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SPECTRAL DENSITY ESTIMATION FOR SYMMETRIC 
STABLE P-ADIC PROCESSES 

Rachid Sabre 

1. INTRODUCTION 

In recent years, there has been a growing interest on p-adic numbers. The lat-
ter may answer some questions in Physics. Besides the number of papers in this 
area shows the interest of p-adic numbers to answer some questions in physics, as 
in string theory (connected with p-adic quantum field) and in the other natural 
sciences in which there are complicated fractal behaviors and hierarchical struc-
tures (turbulence theory, dynamical systems, statistical physics, biology, see 
(Kozyrev (2008), Hua-chieh (2001), Dragovich (2009)). Particularly 2-adic num-
bers will be useful for computer construction see (Klapper (1994)). Cianciri 
(1994) presented the main ideas to interpret a quantum mechanical state by 
means of p-adic statistics. He was interested in limits of probabilities when the 
number of trials approaches infinity. However, these limits are considered with 
respect to the p-adic metric. Khrennikov (1998) found a new asymptotic of the 
classical Bernoulli probabilities. In Khrennikov (1993), he developed the theory 
of p-adic probability to describe the statistical information processes. Kamizono 
(2007) defined the symmetric stochastic integrals with respect to p-adic Brownian 
motion and provided a sufficient condition for its existence. The properties of 
the trajectories of a p-adic Wiener process were studied using Vladimirov’s p-adic 
differentiation operator, see (Bikulov and Volovichb (1997)). 

Brillinger (1991) studied central limits theorems for finite Fourier trans- 
forms and for a family of quadratic statistics based on stationary processes 

pX( ) Qt t   where pQ  is the field of p-adic numbers. He also studied the spec-

tral representation of theses processes and gave spectral density estimation by 
constructing the periodogram similarly to the real case. Rachdi and Monsan 
(1999) give another estimator built from discrete-time observations k k ZX( )   

where k k Z( )   is sequence of random variables taking their values in pQ , associ-

ated to a Poisson process. 
In this paper, we consider a class of stationary symmetric α-stable processes. 

The estimate of the spectral density of theses processes is given by Masry and 
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Cambanis (1984) when the time of processes is continuous real, and by Sabre 
(1994, 1995) when the time is discrete. Our goal is to extend these works if the 
process is p-adic time. Precisely,we consider a harmonizable p-adic process: 

i
pQp

( )= e d ( ), QtX t M t    where pQ  is the field of the p-adic numbers and 

M  is a symmetric   stable random measure with control measure m . Assume 
that the measure m  is absolutely continuous with respect to Haar measure: 

pd ( )= ( ) ( ), Qm x f x dH x x . The density function f  is called spectral density 

of the process X . The aim of this paper is to give an estimator of the spectral 
density f  by observing the process X  on the p-adic ball nU . We start by con-
structing a periodogram that we smooth for obtaining nonparametric estimates of 
the spectral density which is asymptotically unbiased and consistent. 

The paper is organized as follows: Section 2, introduces p-adic processes. The 
periopdogram based on the observations of the process is defined in section 3. 
Section 4 gives an asymptotically unbiased and consistent estimate by smoothing 
the periodogram. Section 5 contains the concluding remarks, the potential appli-
cations and the open research problems. 

2. PRELIMINARIES 

In this section, we define the field pQ  of p-adic numbers and give some prop-

erties. Let p  be a prime number. Define the following norm: for a, 0 Zb   , 
n

p
a/ =p mb   where m  is the highest power of p  dividing a  and n  is the high-

est power of p  dividing b . The norm of zero is vanishing. Define pQ  as the 

completion of Q  in the metric defined by the norm p|.| . The addition, product, 

quotient operations are carried over from Q . It follows that the p-adic norm, p|.| , 

has the following characteristic properties: p| | =0x  is equivalent to 

x = 0 ; p p p| | =| || |xy x y  and p p p| | m (| | ,| | )x y ax x y  . Note that p| |x  can take 

only the countably many values mp , Zm . An important result given in Os-
trowski’s theorem namely the Euclidean and the p-adic norms are the only possi-
ble non-trivial norms on the field of rational numbers Q  Koblitz (1980) and 

Valdimirov (1988). All px 0 Q   can be represented in a unique form (Hansel 

representation) i
i

i m

x = px

 , with ix {0,1,..., 1}p   and m Z . If mx 0  then 

the norm of this p-adic number x  is defined to be m
p| | =px   and the fractional 

part of a p-adic number x , denoted < >x , is defined by: i
i

i<0

< >= x px  . Note 
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that < > (0,1)x   and p< > | |x p x . The ring of p-adic integers, pZ  is given by 

the elements of pQ  satisfying p| | 1x  . The ball with center 0x  and radius np  is 

defined by: n
n 0 p 0 pU (x )={x Q /| x | p }x   . In particular when 0x =0  we de-

note n nU (0)= U  and 0 p pU ={x Q /| | 1}x  . 

pQ  is a complete separable metric space, the stochastic process X( , )t w  for 

pt Q  and w  , ( , , )A P  a probability space, is well defined as a map from 

pQ   to R . p(Q , )  is an abelian locally compact group; from Haar’s theorem 

there exists a positive measure   on pQ , uniquely determined except for a con-

stant. It has the properties: 

pd (t )= (t) (a )=| | d (t)a d and d t a     (1) 

The measure will be normalized by p(Z )= 1 , see (Hewitt and al (1963)). Let 

t  be in pZ , then 2
0 1 2t = t t p t p ...    writing 1 2f( )= (t , t ,...)t g  and taking 

0 1(T , T ,...)  to be a sequence of i.i.d. random variables on the sample space 

{0,1, 2,...}  with equal probability. Then, it has 0 1 2Zp
f( ) (t )= (T , T , T ,...)t d g   and  

| |
( ) ( )= ( ) ( )= ( ) ( ).lim lim

n n
nQ t p Zn np p p

f t d t f t d t p f p s d s

 
      

3. PERIODOGRAM AND SPECTRAL DENSITY ESTIMATION 

Consider a process t pX ={X / Q }t   where pQ  is the field of p-adic numbers 

having the following integral representation 

i< >
t pQp

X = e d ( ) t Qt M     (2) 

where M  is a symmetric   stable S S  random measure with independent and 
isotropic increments. There exists a control measure m  that is defined by: 

1/m(A)=[M(A), (A)]M 
 . 

Assume that the measure m  is absolutely continuous with respect to Haar meas-
ure: d = (x)d (x)m    where   is Haar measure. 
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This density is estimated in Masry and Cambanis (1984) when the process has 
continuous real time, and in Sabre (1994, 1995) when the process and the random 
field have a discrete time. 

The goal of this work is to give an asymptotically and consistent estimate of 
the density   called the spectral density of the process t pX ={X / Q }t  . For 

that, we take the ball n
n p;; p

U ={x Q x p }   as the observation of the process. 

Consider the following periodogram: 

i< > n n
n n pUn
( )=A R e p h(tp )X(t)d (t) Qtd e       (3) 

i< >

Zp
H( )= h(t)e d (t)t    (4) 

Qp
= H( ) d ( )<B


       (5) 

1
n

n n
n n

p
H ( )= H(p )=A H(p )

B





    
 
 

 (6) 

Therefore, 
1/n

n
p

A =
B





 
 
 

 where 

n
n

nQ Qp p

p
H ( ) d ( )= H(p ) d ( )

B





       

                             
n

n

Qp

p
= p H(v) d (v)

B




    

Since n

p
p =p n  , we obtain nQp

H ( ) d ( )=1.
    

 

Proposition 3.1 Let ( ) ( ) ( ) .n nQ p
H u u d u

     If   is continuous and 

bounded function, then ( ( ) ( ))nB     converges to zero as n tends to infinity.  

 
Proof: Using the definition of n ( )  and from (5) and (6), we have 
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n

n nQ Qp p

n n
n n

Q Qp p

n n n n
nQ Qp p

nQp

B [ ( ) ( )]=

H ( u) (u) (u) H (u) ( )d (u) =

p p
H(p ( u)) (u)d H(p u) ( )d (u) =

B B

v
p p H(v) d p p H(v) ( )d (v ) =

p

v
H(v)

p

B d

B u

v



 


 


 

 



 

 

 

 



 

 

 



 





 
  

 
 

   
 

  
   

   

 
  

 

 

 

 



 





( ) d (v ) .
  
  

    


 

Since   is continuous bounded function and from (5), we obtain 

nB [ ( ) ( )] 0.      
 
Proposition 3.2 Let pQ  the characteristic function of ( ),nd   { ( )}nEexp ird   con-

verges to { ( )}.exp C r 
   

 
Proof: From (2) and (3), the characteristic function of nd ( )  can be written as 
follows: 

  i< > n n
n n Un

E i d ( ) = {i A R e h(tp )p X(t)d (t)}texp r Eexp r e      

                       i< > n n i< >
n U Qn p

= E {i A R e p h(tp ) e d (u) (t)}t tuexp r e M d     

Using the same argument used in Cambanis 1983, from the last equality we ob-
tain: 

nE {i d ( )}=exp r   

 i< u > n n
n Q Up n

e C r A e p h(tp )d (t ) (u) (u)txp d


 


      
  

     

Let nx = pt , we have 

 

n

ni< u p x>
n Q Zp p

E {i d ( )}=

e C r A e h(x)d (x) (u) (u)

exp r

xp d


 




   
   
  

   
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n
n nQp

E {i d ( )}= C r A H(p ( u)) (u) (u)exp r exp d


  
 
  
 

   

                  nQp
= C r H ( u) (u) (u)exp d


  

 
  
 

   

                  n= { C r ( )}.exp 
   

From the proposition 3.1, we obtain the result. 
We modify this periodogram as follows: 

q
n q, n( )=C d ( ) ,I    (7) 

where 0 < <
2

q


 and the normalization constant is q
q, q

q,

D
C =

F C



 

, where 

q 1

1 ( )
D = d

| | q

cos u
u

u 


 ; 

| |

q, 1

1 e
F = d

| |

u

q u
u










  and 

0

1
C = | ( )| d

2
cos u u

 
   . 

 

Theorem 3.1 Let pQ , then q/
n nE (I ( ))=( ( ))     and nI ( )  is an asymptotically 

unbiased estimator of the spectral density but not consistent: q/
nE(I ( )) ( ( )) = (1)o   and 

2
n ,V (I ( )) V ( )= (1)qar o  , with 

2
q,

,
2 ,

C
V = 1.

Cq
q






  

The proof of this result is similar to that given in Masry and Cambanis (1984) 
and Sabre (1994, 1995). It is sufficient to use the equality: 

i
q 1

q 1

1 e
| | =D e d x R.

| |

ux

qx u
u







 R  (8) 

 

Theorem 3.2 Let 1 2,   be two different points in pQ  such that 1( ) 0   and 

2( ) 0  , then 

1 2( ( ), ( ))= (1).n ncov I I o   
 
Proof: From (2), we have 
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   C ui dq nn
1

n n q, 1

e e e
EI ( ) I ( )=F C d

u

u

q u

 


  
 





 

R
1 2C( , )=   

 
2 2

2 2 / 1 2
q, k n k k n k 1

k=1k=1 1 2

du du
F (C ) E c u d ( ) -e C u ( ) .

u u
q

qos xp


    


   
   
  

  

Where 

2 2

k n k k n k
k=1k=1

1
c [u I ( )]= e e i u d ( )

2
os xp 

  
  

  
 R  

                           
2

k 1
k n k

k=1

1
e e i ( 1) u d ( )

2
xp   

  
  
R  

So that 

2

k n k
k=1

E c [u d ( )]=os 
2

k n kQp k=1

1
e C u H ( u) (u)d (u)

2
xp



  
     
  

   

                           
2

k 1
k n kQp k=1

1
e C ( 1) u H ( w) (w)d (w)

2
xp



  
     
  

   

Letting 2 2u = v , we obtain 

1 2 / a b 1 2
1 2 q,

1 2

du du
( , )=F (C ) e e

u u
qC 

        (9) 

where 
2

k n kQp k=1

a = C u H ( t) (t )d (t ),


     

2

k n k
k=1

b = C u ( )


   

   
2

k n kQpk=1

= C u H ( w) (w)d (w).
 

      

However, 
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a ba be e a e bb        (10) 

/2 /2
1 2 n 1 n 2Qp

a 2C u u H ( w)H ( w) (w)d (w)b
 

         

2/2
1 2 n 1 2 k n kk=1

a b 2C u u s ( )L ( , ) C u ( )b up
 

         , where 

/2 /2
n 1 2 n 1 n 2Qp
( , )= H ( w) H ( w) d (w).L

        (11) 

Since 
/2

1 2 1 22 u u u u
    , thus we have: 

2

k n k n 1 2
k=1

a b C u [ ( ) s ( )L ( , )].b up


         

It is sufficient now to show that n 1 2L ( , )   converges to zero. 

/2 /2
n 1 2 n 1 n 2Qp

L ( , )= H ( w) H ( w) d (w)
        

               
n /2 /2n n n n

1 2Qp

p
= H(p p w) H(p p w) d (w)

B

 



     
  

 
   

Setting n n '
1p p w = u  , we get 

/2 /2' n n ' '
n 1 2 2 1Qp

1
L ( , )= H(u ) H(p p u ) d (u )

B

 


        

Assume that H  verifying the following hypothesis. 

H(u)=0  si 
p

u >1,  et 
2( 1)

p
H(u) u





  si 
p

u 1.  Then  

/2 /2' n n ' '
n 1 2 2 1Qp

1
L ( , )= H(u ) H(p p u ) d (u )

B

 


       

               
11 n

1 2pu 1 p

1
u u p ( ) d (u)

B




 




     

with n
1 2

u
t = ,

p ( ) 
 thus we obtain: 
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2 2 1 1n n
n 1 2 1 2 1 2 p pDp p

1
L ( , ) p ( ) p ( ) t t 1 d (t)

B

  


     

        where 

n
1 2p p

D ={ t p ( ) 1}   , 

2 1n
n 1 2 1 2 p

( , )
( , ) p ( )

p
L





 
   




   (12) 

with 1 1

p pQp
( , )= t t 1 d (t)p       . From (9), (10) and the fact that n n

p|p | =p , 

these complete the proof of the theorem. 

4. THE SMOOTHING ESTIMATE 

In order to have an asymptotically and consistent estimate, we smooth the pe-
riodogram that was modified using a spectral window. 

n n nQp
f ( )= W ( u)I (u)d (u)     

where n n np
W (x)= M W(xM )  such that 

n
n n p

M
M ; 0 ;|M | 0

n
    and n p

n
p

|M |
.

|p |
  (13) 

W  is an even nonnegative function vanishing outside [ 1,1]  and 

Qp
W(v)d (v)=1   

 

Proposition 4.1 Let pQ  and  /( ( ))= [ ( )] ( ( )) p
n nBias f E f      then 

  ( ( )) = (1).nBias f o  

Moreover if   verify ( ) ( ) ,
k

p
x y cste x y


     then 

  
1

( ( )) = .n kp

n p

Bias f O
M 




 
 
 
 
 

 

 

Proof: We have 

n n n npQp
f ( )= M W(M ( u))I (u)d (u)     
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Letting n( u)M =v   and using (1), we obtain 

n nQp n

v
f ( )= W(v)I d (u).

M
 

 
 

 
   

From the proposition 3.1, we have  

p/

n nQp n

v
E(f ( ))= W(v) d (v).

M



 
     
   

   

As p <
2


, then we obtain  

p/

p/
n nQp n

v
B (f ( )) W(v) ( ( )) d (v)

M
ias


   

  
    
   

   

                   

p/

nQp n

v
W(v) ( ( )) d (v)

M



  
 

   
 

   

On the other hand, 

n
n

v
( ( ))=

M
  
 

  
 

 

n nQp n

1 v u
H (u) ( ) d (u)

B M p




  
  

    
   

   

Since   is uniformly continuous and from the proposition 3.1, we obtain 

nB (f ( ))= (1).ias o  

Assume that   verify 
k

pp
(x) (y) c x x, Q .ste y y


       

k

n nu 1
n n p

v c v u
( ( )) H(u) d (u)

M B M p

ste 



 



 

 
    

 
   

                                       
k

2 1

npu 1p n p

c v u
u d (u)

B M p

ste 







    
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Since p p p| | M (| | ,| | )x y ax x y  , we have 

n
n

v
( ( ))

M
  
 

  
 

= 

   
kk

2 1 2 1

np pu 1 u 1p pn p p

1 v 1 u
M u d (u), u d (u)

B M B p
ax  

 


 

 

 
 
 
 

    

Using the following equality proved in Vladimirov (1988) page 25, 

1
r 1
p r| | <1p

1 p
|1 | d =

1 px
x x









 , we obtain 

n
n

v
( ( ))

M
  
 

   
 

k
1 1

p

k 2 1 k 2 1n
n p p

v 1 p 1 p1 1
M ,

B 1 p 1 pM B p
kax  

 


 

      

 
  

   
 

. 

Thus 

n k / k /n
n pp

1 1
B (f ( )) O m ,

Mp
p pias ax    

  
     

    

. 

From (13), we have n
n p p|M | >|p |  for large n . Thus, we obtain 

k /
n n p

B (f ( )) = ( M ).
p

ias O
  

Now we will show that nf  is an asymptotically consistent estimate. 
 

Proposition 4.2 Let   be in pQ  and = n
nM p  where 0 < < 1 . Assume that 

1
Q p

L . Then  3 1( ( ))= ( )n
nVar f O p     

 
Proof: From the definition of variance, we have 

2
n n nV (f ( ))= (f ( ) Ef ( )) =ar E    

                 n 1 n 2 1 2 1 2Q Qp p
W ( u )W ( u )C(u ,u )d (u )d (u )       
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where 1 2 n 1 n 2C(u , u )= (I (u ), I (u ))Cov   

1 2
n 1 2 1 2Q Qp p n n

u u
V (f ( ))= W(x )W(x )C , d (x )d (x )

M M
ar   

 
  

 
     

1 2{ x x < } { x x > }1 2 n 1 2 np p

=  J J=
 



 
    

where n  is a positive real converging to zero as n  tends to infinity.  

1 2
2 1 2 1 2{ x x > }1 2 np n n

x x
J W(x )W(x )C , d (x )d (x )

M M
 



 
   

 
    

From (9) and (10), we get  

a b1 2 1 2
1

n n 1 2

x x du du
C , c a e

M M u u

b
qste b   



 
    

 
  

2
k

k nQp k=1 n

x
a = C u H v (v)d (v )

M



  
 

  
 

   

2
k

k n
k=1 n

x
b = C u

M


 
 

 
 


2

k
k nQpk=1 n

x
= C u H v (v)d .

M
v




  
 

  
 

   

a b 
/2

/2 1 2
1 2 n nQp n n

x x
2C u u H v H v (v)d .

M M
v




   
   

      
   

  

Letting 

/2

1 2 1 2
n n nQp n n n n

x x x x
H v H v (v)d L ,=

M M M M
v



   



     
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/2 1 2
1 2 n

n n

x x
a 2C u u L ,

M M
b


  

 
    

 
 

2

k k ,
k=1

a b C u nb


      , where 
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k 1 2
k, n n

n n n

x x x
= s ( )L ,

M M Mn up    
    

       
    

. 

We have  
2 C ub a k k ,1 2 k

1 /2 1 /2
k=11 2 k

du du du
e e .

u u u

b n
q q




 

   
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By changing of the variable: 1/
k k ,v = u ( )n

 , we obtain 

 b a 1 2
1 /2 2

1/2 /1 2
k ,
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e .

u u ( )

b
q

q
n

ste




  
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From (5), we have 

2 1n
2 11 2

n 1 2 p
n n n p

x x p
L , c x x

M M M
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
 
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 (14) 

Since 

n

p

n p

p
0

M
 , we obtain 

2 1
n

p1 2
n

n n n p

px x
L , =0 .

M M M



 


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 (15) 

Thus, from the proposition 3.1, we have k, ( )n   . Therefore 
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2 1 2 n 1 21 2 / Qp n n

x xc
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Putting u = v  , we have 
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nQ Qp p n
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Since 1
Qp

H(v) L
   and W  is bounded, we obtain  
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n
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M
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M
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Since 1 1 1 1Q t < t <p n np p
W(x )W(t x )d (t)d (x ) d (x )

 
      , we have,  



 R. Sabre 446 

2 /
1 nJ c ( ( )) ponst   . Then 

3
n p

n nn

|M |
V (f ( ))= .

p
ar O 

 
  

 
 

Using the fact that n
n=pM   and choose (3 1)

n=p n    with   is satisfying <1 , 
thus we obtain  

 3 1( ( ))= ( ).n
nVar f O p     

5. CONCLUSION 

In this paper, we have proposed in this paper some results about the estima-
tion of the spectral density for symmetric stable p-adic processes. The approach 
was based on the technique used by Masry and Cambanis (1984) for stable proc-
esses combining estimates of p-adic spectrum introduced by Brillinger (1991). 
This work could be applied to several cases when processes have an infinite vari-
ance and have a discrete time, as for example: 
 The segmentation of a sequence of images of a dynamic scene, detecting weeds 

in a farm field. 
 The detection of possible structural changes in the dynamics of an economic 

structural phenomenon. 
 The study of the rate of occurrence of notes in melodic music to simulate the 

sensation of hearing from afar. 
This work could be supplemented by the study of optimal smoothing parame-

ters using cross validation methods that have been proven in the field. 
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SUMMARY 

Spectral density estimation for symmetric stable p-adic processes 

Applications of p-adic numbers ar beming increasingly important espcially in the field 
of applied physics. The objective of this work is to study the estimation of the spectral of 
p-adic stable processes. An estimator formed by a smoothing periodogram is constructed. 
It is shwon that this estimator is asymptotically unbiased and consistent. Rates of conver-
gences are also examined. 




