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AN ALTERNATIVE HYPER-POISSON DISTRIBUTION 

C. Satheesh Kumar, B. Unnikrishnan Nair 

1. INTRODUCTION 

Bardwell and Crow (1964) introduced a two parameter family of discrete dis-
tributions namely the hyper-Poisson distribution through the following probabil-
ity generating function (p.g.f.). 

( ) (1; ; ) (1; ; )G t t      , (1) 

in which 0  , 0   and 

1

( ; ; ) 1 ( ) [( ) ! ]k
k k

k

a b z a z b k




   

is the confluent hypergeometric series (also called the Kummer M function), in 
which ( )ka  is the rising factorial:  

( ) ( 1) ... ( 1) ( ) ( )ka a a a k a k a         , 

for 1, 2,...k   and 0( ) 1a  . For details on confluent hypergeometric series see 
Mathai and Haubold (2008) or Abramowitz and Stegun (1965, chapter 13). When 

1  , the hyper-Poisson distribution reduces to the Poisson distribution and 
when   is a positive integer, the distribution reduces to the displaced Poisson 
distribution of Staff (1964). Bardwell and Crow (1964) termed the distribution as 
sub-Poisson when 1   and super–Poisson when 1  . The hyper-Poisson dis-
tribution is also a member of the Kemp family of distributions studied by Kumar 
(2009). Various methods of estimation of the parameters of the distribution were 
discussed in Bardwell and Crow (1964) and Crow and Bardwell (1965). Some 
queuing theory associated with hyper-Poisson arrivals has been developed by  
Nisida (1962). The estimation of the parameters of the hyper-Poisson distribution 
using negative moments were attempted by Roohi and Ahmad (2003a). Roohi 
and Ahmad (2003a) derived expressions for ascending factorial moments of the 
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hyper-Poisson distribution and obtained certain recurrence relations for its nega-
tive moments and ascending factorial moments. Kemp (2002) considered a q-
analogue of the distribution and Ahmad (2007) introduced the Conway-Maxwell 
hyper-Poisson distribution. Kumar and Nair (2011, 2012) developed extended 
versions of the hyper-Poisson distribution and discussed some of their applica-
tions. 

In this paper, we consider an alternative form of hyper-Poisson distribution 
which we named as “the alternative hyper-Poisson distribution (AHP distribu-
tion)” and study its important properties. In section 2 we give the definition of 
AHP distribution and derive its p.g.f., expression for factorial moments, raw 
moments, mean, variance, and recursion formulae for its probabilities, raw mo-
ments and factorial moments. Further the estimation of the parameters of AHP 
distribution by method of factorial moments, method of mixed moments and 
method of maximum likelihood are discussed in section 3 and illustrated using 
real life data sets.  

We need the following series representations in the sequel. 

0 0 0 0
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2. THE AHP DISTRIBUTION 

In this section we present the definition of the AHP distribution and obtain 
some of its important properties. 
 
Definition 2.1. A non-negative integer valued random variable X  is said to follow 
the alternative hyper-Poisson distribution (or in short the AHP distribution) if its 
probability mass function (p.m.f.) has the following form, in which 0  , 0   
and 0,1, 2,...x   

( ) [ ]f x P X x   

       (1 ; ; )
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x

x

x x


  


     (4) 

Clearly, when 1   the AHP distribution reduces to the Poisson distribution. 
An important characteristic of the AHP distribution is that it is under-dispersed 
when 1   and over-dispersed when 1  , in the light of Remark 2.1. Now we 
have the following results. 
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Result 2.1. The p.g.f ( )G t  of the AHP distribution with p.m.f. (4) is the following. 

( ) [1; ; ( 1)]G t t     (5) 

Proof. By definition, the p.g.f. of the AHP distribution with p.m.f. (4) is  
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On expanding the confluent hypergeometric series in (6), we get  
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since ( ) ( ) ( )x r x rx      and 1(1 ) ( !) ( )!rx x x r   . 
Now applying (2) in (7) to obtain 
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in the light of binomial expansion of [ ( 1)]xt  . Since (1) !x x  from (8) we 
have 
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  , 

which is (5). 
 
Result 2.2. An expression for factorial moments [ ]r  of the AHP distribution is 

the following, for 1r  . 
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Proof. The factorial moment generating function ( )F t  of the AHP distribution 
with p.g.f. (5) is 

( ) (1 )F t G t   

        (1; ; )t   . 

On expanding (1; ; )t   and equating the coefficients of 1( !) rr t , we get (9). 
 

Result 2.3. Mean and variance of AHP distribution are 

Mean = 



  

and 

Variance = 
( 1)

1
( 1)

 
  

 
  

. 

Remark 2.1. From Result (2.3) it is obvious that the AHP distribution is under-
dispersed (that is, mean greater than variance) when 1   and over dispersed 
when 1   
 

Result 2.4. An expression for raw moments n  of the AHP distribution is the fol-
lowing, for 0n  . 

0
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 , (10) 

where ( , )S n r  is the Stirling numbers of the second kind. For details see, 
(Riordan, 1968). 
 

Proof. The characteristic function ( )t  of the AHP distribution with p.g.f. (5) is 

the following, for any ( , )t R     and 1i   . 
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On expanding the confluent hypergeometric function and using the fact (1) !r r , 
we get 
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since by the equation (1.57) of (Johnson et.al., 2005). By applying (3) in (12) we 
obtain 
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  (13) 

On equating the coefficient of 1( !) ( )nn it  on right hand side expressions of (11) 
and (13), we get (10). 

Define the following shorter notations, which we need in the sequel. 

(1, )    

and 

(1 , )j j j      , 

for 1, 2, ... .j   
 

Result 2.5. The following is a simple recursion formula for probabilities 

( , ) ( )xf f x    of the AHP distribution with p.g.f. (5), for 0x  . 

1( , ) ( 1 , )
( 1)x xf f
x


   


 

  


 (14) 
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Proof. From (4) we have 

( ) [1; ; ( 1)]G t t     

        
0

( , ) x
x

x

f t 






  . (15) 

On differentiating (15) with respect to t , we obtain the following. 
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Also, from (15) we have 

0
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Relations (16) and (17) together lead to the following. 
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    . (18) 

on equating the coefficients of xt  on both sides of (18) we get (14). □ 
 

Result 2.6. The following is a recursion formula for raw moments ( )r r     of 
the AHP distribution, for 0r  . 
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Proof. On differentiating (11) with respect to t , we get the following. 
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From (11) we have 
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Equations (20) and (21) lead to the following. 
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in the light of (2). Now, on equating the coefficients of 
1( !) ( )rr it

 on both sides 
of (22) we get (19). 
□ 
 
Result 2.7. The following is a simple recursion formula for factorial moments 

[ ] [ ]( )r r     of the AHP distribution, for 1r  , in which [0]( ) 1    . 

[ 1] [ ]( ) ( 1)r r


   


 
   , (23) 

Proof. The factorial moment generating function ( )F t  of the AHP distribution 
with p.g.f. given in (5) has the following series representation. 

( ) (1 )F t G t   

       (1; ; )t    

       [ ]
0

( )
!

r

r
r

t

r
 






  (24) 

On differentiating (24) with respect to t  to get  
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By using (24) we get the following from (25). 
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Now, on equating coefficients of 1( !) rr t  on both sides of (26) we get (23). □ 
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3. ESTIMATION 

Here we consider the estimation of the parameters   and   of the AHP dis-
tribution by method of factorial moments, method of mixed moments and the 
method of maximum likelihood. 

3.1 Method of factorial moments 

In method of factorial moments, the first two factorial moments [1] , [ 2 ]  of 

the AHP distribution are equated to the corresponding sample factorial moments, 
say [1]m , [ 2 ]m . Thus we obtain the following system of equations. 

[1]m


  (27) 

2

[ 2]
2.

( 1)
m


 




 (28) 

On solving (27) and (28) we obtain the factorial moment estimators   and   of 
  and   of the AHP distribution as 

[ 2]
2

[1] [ 2]

m

m m
 


 

and 

[1] [ 2]
2

[1] [ 2 ]

m m

m m
 


. 

3.2 Method of mixed moments 

In method of mixed moments, the parameters are estimated by using the first 
sample factorial moment and the first observed frequency of the distribution. 
That is, the estimators are obtained by solving the following equation together 
with (29). 

1
0(1; ; )N p     , (29) 

where 0p  is the observed frequency of the distribution corresponding to the ob-
servation zero and N  is the total observed frequency. 
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3.3 Method of maximum likelihood 

Let ( )a x  be the observed frequency of x  events based on the observations 
from a sample with independent components and let y  be the highest value of 
x  observed. Then the likelihood function of the sample is 

( )

0

[ ( )]
y

a x

x

L f x


 , 

which implies 

0

log ( )log ( )
y

x

L a x f x


   

Assume that   is known. Let ̂  denote the maximum likelihood estimate of  . 

Now ̂  is obtained by solving the normal equation (30) given below. 

log
0

L





 . 

Equivalently,  

0

1
(2 ; 1; )

( ) 0
(1 ; ; )

y

x

x
x x

x x
a x

x x

  


   

       
   

  

  (30) 

Here the estimate of   is used for obtaining the maximum likelihood estima-

tor ̂  of  . Let   denote the factorial moment estimator of  and   denote the 
mixed moment estimator of  . All these procedures discussed in this section are 
illustrated using two real life data sets, obtained from (Albert, 1991) [or see page 
133 of (Hand et al., 1994)] and (Stirrett et.al., 1937) [or Bliss, 1953)] with the help 
of the mathematical software – MATHCAD and presented in Table 1 and Table 
2. From these tables it can be viewed that the AHP distribution gives better fit 
compared to the hyper-Poisson distribution. Further study on the properties and 
the comparisons of the estimators of the parameters of the AHP distribution ob-
tained in the paper will be published in the sequel. 
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SUMMARY 

An alternative hyper-Poisson distribution 

An alternative form of hyper-Poisson distribution is introduced through its probability 
mass function and studies some of its important aspects such as mean, variance, expres-
sions for its raw moments, factorial moments, probability generating function and recur-
sion formulae for its probabilities, raw moments and factorial moments. The estimation 
of the parameters of the distribution by various methods are considered and illustrated 
using some real life data sets. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 




