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SOME RECENT DEVELOPMENTS IN THE DESIGN 
OF ADAPTIVE CLINICAL TRIALS 

A. Baldi Antognini, A. Giovagnoli, M. Zagoraiou 

1. INTRODUCTION 

Most clinical trials are carried out to compare different drugs or therapies. 
Pharmaceutical industries in particular invest very large budgets for research and 
development of new drugs but recently the increased spending in biomedical re-
search has not reflected in a corresponding increase in benefits. Furthermore, in a 
clinical trial the ethical concern of assigning treatments to patients so as to care 
for each of them individually often conflicts with the experimental demands. To 
overcome this impasse, the FDA Critical Path initiative of 2004 supports and en-
courages innovative approaches in the design of the trial, in particular the use of 
adaptive designs. Adaptive designs are sequential procedures that use the available 
information at each stage to modify aspects of the trial without undermining its 
validity and integrity. Special cases are 

i) group sequential designs for early termination of the trial due to efficacy or 
futility through interim analyses; 

ii) sample size re-estimation designs; 
iii) adaptive dose-finding designs to minimize toxicity while acquiring informa-

tion on the maximum tolerated dose; 
iv) covariate-adjusted designs; 
v) adaptive randomization designs for treatment comparison with the ethical 

aim of skewing allocations towards the best treatment or dropping the less suc-
cessful treatment arms. 

The past decade has witnessed an outburst of books and papers on the topic 
of adaptive designs in clinical trials, see for instance Chow and Chang (2007), 
which pertain mainly to the medical and pharmaceutical literature. At the same 
time, the topic has aroused a wide interest among statisticians with a more atten-
tive eye to the methodological implications, see for instance the book by Hu and 
Rosenberger (2006). 

In two recent papers (Baldi Antognini and Giovagnoli, 2010; Baldi Antognini 
and Zagoraiou, 2010) the present authors have looked at designs of type v) ap-
proaching the ethical design problem of individual vs collective ethics via the op-
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timization of specific compromise criteria given by a weighted average of a design 
optimality measure and a measure of the subjects’ risk. The relative weights in the 
compound criterion have been allowed to depend on the true state of nature, 
since it is reasonable to suppose that the more the effects of the treatments differ, 
the more important for the patients are the chances of receiving the best treat-
ment. The purpose of the present paper is to extend the theoretical results ob-
tained in Baldi Antognini and Giovagnoli (2010) and Baldi Antognini and 
Zagoraiou (2010) and enhance their applicability by including some numerical ex-
amples. For simplicity we consider just two treatments, as is usually the case in 
Phase III trials, where the aim may be either to estimate the treatment effects 
separately or, more commonly, to estimate or test their difference. 

We shall first of all find the target allocation that optimizes a given compound 
criterion for different response models and different choices of the optimality 
measures. This target in general depends on the unknown parameters, and we will 
present adaptive randomization methods that make the experiment converge to 
the desired target, whatever the true value of the parameters, extending the dou-
bly-adaptive biased coin design of Hu and Zhang (2004). The last part of the pa-
per discusses a special case of adaptive randomization when one categorical co-
variate is also observed. 

We end this introduction by pointing out that for binary responses, a popular 
design with an ethical slant is the so-called Play-the-Winner proposed by Zelen 
(1969) and later extended to include randomization (Ivanova, 2003; Wei and 
Durham, 1978). Play-the-Winner is a sequential experiment in which the treat-
ment allocation is repeated for the next patient in case of success, or switched to 
the other arm in case of failure. It is widely believed to be “an optimal model that 
minimizes the number of failures” (Chow and Chang, 2007), but this claim is not 
justified by the theory. It can be shown however that when the number of obser-
vations goes to infinity the limit allocation of each treatment is inversely propor-
tional to the treatment risk, which clearly always favours the better treatment. 

2. THE COMPOUND CRITERION AND THE OPTIMAL ALLOCATION 

2.1. The model 

Given two treatments 1T  and 2 ,T  with n subjects recruited into the trial, let 

ikY  be the response of patient ( 1,..., )i i n  to treatment kT  ( 1,2k  ). Condi-
tionally on the treatment assignment, the responses are usually taken to be inde-
pendent. Put  

2E( ) , Var( )ik k ik kY Y    (1) 

and assume a “the-larger-the-  -the better scenario”. Special cases are 

1) homoscedastic responses, i.e. 2 2
1 2  ; 
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2) when the responses are binary, with 1p , 2p  being the respective success 
probabilities: 

E( ) Pr( 1) , Var( )ik ik k ik k kY Y p Y p q     (2) 

and 1k kq p  . 

We may further assume the dependence of kp  or k  on some patient-related 
covariates. 

After 1n  subjects are assigned to 1T  and 2 1n n n   to 2T , let   and 1   be 

the proportions of allocations to 1T  and 2T  respectively. The ML estimators of 

1  and 2  in general are the sample means and their variance-covariance matrix 
(exact or asymptotic) is proportional to 
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2.2. The treatment allocation 

We shall refer to all the desirable treatment allocations as “targets”. In Optimal 
Design Theory, the design problem consists in minimizing a suitably chosen op-
timality criterion I , which measures the loss of potential information ensuing 
from the experimental design. In particular, the D -optimality criterion det( )V  
measures the global variance and the trace criterion tr( )V  measures the variance 

of the estimated difference 1 2  ; under suitable assumptions it also measures 
the power of Wald’s test of the equality of treatment effects. In this setting, popu-

lar treatment allocation schemes are the balanced one, 1/2B
  , which mini-

mizes det( )V , and the well-known Neyman allocation 

1

1 2

,N



 

 


 (3) 

which minimizes tr( )V . 
From an ethical viewpoint one possible “optimality criterion” is the proportion 

W of patients who receive the worse treatment, 

1 2
1 1

(1 2 )sgn( )
2 2W         
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which would be minimized, trivially, by assigning all the patients to the better 
treatment, if we knew which one this is. This choice however would make the 
treatment comparison impossible. 

In practice, we would most likely wish to simultaneously minimize both the 
ethical cost and the inferential loss. Note that both are functions of  . A possi-
bility is to measure the trade-off by means of some compromise function, such as 
a weighted average of I  and W , suitably standardized to make them compa-
rable (see for instance Baldi Antognini and Giovagnoli, 2010). One way is to set  

min
( ) 1

( )
I

I
I








 
   

 
 

so that both functionals W  and I  range in [0,1) , with 0  being their best 
value. 

We can look at the combination  

(1 )W I        (4) 

as the compound criterion to be minimized. We can attempt to find the optimum 

allocation arg min      by differentiation of   wrt  , i.e. look for a solu-
tion in (0,1)  of 

1 2sgn( ) 1
0

(1 ) II

 
 



 

 
     

 (5) 

where minI I
  . The target 

  will in general depend on the following: 

 the inferential criterion I . As already pointed out, either D -optimality or 

trace-optimality will in general be chosen as I ; 
 the weight   chosen by the experimenter, with 0 1.   It may be fixed or 

function of some or all the unknown parameters. The choice of the best 
weight function ( )   in a given applied context is open to discussion, but here 
are some general remarks: 
1) the function   should deal with 1T  and 2T  symmetrically; 
2)   should be non-decreasing in the absolute difference of the treatment ef-

fects, to make the ethical impact more crucial the more the effects differ, 
whereas, on the other hand, a small difference is more difficult to detect 
correctly, so more emphasis is needed on precision (i.e. small )  

 The unknown parameters. The dependence of the target on the unknown pa-
rameters may appear like an unsolvable puzzle, in this as well as in other cases, 
as for instance the classical Neyman allocation (3). We shall deal with this 
problem in Section 5. 
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3. OPTIMAL TARGETS 

3.1. The compound target when I  is D-optimality 

We assume model (1) and det( )I V  . Equation (5) becomes 

1 2
2 2 2 2
1 2 1 2

sgn( ) (1 )

(1 ) 4

   
    





  
     

 (6) 

and 

1 2
1 1 1

sgn( )min , .
2 8 1 2


  


          

 (7) 

is the optimum target. The expression for 
  is independent of ( 2 2

1 2, )  . If 
4/5   then 

1 2
1 1

sgn( )   (0,1);
2 8 1


  


       

 (8) 

otherwise, if 4/5  , 
  will assign all the subjects to the better treatment. 

For binary responses, the optimum target will clearly be 

1 2
1 1 1

sgn( )min , .
2 8 1 2

p p





          
 

It is evident that the target allocation (7) will always assign more than half the 
subjects to the better treatment. 

3.1.1 The choice of the weights 

We can define the “ethical gain” in terms of relative percentage of fewer sub-

jects assigned by 
  to the worse treatment than by the balanced design, namely 

when 0  . Assuming (wlog) 1 2 ,   it is easy to find the expression of the 
ethical gain: 

1
8 1( )(1 ) (1 ) 1

.
1/2 4 11

B

B


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 
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

         
 (9) 

We can measure the inferential loss by 

2min det( ) 1
1 .

det( ) 16 1D
V

V




       
 (10) 
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The ethical gain and the inferential loss for the optimal compound target defined 
in (8) are compared in Table 1. 

The percentual ethical gain of the compound target is always greater than the 
percentual inferential loss, with maximum difference at 1/2  . 

Another possibility is to let the weight   depend on the parameters. 
 
Example 1 (Normal case) For normal responses we could choose 

1 2

2 2
1 2

4
1 ,

5
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
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
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 (11) 

so that   (0,1)
   is satisfied. Letting 1 2   (wlog), Table 2 shows possible values of 

2 2
1 2 1 2( )/      and the corresponding values of the compound target: 

TABLE 1 

The relative ethical gain and the relative inferential loss for target 


  in (8) as ω varies when μ1>μ2 

ω 
  % ethical gain 

4(1 )




 % inferential loss 
2

4(1 )



 
  

 

0.00 0.50   0.00   0.00 
0.10 0.51   2.78   0.08 
0.20 0.53   6.25   0.39 
0.30 0.55 10.71   1.15 
0.40 0.58 16.67   2.78 
0.50 0.63 25.00   6.25 
0.60 0.69 37.50 14.06 
0.70 0.79 58.33 30.03 
0.75 0.88 75.00 56.26 

TABLE 2 

Values of the optimum compound target allocation 


  in (8) with ethical weight 

1 2

2 2
1 2
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1 2

2 2
1 2

 

 




 ω 

  

→ 0 → 0 0.500 
0.25 0.18 0.527 
0.50 0.31 0.557 
0.75 0.42 0.591 
1.00 0.51 0.628 
1.50 0.62 0.705 
3.00 0.76 0.896 
→ ∞ → 0.8 1.000 
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Example 2 (Binary case) For binary responses a possible choice of the weight function  
is the one suggested in Baldi Antognini and Giovagnoli (2010), namely 

2
1 2 1 2( , ) {( ) 1}/2p p p p    , but the condition 4/5   is not always satisfied. An-

other choice is 

1 2 1 2
4

( , ) | |.
5

p p p p    (12) 

Table 3 gives the target allocation to the better treatment as a function of the difference in success 
probabilities. 

TABLE 3 

Values of the target 
 as a function of the difference in success probabilities 

when 1 2
4

| |
5

p p    

p1-p2 ω 
  

→ 0 → 0 0.500 
0.1 0.08 0.511 
0.2 0.16 0.524 
0.3 0.24 0.539 
0.4 0.32 0.559 
0.5 0.40 0.583 
0.6 0.48 0.615 
0.7 0.56 0.659 
0.8 0.64 0.722 
0.9 0.72 0.821 
1.0 0.80 1.000 

3.2. The compound target when I  is trace-optimality 

Since 2 2
1 2tr( ) / /(1 )V        and 2

1 2min tr( ) ( )V    , equation (5) 
becomes 

1 2
2 2 2

1 2 2 1

sgn( ) (1 )
0.

1 ( ) ( ) 1

   
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



  
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 (13) 

When 2 2
1 2  , equation (13) is identical to (6), so that all the results of Sub-

section 3.1 apply. Let now 2 2
1 2  ; (13) can be rewritten as a quadratic equation 

in  : 

2 2 2
1 2 2 1

2 2 2 2 2 2
1 2 2 1 1 1

sgn( )[( ) 1]
1

( ) [( ) 2 ] 0.


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
      

    


    
 (14) 

If the solution 
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lies in (0,1) , it will give the optimum allocation to 1T  as a function of  , 2 1/   

and 1 2sgn( )  . The LHS of (14) is monotonic in [0,1],  so the existence of a 
unique solution in (0,1)  is ensured if the LHS is negative at 0  and positive at 1 
namely if 
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which holds if and only if 

2
1 2

2 2
1 2

( )
.

1 max( , )

 
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



 (16) 

We may be able to use some previous knowledge on 2
1  and 2

2  in order to 

choose a weight function that satisfies (16). Since 1 2

1 2max( , )1 2 
 
  , again 4/5   

will have to hold true. The condition 1/2  , which means that the ethical im-
pact should not prevail over the inferential goal, is enough to guarantee (16) for 

all 2
1  and 2

2 , but at times may be too restrictive. 

Table 4 shows the optimal targets 
  given by (15) for different values of the 

ratio 2 1/   and different choices of /(1 )  , compared with the Neyman al-
location. 

The top and the bottom parts of Table 4 show the unfavourable cases, i.e. 

1 2   with 1 2   or 1 2   with 1 2  , in which Neyman’s allocation is 
unethical, namely it assigns more patients to the worse treatment. The optimal 
compound target counteracts this effect, especially with a large  . This points to 
the need for adaptive weights, for instance by choosing (11) as the weight func-
tion. However, Table 4 seems to suggest that the weight   perhaps should de-
pend also on 2 1/  . 
 
Remark In this case, whether or not the optimal compound target assigns more than half the 
subjects to the better treatment depends on the weights and the true values of the parameters. 

However, there is always an ethical gain, in terms of more subjects assigned by the target 
  to 

the better treatment than by the inferentially optimum Neyman target N
 . To show this, it is 

sufficient to check that 1 2sgn( ) sgn( N       ), replacing 
  by (15). 
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TABLE 4 

Optimal target 
  for different values of 2 1/   and ω/(1-ω) 

when ΨI is the trace, compared with Neyman’s N
  

1




  2

1




0.20 0.33 0.50 1.00 1.50 2.00 3.00 *
N  

 μ1> μ2                 5.00 0.18 0.19 0.21 0.32 1.00 1.00 1.00 0.17 
4.00 0.22 0.23 0.25 0.35 0.78 1.00 1.00 0.20 
2.00 0.36 0.37 0.40 0.48 0.61 0.82 1.00 0.33 
1.50 0.42 0.44 0.46 0.54 0.63 0.75 1.00 0.40 
1.33 0.45 0.47 0.49 0.57 0.65 0.74 0.98 0.43 
1.00 0.52 0.54 0.56 0.63 0.69 0.75 0.88 0.50 
0.80 0.58 0.60 0.61 0.67 0.72 0.77 0.85 0.56 
0.50 0.69 0.70 0.72 0.76 0.79 0.82 0.86 0.67 
0.33 0.79 0.80 0.81 0.83 0.85 0.87 0.90 0.77 
0.25 0.81 0.82 0.83 0.86 0.87 0.89 0.91 0.80 
0.20 0.85 0.85 0.86 0.88 0.89 0.91 0.92 0.83 

 μ1< μ2                 5.00 0.15 0.15 0.14 0.12 0.11 0.09 0.08 0.17 
4.00 0.19 0.18 0.17 0.14 0.13 0.11 0.09 0.20 
2.00 0.31 0.30 0.28 0.24 0.21 0.18 0.14 0.33 
1.50 0.38 0.36 0.34 0.30 0.25 0.21 0.15 0.40 
1.33 0.41 0.39 0.37 0.32 0.27 0.23 0.15 0.43 
1.00 0.48 0.46 0.44 0.37 0.31 0.25 0.12 0.50 
0.80 0.53 0.51 0.49 0.42 0.34 0.26 0.06 0.56 
0.50 0.64 0.63 0.60 0.52 0.39 0.18 0.00 0.67 
0.33 0.75 0.74 0.71 0.61 0.35 0.00 0.00 0.77 
0.25 0.78 0.77 0.75 0.65 0.22 0.00 0.00 0.80 
0.20 0.82 0.81 0.79 0.68 0.00 0.00 0.00 0.83 

 

Assuming 1 2   (wlog), the ethical gain is given by 
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and the loss of efficiency is 
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For the binary model (2), equation (14) becomes 

2

2 2
1 2

1 1

2

22 2 2 2

1 1 1 1

sgn( ) 1 1
1

1 1 2 1 0

p q
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p q p q
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 (17) 

and condition (16) translates to 

2
1 1 2 2

1 1 2 2

( )
.

1 max( , )

p q p q

p q p q


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
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When 1 2p p , the unfavourable case occurs if 1 1 2 2p q p q . In Table 5 we show 
the optimum compound targets that correspond to different choices of the 
weight ratio /(1 )   and different values of 1p , 2p , and compare them with 

the Neyman allocation N
  and the Play-the-Winner target PW  2

1 2
.

q
q q




 

TABLE 5 

Optimal target 
  for different values of p1, p2 and ω/(1-ω) when ΨI is the trace, compared with Neyman’s N

  

and the Play-the-Winner target pW   

  ω/(1-ω)   

p1 p2 0.05 0.11 0.25 1.00 1.50 2.00 2.50 3.00 *
N  *

pW  

0.10 0.05 0.586 0.593 0.609 0.688 0.735 0.777 0.816 0.851 0.579 0.514 
0.20 0.05 0.653 0.660 0.674 0.741 0.777 0.808 0.834 0.858 0.647 0.543 
0.20 0.10 0.578 0.585 0.601 0.682 0.730 0.774 0.814 0.851 0.571 0.529 
0.40 0.05 0.698 0.704 0.717 0.775 0.805 0.830 0.851 0.869 0.692 0.613 
0.40 0.20 0.557 0.564 0.581 0.666 0.717 0.766 0.811 0.854 0.551 0.571 
0.40 0.35 0.513 0.521 0.538 0.630 0.691 0.752 0.812 0.871 0.507 0.520 
0.65 0.40 0.500 0.507 0.525 0.620 0.684 0.748 0.814 0.880 0.493 0.632 
0.65 0.60 0.500 0.507 0.525 0.620 0.684 0.748 0.814 0.880 0.493 0.533 
0.95 0.65 0.319 0.326 0.343 0.465 0.606 0.881 1.000 1.000 0.314 0.875 
0.95 0.85 0.385 0.392 0.410 0.524 0.625 0.760 0.954 1.000 0.379 0.750 

 

Although PW   always assigns more than half the subjects to the better treat-
ment, the PW target assignment would perform poorly for inference. 

4. DIFFERENT CRITERIA FOR THE BINARY MODEL 

4.1. Changing the measure of ethical loss 

For binary responses, another possible measure of ethical loss is the expected 
proportion of failures: 

1 2 1 1 2 2( , ) ,FE q q      

which is related to W  by a linear transformation: 

min 1 1 1 2 min

max min 1 2

1 1 2

(1 )

| |

1 1
sgn( ) .

2 2

F

W

E q q q q

q q p p

p p

 

 

   


 

      
 

 

If we minimize the compound criterion 

( 1)

(1 ) ,F IE       
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this is equivalent to minimizing criterion (4) with different weights. More pre-
cisely, 

[0,1] [0,1]

1 2

1 2

arg min [ (1 ) ] arg min [ (1 ) ]

| |
where 

| | 1

F I W IE

p p

p p

 
   




 

      

 


   

 
 

Basically, we are re-scaling the weight ratio, namely 1 2| |
1 1

p p 
 

 
  . The 

results of Sections 3.1 and 3.2 can be applied after suitable changes. In particular, 
 for the determinant: the choice 4/5   ensures 4/5   and in this case the 

optimal target is 

1 2
1 1

( ) ;
2 8 1

p p





   


 (19) 

 for the trace: replace 
1



 by 1 2| |
1

p p

 

  in equation (14) and replace 

condition (18) by 

2
1 1 2 21 2

1 1 2 2

( )| |
.

1 max( , )

p q p qp p

p q p q




 



 

4.2. Changing the compound criterion 

Now we want to deal with an altogether different compound criterion, the one 
that was assumed in Baldi Antognini and Giovagnoli (2010), namely: 

( 2 ) 1 2 1 2
1 2

( , ) ( , )
( , ) (1 ) .

min min
F I

F I

E

E
   

   





   
     

   
 (20) 

Since the minimum value of FE  is simply minq , by differentiation the defining 
equation of this new compound target is 

1 2

min

( ) 1
(1 ) 0.I

I

p p

q
 








     (21) 

4.3. The targets wrt criterion (20) 

If I D  -optimality, equation (21) becomes 

1 2 1 1 2 2
1 1 2 2

min

4 0,
1 (1 )

p p p q p q
p q p q

q


   





 
     
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i.e. 

1 2
2 2

min

4( ) 2 1
0,

1 (1 )

p p

q

 
  

 
  

 
 (22) 

and the optimal target is obtained by solving (22) in (0,1) . Since the LHS of (22) 
is monotonic and as 0   and 1, the limits are   and  , respectively, there 
is a unique solution in (0,1) . The important difference from considering criterion 

(4) is that in this case the optimal solution depends on the actual values of 1 2,p p  
and not just on the sign of their difference. 
 
Remark It is evident from (22) that this target will always assign more than half the subjects 
to the better treatment, since 1 2sgn(2 1) sgn( )p p    . 

 

If trace-optimalityI  , the defining equation is 

21 2 1 1 2 2
1 1 2 2

min

( ) 0
(1 ) 1

p p p q p q
p q p q

q


   





        
 

namely 

 2 2

1 1

2 2

1 2 2 2
2 2

min 1 1

1 2 1
1 0.

(1 ) (1 )

p q
p qp p p q

q p q

 
  

   
      

 (23) 

 
Remark It is shown in Baldi Antognini and Giovagnoli (2010), that with this target alloca-
tion, the majority of subjects will receive the better treatment if the weight function is chosen so 
that ( , ) 1/2x y   when 1x y  . 

 

Table 6 shows the values of the compound targets that solve (22) and (23), 

corresponding to fixed weight 1/2   ( 1/2

  and 1/2


 , respectively) and to 

1 2( 1)/2p p     (
p

  and 
p

 , respectively) for several choices of 1p  and 

2p . 
TABLE 6 

Values of the compound targets for D- and trace-optimality, corresponding to ω=1/2 and ωp=(|p1-p2|+1)/2, 
for different choices of p1 and p2 

  D-optimality trace-optimality  

p1 p2 1/ 2

  

p
  **

1/ 2   **

p  N
  pW   

0.10 0.05 0.507 0.508 0.586 0.587 0.579 0.514 
0.20 0.05 0.523 0.531 0.668 0.675 0.647 0.543 
0.20 0.10 0.516 0.519 0.587 0.590 0.571 0.529 
0.40 0.05 0.570 0.631 0.744 0.782 0.692 0.613 
0.40 0.20 0.541 0.561 0.590 0.609 0.551 0.571 
0.40 0.35 0.510 0.512 0.517 0.518 0.507 0.520 
0.65 0.40 0.584 0.630 0.578 0.624 0.493 0.632 
0.65 0.60 0.518 0.520 0.511 0.513 0.493 0.533 
0.95 0.65 0.802 0.852 0.724 0.796 0.314 0.875 
0.95 0.85 0.686 0.709 0.599 0.629 0.379 0.750 
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The targets 1/2

  and 

p
  assign more patients to the better treatment, 

whereas the bottom part of Table 6 (outlined) shows the values of 1 2( , )p p  for 
which the Neyman target penalizes the better treatment. Clearly the values of 

1/2

  and 

p
 , and of 1/2


  and 

p
  are very close when 1 2| |p p  is small. 

5. CONVERGENCE TO THE OPTIMAL ALLOCATION: RESPONSE-ADAPTIVE EXPERIMENTS 

As shown previously, the target allocation depends in general on some or all the 

unknown parameters of the model, e.g. ( )      with 2 2
1 1 2 2{ , ; , }     , and 

when this function is continuous response-adaptive procedures may be called for. 
These designs, also called response-driven or data-dependent, use the observed responses 
as well as past allocations to modify the experiment as we go along in order to 
gradually approach the desired target allocation. 

Now we briefly describe the general framework of these sequential methods. 
Starting with 0n  observations on each treatment, usually assigned by using re-
stricted randomization, e.g. permuted block designs, an initial non-trivial parame-
ter estimation 0̂  is derived. Then, at each step n  ( 02 )n n  let ˆ( )n  be a consis-
tent parameter estimator of   based on the first n  observations, so that the op-

timal target will be estimated by all the data up to that step. Let ˆˆ ( ) ( ( ))n n     . 

Moreover, let 1( )N n  and 2( )N n  be the number of patients assigned to 1T  and 

2T , respectively, with 1 2( ) ( )N n N n n  ; additionally, 1
1( ) ( )n n N n   is the 

random proportion of allocation to 1T  and, symmetrically, 1 ( )n  to 2T . When 

patient ( 1)n   is ready to be randomized, s/he will be assigned to 1T  with prob-

ability 1nP   (consequently, to 2T  with probability 11 nP  ) and the problem con-

sists in choosing the allocation probabilities { , 1}nP n   so that, as n  tends to in-

finity, ( )n  converges to ( )   in some sense. 
One of the most effective family of randomization procedures is the Doubly 

Adaptive Biased Coin Design (D-BCD) analyzed by Hu and Zhang (2004)  
(see also references therein). The rationale behind this procedure consists  
in favouring the allocation of a given treatment, the more so the more its current 
allocation proportion is smaller than the current estimate of the target. The  
D-BCD consists in assigning treatment 1T  to subject ( 1)n   with probability 

1 ˆ( ( ); ( ))nP g n n  
   for all 02n n , where the allocation function ( ; )g    is cho-

sen by the experimenter so as to force the treatment assignments on the basis of 
some measure of the dissimilarity between their actual allocation proportion x  
and the current estimate of the optimal target y . The function g  needs to satisfy 
the following conditions: 
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i) ( ; )g x y  is continuous on (0,1)2; 
ii) ( ; )g x x x ; 
iii) ( ; )g x y  is decreasing in x  and increasing in y ; 
iv) ( ; ) 1 (1 ;1 )g x y g x y     for all x, y   (0,1)2 
Observe that the D-BCD will force the allocation proportion to the target, 

since from conditions ii) and iii), when x y  then ( ; )g x y < y, whereas if x y , 
then ( ; )g x y >y. However, condition i) is quite restrictive since it does not include 
several widely-known procedures based on discontinuous allocation functions 
such as Efron’s Biased coin design and its extensions (Hu et al. 2009), while con-
dition iv) simply guarantees that 1T  and 2T  are treated symmetrically. 

The following result ensures the convergence of the D-BCD to the chosen 

compound optimal target allocation ( )   (see for instance Hu and Zhang, 
2004): 
 

Proposition If the compound optimal target ( )  (0,1)    and is continuous in  , 
adopting the D-BCD  

ˆlim ( ) ( ) and lim ( ) . .
n n

n n a s    

 
   

Now we give some examples belonging to the D-BCD family: 
 
Method 1. The most “intuitive” allocation rule consists in letting ( ; )g x y y ; 

this means that treatment 1T  will be assigned to subject 1n   with probability  

1 ˆ ( ).nP n


   (24) 

When estimation is made by ML, this procedure is called the Sequential Maxi-
mum Likelihood (SML) or recursive Maximum Likelihood design. See Baldi An-
tognini and Giovagnoli (2005) and references therein. 
 
Method 2. Hu and Zhang (2004) suggest the following family of allocation func-
tions 

( / )
( ; ) ,

( / ) (1 )[(1 )/(1 )]

y y x
g x y

y y x y y x



  
   

 (25) 

where the non-negative parameter   controls the degree of randomness of each 
allocation: if 0   the randomization function does not dependent on the cur-
rent allocation proportion and this procedure corresponds to the SML design in 
(SML), whereas as   grows the allocation tends to be forced deterministically to 
the estimated target. 
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Method 3. A new proposal of allocation function is: 

1

1 1

( )
( ; ) ,

1
( ) (1 )

1

y
F G F y

x
g x y

y y
F G F y F G F y

x x



 

  
    

                   

 (26) 

where ( ),  ( ) :F z G z R R   are continuous and increasing functions with 

(1) 1G   and F invertible. Note that if ( )F z z  and ( )G z z   one obtains 

( ; )g x y  in (25). 

 
Example 3 Set ( )G z z . We let 

1

1 1

( )
( ; ) ,

1
( ) (1 )

1

y
F F y

x
g x y

y y
F F y F F y

x x



 

 
 
 

          

  (27) 

where 
2

0
2( ) z tF z e dt


   (this F  is called the error function). 

 
Figure 1 shows the behaviour of the function g  in (27). 
 

 
 
Fig. 1 – Plots of ( ; )g x y  as x varies in (0,1). The values of y from the bottom curve to the top curve 
are: 0.2, 0.4, 0.6 and 0.8, respectively. 
 

Table 7 shows the comparisons between the above mentioned randomization 
functions, i.e. Method 1, Method 2 and Method 3, in order to stress the different 
impact of these procedures in terms of treatment allocations when both the target 
estimate and the allocation proportion vary. 
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The SML design (Method 1) is not affected by the current allocation propor-
tions but depends only on the current estimate of the target. As an example, 
when 0.7y   the SML design favours the allocation of 1T  by assigning 1T  with 
probability 0.7 , both in case of 0.05x   and 0.8x  . Method 2, however, 
strongly depends on the current allocation proportion. Indeed, the top part of 
Table 7 shows that if treatment 1T  has (almost) never been assigned, then it will 
be allocated with probability 1 even if the target allocation is extremely small (e.g. 

0.1y   or 0.3y  ). Furthermore, starting from 2   Method 2 tends to be 
highly deterministic. On the contrary, the proposed g  in (27) has an interesting 
behaviour as regards the drawbacks of Methods 1 and 2, since it forces the alloca-
tion decisively onto the target, when needed, guaranteeing at the same time a suit-
able degree of randomness. 

TABLE 7 

Values of the randomization function g in (25) with =0, namely the SML design,  =1,  =2 and g  in (27) 

x y g0 (SML) g1 g2 g  

→ 0 0.1 0.1 1.000 1.000 0.537 
→ 0 0.3 0.3 1.000 1.000 0.653 
→ 0 0.5 0.5 1.000 1.000 0.792 
→ 0 0.7 0.7 1.000 1.000 0.916 
→ 0 0.9 0.9 1.000 1.000 0.990 
0.2 0.1 0.1 0.047 0.022 0.051 
0.2 0.3 0.3 0.424 0.557 0.407 
0.2 0.5 0.5 0.800 0.941 0.735 
0.2 0.7 0.7 0.956 0.995 0.897 
0.2 0.9 0.9 0.997 0.999 0.988 
0.4 0.1 0.1 0.018 0.003 0.025 
0.4 0.3 0.3 0.216 0.151 0.227 
0.4 0.5 0.5 0.600 0.692 0.585 
0.4 0.7 0.7 0.891 0.966 0.859 
0.4 0.9 0.9 0.992 0.999 0.984 
0.6 0.1 0.1 0.008 0.001 0.016 
0.6 0.3 0.3 0.109 0.034 0.141 
0.6 0.5 0.5 0.400 0.308 0.415 
0.6 0.7 0.7 0.784 0.850 0.773 
0.6 0.9 0.9 0.982 0.997 0.975 
0.8 0.1 0.1 0.003  0 0.012 
0.8 0.3 0.3 0.044 0.005 0.103 
0.8 0.5 0.5 0.200 0.059 0.265 
0.8 0.7 0.7 0.577 0.443 0.593 
0.8 0.9 0.9 0.953 0.979 0.949 

6. THE HOMOSCEDASTIC MODEL WITH ONE CATEGORICAL COVARIATE 

We now further specify (1) as follows 

2( ) , ( ) 1, 2,...,t
ik k i iE Y V Y i n    z   (28) 

namely the observations are homoscedastic and the response depends on the 
treatment and on one random categorical covariate Z  with J  fixed levels. The 
subjects will be subdivided into strata (blocks) according to the level of Z . This 
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case was dealt with in Baldi Antognini and Zagoraiou (2010). The covariate dis-
tribution in the population is assumed to be known: Pr( )j jZ z    for 

1,...,j J ;   is the vector of block effects and iz  is the indicator function of 
the block for the i  th observation. Conditionally on the covariate and the treat-
ment allocations, patients’ responses are assumed to be independent. In the statis-
tical literature (28) is described as a 2-factor mixed model without treatment-
block interaction; in other words, the superiority of one treatment over the other 
(meaning 1 2   or vice-versa) is uniformly constant over the blocks. The inferen-

tial interest typically lies in testing or estimating the difference 1 2   as precisely 
as possible and   is usually a nuisance parameter. 

Let jN  ( 1,...,j J ) with 1
J
j jN n   be the random size of block j  after n  

observations and let 1( , ..., )t
J   denote the vector of allocation proportions 

to 1T  in each block. Let 1( , ..., )t
nZ ZZ  be the vector of covariates for the n  

subjects. 
Then we obtain 

1

2 2
1 2

1

ˆ ˆ( | ) (2 1) ,
J

j j
j

Var n N   




      
  

Z  

so the inferential loss depends on the design through the allocation vector   and 
the block sizes. The loss is a minimum if the treatments are equally replicated 
within each block (for a recent discussion see Baldi Antognini and Zagoraiou, 
2011). The loss is random, since it depends on the block sizes which are not un-
der the experimental control, therefore one must average over the covariate dis-
tribution. After some suitable simplifications and approximations we can let our 
criterion be  

1 2 2

1 1

( ) (2 1) (2 1)
J J

I j j j j
j j

E n N  

 


 

    
  

  Z  (29) 

ranging in [0,1].  
The percentage of patients assigned to the worse treatment is 

1 2
1

1 1
( ) sgn( ).

2 2

J

W j j
j

   



 

     
 

  (30) 

We choose the compound criterion of Section 2, i.e. 

( ) ( ) (1 ) ( ).W I          (31) 
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Setting the partial derivatives with respect to j  equal to 0  we find the set of 

equations 

1 2 sgn( ) 4(1 )(2 1) 0  for all 1,..., .j j J            

Thus the same result as (7) applies to each block so that the optimal target 
 

1( , ..., )t
J       is given by 

1 2
1 1 1

sgn( )min , for all 1, ..., .
2 8 1 2j j J


  


          

 (32) 

Observe that the optimal compound target does not depend on the covariate 
probabilities j ’s and if the weight function is chosen so that 4/5  , then  

πωj*  (0,1). When 1J   (no covariates), then 1 2 1 2       and (32) reduces 
to expression (7). 
 
Remark This allocation is always “ethical”, i.e. more subjects are assigned to the better treat-
ment, whatever their covariate value. Since the compound optimal allocations in all the blocks 
are the same as (7), there is no need for further examples. 

The optimum 
  can be targeted by a suitable implementation of the above 

mentioned sequential methods adjusted for covariates by applying the same ran-
domization function for each block. However, in Baldi Antognini and Zagoraiou 
(2010) a different method was employed namely the randomization function 

( / )
( ; )

( / ) (1 )[(1 )/(1 )]

j

j j
j

y y x
g x y

y y x y y x



 
   

 

with 1
j j   for all 1,...,j J , so the allocations for the profiles which may be 

potentially under-represented will be forced towards the optimal target. 
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SUMMARY 

Some recent developments in the design of adaptive clinical trials 

For clinical trials that compare two or more competing treatments, the literature pro-
poses several randomization rules that aim at favouring, at each stage of the trial, the 
treatment that appears to be best. In two papers the present authors have suggested crite-
ria of optimal allocation that combine inferential precision and ethical gain by means of 
flexible weights, in order to achieve a good trade-off between efficiency and ethical con-
cerns. The ensuing optimal allocation of the treatments can be targeted by a suitable re-
sponse-adaptive randomization rule. The purpose of this paper is to illustrate and extend 
the results previously obtained by the authors to a wider range of statistical models for 
comparative trials. Methods for implementing these designs are given. Some numerical 
examples are included in order to enhance the applicability. 
 
 
 
 




