=m+ L m+2,...,2m.

JoX;?

. Ha}x,z'=l,2,...,m
E(5 €)= o
@ <) 0 i=m+ L m+2,..2m.

nx;?

0C:,i=12,.,m

E(e;€)=107,. =0(B,(x;)—-1),
i=m+ L m+2,..,2m.
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0 fxlu\”k ’Z’ = 1,2,..,’7%;
E(ejek)z k=m+1Lm+2,...2m
nyxk,z',/é =m+1Lm+2,...2m
and
E(ee)=0a,, i*k=12.,m,

XXy 2

where

g = 11 .
ng+2p N

Putting the results in matrix notations, we have

FEE)=0, E(€€")=0'D, E{S, ~ad )e }=0'd, E(ce")=0D, and
E{(5, —ad )e}=0d.

It may be noted that if p =0 that is if there is no non-response, the above ex-

pected values coincide with the usual results. In the following sections we con-
sider three different strategies as follows:

6. SUGGESTED STRATEGY-I

We are considering the situation when random non-response exists on study
variables Y[, Y, and auxiliary variables X,,X,, .., X, . It is assumed that the

population means X, and variances § j ,(2=1,2,...,m) of the auxiliary variables

X,,X,, ..., X, are known. Thus we define a family of estimators of Ry as:

dl :](}i(*a)’”*T) > (61)

where IA{(*a) =7, / 7, is conventional estimator of Ry J (fi(*a),%q) is a para-

metric function of (R(*a),ﬂ*l ) such that

J(Ryy.e") =Ry, forall R, (6.2)

which implies that:
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2](®)
~ T, — 1 6.3
ﬁR(*a) |<R<a)’f ) (6.3)

. . .. . S P
and satisfies certain conditions as given for R,(”g) . To terms of order 7 , it can

be easily shown that:
E(d)=R,,, +0(n™) (6.4)
and

MSE(dy) = MSE(R,) +0'[2R d" JV(R ¢ )+ (O R o6 ) DUV R ,)0e )

(6.5)
where
]m)( - 5](:)| )
Rap ) 5,0 (R
and
MSE(R(,))=0'R\[C} +afaC) =2p, C, C 1] (6.6)

is the MSE of Ii(*a) to terms of order #~' . The MSE(d,) at (6.5) is minimized

for

JUR e ) =Ry Dd ©.7)
Thus the resulting (minimum) MSE of 4, is given by

min.MSE(d,) = MSE(ﬁ(*a)) ~0 R,d"D'd (6.8)

which clearly indicates that the proposed estimator is more efficient than the

conventional estimator R(*a) . Thus we proved the following theorem:

Theorem 6.1. To the first degree of approximation
MSE(d,) > MSE(R )~ 0 R,,d' D™'d
with equality holding if

JOR ey =R, Dd.
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The following estimators: 1) 4 = R(*a) exp(¢’ logn'), 2
A =I§(*a>(1+¢T(u* —e¢)) etc. may be identified as particular members of the

suggested family ;. The MSEs of these estimators can be easily obtained from

(6.5). Proceeding in a similar manner as section 4, we state the following theorem.
Theorem 6.2. The family of estimators:
di =] R ")

of R, based on estimated optimum values of constants has MSE to the first

degree of approximation equal to that of minimum MSE of 4, that is

MSE(a’l*) =min.MSE(d,) 6.9)
where min. MSE(d,) is cited in (6.8), | (R« .4"") is a function of
(}i(*a),ﬂ*T,y}*T) such that

J Ryt ") =R, forall R,

which implies that

o1 (e 2 (e o] (e
]A*( >|< 7yt =1 / s )|< sy~ Ry and ]~(* : Ry 9= 0

IR,y T v ou Ba'w oy eV

A | F
and y' = D"7'd" is the estimator of y=D"d, D' =|-————- >

*T | 7}*

KT _ AT . FET ot oak A¥ N 7" I =15 = = .
d _(ﬂ A )—(d1’ﬂ2,...,ﬂm,}p1 ,/12,...,/1”/), A —[ﬂxlx/e ],”X,,,, F _[ xxk]mxr;/:

Ak Ak N3 N Ak Ak Ak Ak AK 3 ol Ak
o= [}/X;X/e ]”1X’” > 4 Ty, T aa}’l“\’, > l" = l)’(»k} - aﬂ,hxi > Dy, = p)’(»x; C,J’o Cﬁ‘ >
* *
A ~ A S A S
Ak A * * Y, Yy
ﬂ)'lxz _’O%Xz CJ1CX1 > CJU Tk My Tk
Jo v
n—r X
* _ -1 —* —* *2 -1 —*\2
Soon = (n—z-1) Z(J/o/‘ _J’o)()/l/ ~J1)» Sy = (n=z-1) Z(J’o/ =Jo)
J=1 J=1

n—g
*

*) -1 ) %2 K * * ok A * *
J‘Jﬁ = (” X~ 1) Z(J}U ~—h ) > ’0]0/\”; = ‘f}’oxf /( ';J'(»JX,’ ) > p}’v\”i = I}’1X; /(I% ‘;Xi ) ’
J=1
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*

A =
A ¥ * * —1 —k —*2 —k k)
px,xk = ‘S‘x,xk /( jxi Jxk ) > ﬂf)hx,:(”_z_l) Z(_ij _J}O)(Xy _’X/) /(_)/O‘;x[ ) >
A

. n—z Ay A
_ -1 —* %2 ok xD Ak A * *
/,{";‘19(,-_ (7’] -~ 1) Z(JH/ —h )(Xz/ —X; ) /(J/l ‘s‘x, ) > ax,x,c_ pxlx/ch‘ CX/C >
J=1
2k * % Ak * %
Cx, = ‘S‘x, /Xi > CXL = ‘ka /Xk >
”

Ak X % % kD Kk
fx,-xk = Z(XZ/ X )(X/;/ —Xk)z/((ﬂ—z—DXf&i)
J=1
* ”7Z * 2 * 2 *2 *2
and 7. =2 (5, =%, (5, =5, [((n=3=1sls0)—1.
J=1

6.1. Special cases

For the numerical comparison of the various estimators, we consider a situa-
tion when only two auxiliary variables are available. Let 4, be an estimator mak-

ing use of the population means X, and X, as well as known population vari-

ances § i and § f,z . It can be easily seen that the percent relative efficiency (RE)

of the estimator &, with respect to the control estimator R(* «) 18 give by:

i (@A +a, Ay + 4A; + A,
A

-1
RE(d),R,,) = {A } x100% (6.1.1)
Let 4" be an estimator making use of the population means X, and X, , then
the percent relative efficiency (RE) of 4" with respect to the control estimator
R*

(a

, is given by:
A* A* -1
. +
RE@",R;,)= {A + (”HA—”ZZ)} x 100% 6.1.2)
Let d'*) be an estimator making use of the population variances § i and S jz , then

* * -1
s AL+ LA
RE(d* R, = {A + MHA—“)} x100% (6.1.3)

0

Let 47 be an estimator making use of population mean X, and population

. 2 . .
variance S of only one auxiliary variable, then
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A+ (¢,D; +a,D,)
D

-1
RE(”,R ) =[ } x100% (6.1.4)

Let 4™ be an estimator making use of only the population mean X, of one aux-

iliary variable, then

-1
2
RE(d[",R,)) = { A- g—;] x100% (6.1.5)

X1

Let 4 be an estimator making use of population variance Sil of the first auxil-

iary variable, then

B -1
RE(df‘%),&*a)):{A—ﬂﬂ“ } x 100% (6.1.6)

2 (X1
Let 4\ be an estimator making use of population mean X, and population

variance § iz of only the second auxiliary variable, then
. Dy +4,D) T
RE(d{”,R ) = [A + (“Z%D—Z“)} x100% 6.1.7)
Let 47 be an estimator making use of the population mean X, of the second
auxiliary variable, then
2

-1
RE(d",R,)) = { A —C‘Z—gl x100% 6.1.7)

X

Let d® be an estimator making use of population variance Siz of the second

auxiliary variable, then

-1
RE(41<8>,1§*®){A—/3*12 } x100% (6.1.8)

where

2 2
A= [C)’o + a(acj’l - 2'0}(»]1 CJ’U CJ’l )] > 4 = (d —aa

JoX J1x ) ?

ﬂ}‘oxl = '0;7(19“1 C]‘o CX1 ’ ﬂﬁ‘lxl = p)'lxl C)'1 Cxl > 4y = (d}‘uxz _adhxz ) >
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ﬂj’oxz = pJ’oxzc,)’ocxz > ﬂjﬁxz = pJ‘1X2C}’1 sz > ﬂ’l = (ﬂj‘um _alj’ﬁﬂ ) >

N
Ay=(A,, —ak, ), A, =2 (Y, - Y )X, - X)) /<<N )Y, 529,
/=1
al e > \2 < 2
A =2, =YX, - X)) /((N Y83,
/=1

[\T
Ay, =2 (Y0, =YX, = X,) /((N -1)Y,82)
J=1

A =S, T, - ) /<<N—1>qu;>

J=1

N

Vew, = 2(X1, = X)X, - X,) /((N—mi 5i)-1,
J=1

f— 2 —_ J—
A= CX1 A(D ﬂ’ﬁxz A(2> + fxlxl A(3) fxﬁ"z A<4)

Agy=CL (B (5)By (%) =72 )= froe, S B (52) = fr Ve )+
P, Lo Vs = Fos B (51)

Apy=a,,, (ﬂz* (2 ):B; (%)= 7;;«2 )~ fxzx] (fxlxl 132* (%)= fx]xz Yy )+
Sy Fepe Vs = Fepr B (31)

* 2 *
A(3) = ﬂxlxz (fxle ﬂZ (XZ) - f»qxz 7x]x2 ) - CX2 (fxpc] ﬂZ (Xl) - fxlxz yxlxz ) +
fxzxz (fxlxl fxzxz - fxlxz fxle )

A(4) = ﬂ»qxz (fxle }/xlxz - fxzxz ﬂZ* (Xl )) - Ciz (fxlxl 7/»([9(2 - fxlxz ﬂ; (Xl )) +
fxle (fx1x1 fxzxz - fx1x2 fxle )

A= _ﬂ1A1(1) - “XIXZAKZ) + fxlszl(S) - fx1x2A1(4)

Al(l) = Ciz (ﬂ; (Xl )ﬂ; (XZ) - yixz ) - fxzx1 (fxle ﬂ; (XZ) - fxzxz 7x1x2 ) +
fxzxz (fx2x1 7x1xz - fxzxz ﬂ; (Xl ))
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Ay =—a, (ﬂz* (> )ﬂ; ()= 7/>261x2 )~ fxle (ﬂ’Zyxlxz - /11ﬂ; (53)) +
fxzxz (AZﬁ; (Xl) - ﬂ“lyx]xz )

A1(3) =74, (fxzx] ﬂz* (x3)— fx2X2 Yy, )~ Ci (/’i’Zyxlxz - /11:3; (x2)) +
fxzxz (ﬂ’fozaq - ﬂ“lfxzxz )

A1(4) =—a 2(fx2x1 j/xixz - fxzxz ﬂZ* (Xl )) - Cjz (ﬂZﬂ; (Xl) - ﬂ”l}/aqxz ) +
fx2x1 (A’fole -4 1 fxzxz )

2
A, = CxlAzm + ”1A2(2> + fxlxl A2(3) - fx1x2A2(4)

Ayyy =—a, (B, () By (x,) = 7’§1x2 )= S, (¥, = A, (3,)) +
SMCYACHE TS

AZ(Z) = ﬂxlxz (ﬂZ* (Xl )IB; (XZ) - }/ixz ) - fx2x1 (fqu ﬂ; (XZ) - fxlxz }/xlxz ) +

ey Fp s = B2 (31) )

AZ('S) = dxpcz ( 27x1x2 ﬂ'lﬂZ (XZ )) + a (quxzﬂZ (XZ) fxlxz y»qxz ) +
fx2x2 (ﬂ’l fxlxz - 2 XX )

Mgy =y (Bo(3) =AY V¥ ay(fu Vs = fo, Bo (3)) +
S Sy = 2o frn)

A _C Asa) ﬂx1x2A3(2) %(3 fxixz 3(4)

")(l sz ( 27x1x2 /Ilﬂ; (XZ )) + a, (fxle ﬂ; (XZ) - fxzxz 7/9(1x2 ) +
fxzxz (%fxzxz - ﬂ’foz,xq )

Ay =a, . (b, — /1*1:82 () +ay(fen, By (%) = S Ve, ) F
Sy, M S, = Ao Sron,)

* 2 *
A.’)(?)) = axlxz (fxpci ﬂZ (XZ) - 7x1x2 fxzxz ) - sz (fxm ﬂZ (XZ) - 7x1x2 fxlxz ) +
fxzxz (fx1x1 fxzxz - fx1x2 fx2x1 )
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A3(4) = dx1x2 (ﬂ“lfxzxz - ﬂ’Z XXy ) - Ciz (ﬂ’lfxlxz - lfolaq ) -
a; (fxlx1 fxzxz - fxlxz fx2x1 )

2
Ay= Cxl A4(1) Ty x, A4(2) + fx1x1A4(3) + “1A4(4>

A4(1) = C>2<2 (ﬂ'lyxlxz - /13ﬁ2* (Xl )) - fxzxz (j’lfxzxz - }i’fole ) -
ap (fxle yxlxz - fxzxz ﬂ; (Xl ))

A4(2) = ﬂxlxz (2’179(1»(2 - lZﬂZ* (Xl )) - fx2x1 (ﬂ’lfxlxz - /’i’fole ) -
a (fxlxl 7x1x2 - fxlxz ﬂZ* (Xl ))

A4(’>) = daqxz (ﬂ’lfxzxz - ﬂ“fozyq ) - Ciz (ﬂ’lf»qxz - A’folpq ) -
ap (fxlxl fxzxz - fxlxz fxle )

* 2 *
A4(4) = dx1x2 (fxle yxlxz - fxzxz ﬂZ (Xl )) - sz (fxlxl 7X1X2 - fxlxz ﬂZ (Xl )) +
fxle (fxlx ) fxzxz - fx1x2 fxle )

Br(x)=B(x)=1, Bi(x)=B(x,)—1, C2 =52 |X7, C2 =82 [X3,

daqxz = pxixz Cx1 sz >

fou =3X,, - X)) /((N SDT,82),

J=1

fX1Xz :i(XL/ _}_(1)(X2;/ —}_(2)2/((1\]—1)}_(1%2)

Fon =3X, - XX, - Ky /<<N _1DR,5%),

J=1

N
fore, = 20X, = X,) /((N—1>>‘<zsi2>, AN =ClC —al,,

=

AI Sdydyn, T ”1C§2 > A; =ady ., ~ ”ch»l > AZS = ﬂ; (Xl)ﬂz* (x3)— 7’§1x2 >

A; = /127’x1x2 —/11ﬂ;(X2), AZ = 217’x1x2 _}“zﬂ;(xﬁ , Dy = Z‘lfxlxl —a B (),
D, :dlf»q»q _&Ci , D :Ciﬁ;(xl)_fxzpq » Ds :ﬂ’fozxz _“zﬂz*(xz) >

D, zﬂzfxzxz —/12Ci2 ,and D’ :Cizﬂ;(xz)_fxzzxz-
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7. SUGGESTED STRATEGY-II

Here we are considering the situation when information on study variables y,,
9, could not be obtained for g units while information on ‘#’(>1) auxiliary
variables X, X,, ..., X, are available. The population means X ; and variances

Sfﬂ,,(z’ =1,2,..,7) of auxiliaty variables X, X,,.., X, are known. Thus we

m

define a family of estimators of Rig) as
dy = S(Rig).n"), (7.1)
where § (li(*a),u’]') is a parametric function of (R(*a),ﬂ’l') such that

S(Rgye") =Ry, forall R,

which implies that

a5(e) _
O R, Ry~ ] 72

and satisfies certain conditions as given for R,(”Z) . To terms of order 7', it can
be easily shown that:
E(dy) =R, +0(™) (7.3)

and

MSE(d,) = MSE(R(,))+ 0]2R jd" S (R, .¢") +

(1) T\W\T (1) T 74
(SR e )" DR e )
where
sO N = 23 | T
(Ba') ™ ou R
The MSE(dy) at (7.4) is minimized for
SUR ¢ ) =R, Dd (7.5)

and hence the resultant (minimum) MSE of 4, is given by



470 H.P. Singh, P. Chandra, 1.S. Grewal, S. Singh, C.C. Chen, S.A. Sedory, ].-M. Kim

MSE(d,) = MSE(R(,))~6R’ \d"D™'d
! ) (7.6)
= min. MSE(d)) + (0" = 0)R(,yd" D'd

where min.MSE(d,) is given in (6.8). Now we state the following theorem:
Theorem 7.1. To the first degree of approximation
min. MSF(d,) > MSE(R(,))~0R’,,d" D™'d
with equality holding if
SRy =Ry D0
The following estimators: 1. dy) =R(, exp(¢’ logn), and 2.

dgz) = Ii(*a)(l +¢' (u—e)) etc. are the members of the suggested class of estima-

tors d,. Proceeding in a similar manner as before, we state the following theo-

rem.
Theorem 7.2. The family of estimators
dy =8 (Rigyot' W ()

of R( a) based on estimated optimum values of constants has MSE to the first

degree of approximation equal to that of minimum MSE of 4, that is
MSE(d,) = min.MSE(d,) (7.7)
where min.MSE(d,) is cited in (7.6), 5*(1%(’;),% W) is a function of

(Ii(*a) o ,1/7(T1)) such that

7 S*(o) | B
5% IRyt )T
o R(a) Ria)

5" (Rigyse" ") =Ry, forall R, which implies that 1

>

25 () 25 (%)
r 1. =—R_ v and -
o u |(R(a),6 ) R( )l// o V/(l)

|<R(a),e" )W,‘>=O and 1/7(1) =D7'4" is the

estimator of w = D™'d , whete D and d" are same as defined eatlier.
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7.1 Special cases

Let d, be an estimator making use of the population means X, and X, as
well as known population variances § i and § iz . It can be easily seen that the

percent relative efficiency of the estimator 4, with respect to the control estima-

tor R(*(Z) is given by:

-1
A x A A A A
RE(dZ,&a)):[l+(§j(ﬂl 174 2;;; Rl ﬂ x100% (7.1.1)

Let 45" be an estimator making use of the population means X, and X, , then

the percent relative efficiency (PRE) of 4" with respect to the control estimator

A

R, is give by:
0\ +a, A ]
Ak +
RE@",R,)) = {1 + [?j%} x 100% (7.1.2)

Let d5” be an estimator making use of the population variances § i and S f,? , then

* * -1

Ak A + ﬂ, A

RE(@,R,) = {1 + (i)%} x100% (7.1.3)
0

Let 4 be an estimator making use of population mean X, and population vari-

ance S il of only one auxiliary variable, then

-1
RE@,R,) = {1 + (%)%} x100% (7.1.4)

Let 4" be an estimator making use of only the population mean X, of one aux-

iliary variable, then

-1
2
RE(d5V,R )= {1-(%) A‘ZZ } x100% (7.1.5)

X1

Let 45 be an estimator making use of population variance § il of the first auxil-

iary variable, then



472 H.P. Singh, P. Chandra, 1.S. Grewal, S. Singh, C.C. Chen, S.A. Sedory, ].-M. Kim

RE(”,R/,)= 1—(EJL 71x100% (7.1.6)
S 6" ) AP, (x,)

Let 4" be an estimator making use of population mean X, and population

variance 5,52 of only the second auxiliary variable, then

-1
5 60 \(a,D; + 4,D
RE(dg(’),R(a)):PJr(a—*j%} x100% (7.1.7)

Let 45 be an estimator making use of the population mean X, of the second
auxiliary variable, then

-1
2
RE(dg),}i:a)):P—(;jAﬂéz ] x 100% (7.1.8)

X3

Let 45 be an estimator making use of population variance Sf,z of the second

auxiliary variable, then

o 2 |
RE(déE‘),ﬁ(*a)):{l—(g—*jﬁ(J x100% (7.1.9)
2 (X3

8. SUGGESTED STRATEGY-III

We are again considering the situation when information on study variables
90> ; could not be obtained for g units while information on auxiliary vari-

ables X, X,,.., X, are available for all the sample units. But the difference is

m

that population means X, and variances S , (i =1,2,...,#) of auxiliary variables

X, X,y X, are not known. With this background, we define a family of es-

timators for R(a) as:
dy =V (Riy,m"), ®.1)
where

N . *) 2 .
w;, =X, /x[-, i=1,2,..,m; and w[=(xxw)/(xxw), i=m+Lm+2,..2m,

w' = (W) sWysesy,) 5 V(l%(*a),y/’r) is a function of (ﬁ(*a),w’]') such that:
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V(Rigyne' ) =Ry forall R, 8.2)
which implies that

al(e) _
Ak ( « ,{’,T)_
) R(a) Ria)

(8.3)

and satisfies certain conditions. To terms of order n-1, it can be easily shown that
E(dy) =Ry +O(r") (8.4)
and

MSE(dy) = MSE(R(,))+ (0" = 0)2R ,yd VI (R ,).¢" )+

7 OR e ) DI VR, ] o
where
V(l)<R<a>>fT> - ﬂ;/”(;) |<R(a)-“>'v> ®.6)
The MSE(d5) at (8.5) is minimized for
V(l)(R(a) ¢! )=—RiyD'd 8.7)
and hence the resultant (minimum) MSE of 4, is given by
min.MSE(d,) = MSE(ﬁ(*a)) —(0 =O)R(yd' D'd (8.8)

which shows that the proposed class of estimators is more efficient than R(*a).

Now we state the following theorem:
Theorem 8.1. To the first degree of approximation
MSE(dy) > MSE(ﬁ(*a)) ~(0 ~O)R(,d" D"d
with equality holding if
VO®R )¢ ) ==RiyD7d.

The  following  estimators: 1. dgl) = R(* a) exp(¢’ logw), and 2.

dgz) =R(*a)(1+¢5”'(w—e)) etc. are the members of the suggested class of estima-
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tors dy. Proceeding in a similar manner as section 4, we state the following theo-

rem.
Theorem 8.2. The family of estimators
dy =V (Rigyw" W)

of R( a) based on estimated optimum values of constants has MSE to the first

degree of approximation equal to that of minimum MSE of 4, that is
MSE(d;) =min.MSE(d,) (8.9)

where min. MSE(d,) is cited in (8.8), 17" (R(,y,»' () is a function of
(Riay" W) such thatl”"(R,,e",y") =R, for all R, which implics that
* ° * ] * [}
%ﬁ))h%w’}w"): ’ % <R(a)’EVI‘)W">:_R(a)W and %(;) (1%),/',.,,"'):0
and y7(2) =D"'d" is the estimator of w=D"d, where D" and 4" are same as

defined eatlier.

8.1 Special cases

Let d, be an estimator making use of the population means X, and X, as
well as known population variances Si and Siz . It can be easily seen that the
percent relative efficiency of the estimator 4, with respect to the control estima-

tor Ii(* « 18 give by:

0 )(alAl +ayAy + LA, + LA,

-1
RE(4,,R,)=| 1+ 1-—= ) x 100% 8.1.1
(3 ()) |: ( 0 A A } 0 ( )

Let 4" be an estimator making use of the population means X, and X, then

the percent relative efficiency (PRE) of 4" with respect to the control estimator

A

R(*a> is given by:

: AN

* * -1
2k 0 A + A
RE({",R,,)) = {1 + (1 —9—)“’“—"32)} x 100% (8.1.2)
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Let d§2> be an estimator making use of the population variances § il and § iz , then

* * -1
Ak A Z, A
RE(4”,R,) ={1+(1—§jm} x100% (8.1.3)

i AN,
Let d§3) be an estimator making use of population mean }_(1 and population

. 2 .. .
variance S of only one auxiliary variable, then

-1
.. D, +a,D
RE(d§3>,&a>)={l+(l—§j%} x 100% (8.1.4)

Let 4" be an estimator making use of only the population mean X, of one aux-

iliary variable, then

-1
Ak 9 z
RE@SY,R;,)= {1 —(1 —?jﬁ} x 100% (8.1.5)

X1

Let 49 be an estimator making use of population variance Sil of the first auxil-

iary variable, then

RE(dS”,R/,)) = 1—(1—EJL2 71><100% (8.1.6)
P 0" ) AR (x,)

Let dg()) be an estimator making use of population mean }_(2 and population

variance § i of only the second auxiliary variable, then

-1
.. D+ A,D
RE(d§°>,R<a))={1+(1—§j%;—Df4)} x100% (8.1.7)

Let 4\ be an estimator making use of the population mean X, of the second

auxiliary variable, then

o

X2

-1
2
RE(dg”,&*w):l:l—(l— quﬂéz ] x 100% (8.1.8)

Let 4% be an estimator making use of population variance Siz of the second

auxiliary variable, then
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oy 2 |
RE(d?ig)aR(*aQ: 1_(1_?jﬁ() x100% (8.1.9)
2 (X

In the next section, we show numerically computed values of the percent rela-
tive efficiency values based on a real dataset Daniel (1995).

9. NUMERICAL COMPARISONS

Note carefully that the percent relative efficiency values under Strategy-1, listed
in Section 6.1, are free from the sample size # and non-response rate p, but de-
pend only on the parameters of the population being studied. In contrast the val-
ues of the percent relative efficiencies under Strategies-II and III, listed in sec-
tions 7.1 and 8.1, depend upon the values of the sample size #» and response rate
7, and the population size IN . From Daniel (1995), we consider the data set on
page 424 in our empirical study where four variables: Allen Cognitive Level Test
(ACL), scores on the Symbol-Digit Modalities Test (SDMT), scores on the vo-
cabulary (V), and abstraction (A) are listed. As per notations of this paper, we
consider the variable Y, = ACL, Y, =SDMT, X, =17 and X, =_A. In this
study we consider & =—1 which means the problem of estimation of ratio of two
types of scores. There are total N =69 data values.

TABLE 9.1
Descriptive parameters of the population

Variable Mean StDev Min Median Max Skewness Kurtosis
ACL 4.9435 0.7957 34 4.8 6.6 0.40 -0.71
SDMT 42.39 14.76 2.0 76 76 -0.24 -0.03
A% 24.10 6.67 10 26 40 -0.23 -0.66
A 20.91 10.60 2.0 20 40 -0.01 -1.30
TABLE 9.2
Population Correlation Coefficients matrix
ACL SDMT Vv A

ACL 1 0.521 0.250 0.354

SDMT - 1 0.556 0.577

% R - 1 0.698

A - - - 1

We wrote FORTRAN code (See online Appendix) to compute the values of
percent relative efficiencies. The percent relative efficiency values obtained from
section 6.1 for Strategy I are given in Table 9.3.

TABLE 9.3
Percent Relative Efficiency values for Strategy-I

Percent Relative Efficiency Kh(*,li( «)) Where * is the estimator given below:

4 AR
3254.79 2644.72 547.34 2904.06 2550.41 545.43 750.67 719.01 495.75




Estimation of population ratio, product, and mean using multianxiliary information efe. 477

It is very interesting to note that although there is not very strong correlation
between the variables, still the percent relative efficiency of the proposed estima-
tors under strategy-I varies from 495.75% to 3254.79% depending upon the type
of known auxiliary information as listed in section 6.1. Thus, it seems that the
proposed estimators under Strategy-1 are certainly efficient. For Strategy-II, the
percent relative efficiency formulas listed in Section 7.1 depend upon the values
of the sample size #» and non-response rate p. Thus, we changed the sample size
n between 10 to 25 with a step of 5, and the value of p is changed from 0.1 to
0.9 with a step of 0.2 to see the effect of both sample size and non-response rate.
The results so obtained are listed in Table 9.4. From Table 9.4 two pictures are
very clear that the estimator 4, is always more efficient than other estimators,

dgj ) 7 =1,2,..,8 which are in fact members of the generalized estimator o, .
Another point is clear that as the sample size # increases the relative gain de-
creases for given value of non-response rate. Also for a given sample size as the
value of p increases from 0.1 to 0.9, the percent relative efficiency value also de-
creases. The least efficient strategy is 45" which may be true because the known

population variance of the auxiliary variable does not help in improving the esti-
mator when the population is bivariate normal.

TABLE 9.4
Percent relative efficiency values for Strategy-11

Percent Relative Efficiency RE(*,ﬁ(a)) where * is the estimator given below:

" ? 4 po) Fi Fio pie Flo Flo & pio
10 01 43865 38570 11123 40923 37673 11088 14796 14156 10173
03 26395 24750 10884 25508 24450 10857 13528 13092 10139
05 19154 18469 10667  187.89 18339 10647 12510 12221  101.06
07 15193 14880 10468 15027 14819 10454 11675 11494  100.76
09 12694 12557  102.85 12622 12531 10277 10978 10878 10047
15 01 41418 36739 11101 38829 35038 11067 14673 14054 10170
03 24213 22894 10831 23504 22651 10806 13270 12873 10131
05 17550 17029 10596 17273 16929 10578 12204 11956  100.96
07 14011 13787  103.89 13893 13744 10378  113.66 11222 100.63
09 11818 11731 10205 11772 11714 10199 10690 10621 10034
20 01 39458 35249 11082 37136 34522 11048 14565  139.64  101.67
03 22689 21579  107.89 22094 21373 107.65 13068 12701 10125
05 16535  161.08 10545  163.08 16026 10529 11989  117.69  100.88
07 13339 13161 10338 13245 13126 10329 11174 11052 100.55
09 11382 11319 10161 11349 11307 10157 10537  104.84  100.27
25 01 37583 33804 11061 35505 33146 11029 14454 13871  101.64
03 21382 20439 10748 20878 20263  107.26 12878 12538  101.19
05 15726 15370 10500 15537  153.01 10485 11805 11607  100.81
07 12848  127.02 10299 12771 12673 10290 11026 10921 10049
09 11105 11055 10132 11079 11046 10128 10436 103.93  100.22

In the same way, Table 9.5 shows the percent relative efficiency of the pro-
posed class of estimators under Strategy-111.

One thing is very interesting here that as the non-response increases, for a
given sample size, the relative efficiency increases. Also as the sample size in-
creases for a given value of non-response, the relative efficiency increases. These
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findings are just opposite of the case in Strategy-11. Thus we conclude that in case
of higher non-response, preferable to use Strategy-11I and in case of low response
rate prefer to adapt Strategy-IL.

TABLE 9.5
Percent relative efficiency values for Strategy-111

Percent Relative Efficiency RE(*, lim)) where * is the estimator given below:

o 4 e ) & & i i i) i
10 0.1 108.52 108.15 101.04 108.32 108.07 101.01 103.41 103.08 100.17
0.3 129.77 128.22 103.09 128.95 127.92 103.00 110.66 109.56 100.51
0.5 159.39 155.65 105.12 157.41 154.93 104.97 118.55 116.51 100.83
0.7 203.56 195.36 107.13 199.18 193.82 106.91 127.16 123.98 101.13
0.9 276.46 258.01 109.11 266.48 254.65 108.83 136.61 132.05 101.43
15 0.1 110.13 109.68 101.22 109.89 109.59 101.18 104.02 103.62 100.20
0.3 135.78 133.84 103.57 134.76 133.47 103.47 112.44 111.14 100.58
0.5 172.52 167.59 105.82 169.90 166.65 105.64 121.43 119.02 100.93
0.7 229.48 218.04 107.97 223.35 215.92 107.72 131.04 127.32 101.26
0.9 329.75 301.66 110.02 314.42 296.67 109.71 141.35 136.04 101.56
20 0.1 111.60 111.08 101.38 111.33 110.98 101.34 104.56 104.12 100.23
0.3 141.10 138.79 103.96 139.88 138.34 103.84 113.93 112.46 100.65
0.5 183.60 177.58 106.33 180.40 176.44 106.14 123.63 120.94 101.01
0.7 250.13 235.78 108.52 242.41 233.14 108.26 133.69 129.57 101.34
0.9 369.12 332.82 110.54 349.18 326.48 110.21 144.11 138.36 101.63
25 0.1 113.20 112.60 101.55 112.88 112.48 101.50 105.15 104.64 100.26
0.3 146.68 143.95 104.34 145.24 143.43 104.21 115.42 113.77 100.71
0.5 194.71 187.51 106.79 190.87 186.15 106.59 125.66 122.69 101.08
0.7 269.44 252.12 108.96 260.09 248.97 108.69 135.87 131.43 101.40
0.9 401.69 357.92 110.89 377.51 350.38 110.55 146.05 139.97 101.68
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SUMMARY

Estimation of population ratio, product, and mean using multiauxiliary information with random non-
response

In this paper, a family of estimators of population ratio R, product P and mean Y,

has been suggested using multi-auxiliary information under simple random sampling



480 H.P. Singh, P. Chandra, 1.S. Grewal, S. Singh, C.C. Chen, S.A. Sedory, ].-M. Kim

without replacement (SRSWOR) and its properties have been discussed. We have further
suggested three families of estimators in the presence of random non-response in differ-
ent situations under an assumption that the number of sampling units on which informa-
tion cannot be obtained due to random non-response follows some distribution. The es-
timators of the family involve unknown constants whose optimum values depend on un-
known population parameters. When these population parameters are replaced by their
consistent estimates, the resulting estimators are shown to have the same asymptotic
mean squared error (MSE). The work of Singh et al. (2007) is shown as a special case. At
the end, numerical compatisons are also made.





