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A PRODUCT AUTOREGRESSIVE MODEL 
WITH LOG-LAPLACE MARGINAL DISTRIBUTION 

K.K. Jose, M.M. Thomas 

1. INTRODUCTION 

In statistical distribution theory, the ‘log-Laplace distribution’ is the probability 
distribution of a random variable whose logarithm follows a Laplace distribution. 
The log-Laplace models appeared in the statistical, economic as well as science 
literature over the past seventy years. The relationship between Laplace distribu-
tion and log-Laplace distribution is analogous to the relationship between the 
Normal and lognormal distributions. Most often they appeared as models for 
data sets with particular properties or were derived as the most natural models 
based on the properties of the studied processes. Thus Kozubowski and Podgór-
ski (2003) review many uses of the log-Laplace distribution. Fréchet (1939) pre-
sented the symmetric log-Laplace law as a model for income when the ‘moral for-
tune’, that is the logarithm of income, was assumed to have the classical Laplace 
distribution. The asymmetric log-Laplace distribution has been a good fit to 
pharmacokinetic and particle size data. Particle size studies often show the log 
size to follow a tent-shaped distribution like the Laplace, see Julià and Veves-
Rego (2005) for more details. It has been used to model growth rates, stock 
prices, annual gross domestic production, interest and forex rates. Some explana-
tion for the goodness of fit of the Log-Laplace has been suggested because of its 
relationship to Brownian motion stopped at a random exponential time.  

Symmetric and asymmetric forms of log-Laplace distribution were used for 
modeling various phenomena by a number of researchers. Inoue (1978) derived 
the symmetric log-Laplace distribution from his stochastic model for income dis-
tribution, fitted it to income data by maximum likelihood and reported a better fit 
than that of a lognormal model traditionally used in this area. Uppuluri (1981) ob-
tained an axiomatic characterization of this distribution and derived the distribu-
tion from a set of properties about the dose-response curve for radiation carcino-
genesis. Barndorff-Nielsen (1977) and Bagnold and Barndorff-Nielsen (1980) 
proposed the log-hyperbolic models, of which log-Laplace is a limiting case for 
particle size data. Log-Laplace models have been recently proposed for growth 
rates of diverse processes such as annual gross domestic product, stock prices, 
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interest or foreign currency exchange rates, company sizes, and other processes. 
Log-Laplace distributions are mixtures of lognormal distributions and have as-
ymptotically linear tails. These two features makes them particularly suitable for 
modeling size data.  

The autoregressive models associated with the exponential, gamma and mixed 
exponential distributions are introduced by Lawrance (1978). Gaver and Lewis 
(1980) also discussed these models and their properties. In the case of gamma 
AR(1) processes, Lawrance (1982) had shown that the innovation distribution can 
be generated easily as a compound Poisson distribution; it is noted that the result 
holds for both integral and fractional index of the gamma distribution. Dewald 
and Lewis (1985) introduced a first order autoregressive Laplace process. Dam-
sleth and El-Shaaravi (1989) developed a time series model with Laplace noise as 
an alternative to the normal distribution. Gibson (1986) used an AR(1) process 
for image source modeling in data compression tasks. Sim (1994) discussed a 
general theory of model-building approach that consists of model identification, 
estimation, diagnostic checking and forecasting for a model with a given marginal 
distribution. Cox (1981) gives a wide ranging discussion of many developments in 
non-Gaussian, non-linear and non-reversible aspects of time series models. 
Seethalekshmi and Jose (2004; 2006) introduced various autoregressive models 
utilizing  -Laplace and Pakes distributions. Jose et al. (2008) introduced a new 
concept of autoregressive processes which gives a combination of Gaussian and 
non-Gaussian time series models. Punathumparambathu (2011) introduced a new 
family of skewed distributions generated by the normal kernel and discussed its 
various applications. Jose and Krishna (2011) introduced autoregressive models 
having Marshall-Olkin assymmetric Laplace marginals. Jose and Abraham (2011) 
extend the count models with Mittag-Leffler waiting times. McKenzie (1982) de-
rived a non-linear stationary stochastic process, called product autoregression 
structure. 

Klebanov et al. (1984) introduced geometric infinite divisibility (g.i.d.) and ob-
tained several characterizations in terms of characteristic functions. The class of 
g.i.d. distributions form a subclass of infinitely divisible (i.d.) distributions and 
contain the class of distributions with complete monotone derivative (c.m.d.). 
They also introduced and characterized the related concept of geometric strict 
stability (g.s.s.) for real valued random variables. The exponential and geometric 
distributions are examples of distributions that possess the g.i.d. and the g.s.s. 
properties. Mittag-Leffler distributions, Laplace distributions etc are g.i.d., see Pil-
lai (1990), Pillai and Sandhya (1990), Jayakumar (1997). Fujitha (1993) constructed 
a larger class of g.i.d. distributions with support on the non-negative half-line. 
Bondesson (1979) and Shanbhag and Sreehari (1977) have established the self-
decomposability of many of the most commonly occurring distributions in prac-
tice. Bondesson (1981) noted that the stationary marginal distribution of an 
AR(1) process belongs to class L, otherwise called the class of self-decomposable 
distributions. Kozubowski and Podgórski (2010) introduced a notion of random 
self-decomposability and discussed its relation to the concepts of self-
decomposability and g.i.d..  



A product autoregressive model with log-Laplace marginal distribution 319 

In this paper we consider log-Laplace distributions and their multivariate ex-
tensions along with applications in time series modeling using product autore-
gression. Section 1 is introductory. In section 2, the log-Laplace distribution and 
its properties are studied. Various divisibility properties like infinite divisibility 
and geometric infinite divisibility are studied. Multiplicative infinite divisibility and 
geometric multiplicative infinite divisibility are introduced and studied. In section 
3, product autoregression models are introduced and studied. Section 4 deals with 
additive autoregressive model. The generation of the process, sample path prop-
erties and estimation of parameters are considered here. In section 5, a more gen-
eral model with double Pareto lognormal marginals is introduced. Multivariate 
extension is given in section 6.  

2. THE LOG-LAPLACE DISTRIBUTION AND ITS PROPERTIES 

A random variable Y  is said to have a log-Laplace distribution with parame-
ters > 0 , > 0  and > 0  (LL( , ,   )) if its probability density function is  
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This distribution can be derived by combining the two power laws and has 
power tails at zero and at infinity. This density has a distinct ‘tent’ shape when 
plotted on the log-log scale. The graphs of probability density function of log-
Laplace distribution for fixed   and for various values of   are given in the fol-
lowing figures. 
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Figure 1a – = 1.3, = 1  .                                      Figure 1b – = 1, = 1  . 

 

The log-Laplace pdf (1) can be derived as the distribution of eX  where X  is 
an asymmetric Laplace (AL) variable with density 

exp( ( )) for <
( )=

 exp( ( )) for

x x
f x

x x

  
   


    

 (3) 

Therefore if X  has an AL distribution given by (3), then the density of = eXY  

is given by (1) with = e .  
Kozubowski and Podgórski (2003) studied some important properties of 

LL( , ,   ). It has Pareto-type tails at zero and infinity, that is  

1( > )~  as  andP Y x C x x   

2(0 < ) ~  as 0 .P Y x C x x    

It also possesses invariance property with respect to scaling and exponentiation 
which is natural property of variables describing multiplicative processes such as 
growth. The distribution has a representation as an exponential growth-decay 
process over random exponential time which extends a similar property of the 
Pareto distribution by allowing decay in addition to growth. Its simplicity allows 
for efficient practical applications and thus gives an advantage over many other 
models for heavy power tails, such as stable or geometric stable laws. The upper 
tail index is not bounded from above which adds flexibility over some other 
models for heavy tail data such as stable or geometric stable laws where its value 
is limited by two. Maximum entropy property of LL distribution is desirable in 
many applications. Stability with respect to geometric multiplication which may 
play a fundamental role in modeling growth rates. Limiting distribution of geo-
metric products of LL random variables leads to useful approximations. Its 
straightforward extension to the multivariate setting allows modeling of corre-
lated multivariate rate data, such as joint returns on portfolios of securities.  
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   are the generalized Fresnel integrals. For details on Fresnel 

integralsand their properties see Abramowitz and Stegan (1964).  
LL distributions are heavy tailed and some moments do not exist.The mean 

and the variance are finite only if >1  and > 2  respectively. Due to reciprocal 
properties of these laws, the harmonic mean is of the same form as the reciprocal 
of the mean. We also note that LL distributions are unimodal with the mode at   
when >1  and the mode at zero when < 1.  
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Log-Laplace distributions can be represented in terms of other well-known dis-
tributions, including the lognormal, exponential, uniform, Pareto, and beta distri-
butions. The log-Laplace distribution LL , ,( )    can be viewed as a lognormal 
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distribution LN ,( )  , where the parameters   and   are random. This is a di-
rect consequence of the fact that an asymmetric Laplace random variable can be 
viewed as a normal variable with the above random mean   and standard devia-
tion (see Kotz et al. (2001)). More specifically, the variable ~Y LL , ,( )    has 
the representation 

=e ,
d

Y R   

where R  is standard lognormal random variable,  

1 1
= log  andE 
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where E  is a standard exponential variable independent of R .  
As a direct consequence of the fact that a skew Laplace variable arises as a dif-

ference of two independent exponential variables, we have  

1 1
1 2

= e ,
E Ed
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where 1E  and 2E  are two independently and identically distributed (i.i.d.) stan-

dard exponential variables. Let 1U  and 2U  be independent random variables dis-
tributed uniformly on [0, 1]. Then we have  
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LL random variable can also be represented as the ratio of two Pareto random 
variables of the form  

1

2

= ,
d P

Y
P

  

where 1P  and 2P  are independent Pareto random variables with parameters   
and   respectively, for more details, see Kozubowski and Podgórski (2003).  

Entropy, basic concept in information theory is a measure of uncertainty asso-
ciated with the distribution of a random variable Y  and is defined as  

H( )= E[ log ( )].Y f Y  

It has found applications in a variety of fields, including statistical mechanics, 
queuing theory, stock market analysis, image analysis and reliability. If 

~Y LL( , ,   ), the entropy is given by 
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1 1 1 1
H( )=1 log log .Y 

   
 

     
 

 

For an AL random variable X , entropy is given by  

1 1
H( )= log .X

 
 

 
 

 

The entropy is maximized for an AL distribution and hence the same property 
holds for LL distribution also, see Kozubowski and Podgórski (2003). Jose and 
Naik (2008) introduced asymmetric pathway distributions and showed that the 
model maximizes various entropies.  

The estimation of parameters of the log-Laplace distribution is given by 
Hinkley and Revankar (1977). They give Fisher information matrix of the LL 
random variable. The maximum likelihood estimates of the parameters are given 
by Hartley and Revankar (1974). They showed that these estimators are asymp-
totically normal and efficient.  

2.1. Multivariate Extension  

Let 1= ( , , )dX X X   follows a multivariate asymmetric Laplace distribution 
with characteristic function  

11
( )= 1 ' '

2
t i


     

t t m t  (5) 

where 't  denotes transpose of , dt m R  and   is a d d  non-negative definite 
symmetric matrix. A d-dimensional log-Laplace variable can be defined as a ran-
dom vector of the form  

1= e =(e , , e ) .
XX d XY   

If   is positive-definite, then the distribution is d-dimensional and the corre-
sponding density function can be derived easily from that of the Laplace distribu-
tion, see Kotz et al. (2001), as 
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where 1log =(log , , log )dy yy   is defined componentwise and 
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is the density of multivariate asymmetric Laplace distribution. Here = 1 /2d   
and K  is the modified Bessel function of the third kind.  

Similar to the univariate case, multivariate LL distribution also possesses the 
stability and limiting properties with respect to geometric multiplication. Each 
component of a multivariate LL random vector is univariate LL.  

2.2. Divisibility properties  

The notions of infinite divisibility (i.d.) and geometric infinite divisibility (g.i.d.) 
play a fundamental role in the study of central limit theorem and Lévy processes. 
Variables appearing in many applications in various sciences can often be repre-
sented as sums of larger number of tiny variables, often independently and identi-
cally distributed. The theory of infinite divisible distributions was developed pri-
marily during the period from 1920 to 1950.  
 
Definition 2.1. A probability distribution with characteristic function   is i.d. if for 
any integer 1n  , we have  

=[ ] ,n
n   

where n  is another characteristic function. In other words, a random variable 
X  with characteristic function   has the representation  

=1

= ,
nd

i
i

X X  

for some i.i.d. random variables iX .  
 
Remark 2.1. AL distributions are i.d..  
 
Remark 2.2. LL distributions are not i.d..  
 
Definition 2.2. A random variable X  and its probability distribution is said to be 
g.i.d. if for any (0,1)p  it satisfies the relation  
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where p  is a geometric random variable with mean 1/p , the random variables 
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( )i
pX  are i.i.d. for each p , and p  and ( )( )i

pX  are independently distributed, see 

Klebanov et al. (1984). 
 
Characterization of g.i.d.. A random variable X  is g.i.d. if and only if (iff)  

1
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1 ( )X t
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where ( )t  is a non-negative function with complete monotone derivative 
(c.m.d.) and (0)= 0 .  

Now we consider the divisibility properties with respect to multiplication. Ko-
zubowski and Podgórski (2003) discussed the multiplicative divisibility and multi-
plicative geometric divisibility. There is no further developments on this area in 
the literature.  
 
Definition 2.3. A random variable Y  is said to be multiplicative infinitely divisible 
(m.i.d.) if it has the representation 

=1
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i
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for some i.i.d. random variables iY .  
 
Theorem 2.1. LL distributions are m.i.d.. 
 
Proof. Let Y  follows the LL distribution. We have to prove that  
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where iY ’s are i.i.d. random variables.  

Taking logarithm on both sides we get 
=1

log = log
n

ii
Y Y . Since we know 

that = logX Y AL distributions, we need only to prove that X  is i.d.. AL dis-
tributions are i.d.. Therefore it follows that LL distributions are m.i.d..  
 
Definition 2.4. A random variable Y  is said to be geometric multiplicative infi-
nitely divisible (g.m.i.d.) if for any (0,1)p , it satisfies the relation 
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where p  is a geometric random variable with mean 1/p , the random variables 
( )i
pY  are i.i.d. for each p , and p  and ( )( )i

pY  are independently distributed.  

 
Characterization of g.i.d.. A random variable X  is g.m.i.d. iff  

log
1

( )= ,
1 ( )X t

t



 

where ( )t  is a non-negative function with complete monotone derivative 
(c.m.d.) and (0)= 0 . 
 
Theorem 2.2. LL distributions are g.m.i.d..  

The proof follows from the fact that log-Laplace laws arise as limits of the 
products of the form 1 2 p

Y Y Y  of i.i.d. random variables with geometric num-

ber of terms, since Laplace distributions are limits of sums of random variables 

1 2 p
X X X    with a geometric number of terms.  

3. PRODUCT AUTOREGRESSION 

McKenzie (1982) introduced a product autoregression structure. A product 
autoregression structure of order one (PAR(1)) has the form  

1= ,  0 < 1,  = 0, 1, 2, ,a
n n nY Y a n      (6) 

where { }n  is a sequence of i.i.d. positive random variables. In the usual non-
linear autoregressive models, we have an additive noise. But in product autore-
gressive models, we have a non-additive but multiplicative noise. We may deter-
mine the correlation structure as follows.  
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From (6), E( )= E( )E( )s as sY Y   and therefore  
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Now consider the autocorrelation function ( )= Corr( , )Y n n kk Y Y  , when Y  
has a log-Laplace distribution.  
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The usual additive first order autoregressive model is given by  

1= ,   0 < < 1,    = 0, 1, 2, ,n n nX aX a n      (9) 

where { }n  is the innovation sequence of i.i.d. random variables. Its autocorrela-

tion function is given by ( )= , = 0, 1, 2,k
X k a k    . From (8), it is clear that 

the correlation structure is not preserved in the case of log-Laplace process. It is 
well known that the correlation structure is not preserved in going from the log-
normal to the normal distributions. McKenzie (1982) showed that the gamma 
distribution is the only one for which the PAR(1) process has the Markov correla-
tion structure.  

3.1. Self-decomposability 

Definition 3.1. (Maejima and Naito, 1998) A characteristic function   is semi-self-

decomposable if for some 0 < <1a , there exists a characteristic function a  

such that ( )= ( ) ( ), at at t t   R . If this relation holds for every 0 < < 1a , then 
  is self-decomposable (s.d.) or the corresponding distribution is said to belong 
to L -class.  

The basic problem in time series analysis is to find the distribution of { }n . 
The class of s.d. distributions form a subset of the class of infinitely divisible dis-
tributions and they include the stable distributions as proper subset. A number of 
authors have examined the L -class in detail and many of its members are now 
well known. 
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Definition 3.2.(Kozubowski and Podgórski (2010)) A distribution with characteris-
tic function   is randomly self-decomposable (r.s.d.) if for each , [0,1]p c   there 

exists a probability distribution with characteristic function ,c p  satisfying 

,( )= ( )[ (1 ) ( )]c pt t p p ct    .  

 
Definition 3.3. A characteristic function   is multiplicative self-decomposable 

(m.s.d.) if for every 0 < < 1a , there exists a characteristic function log a  such that 

log log log( )= ( ) ( ),X X at at t t   R .  

The distributions in the L -class are several which are the distributions of the 
natural logarithms of random variables whose distributions are also self-
decomposable. These include the normal, the log gamma and the log F distribu-
tions. This phenomenon is very interesting in a time series point of view because 
the logarithmic transformation is the commonest of all transformations used in 
time series analysis.  

4. AUTOREGRESSIVE MODEL 

If we take logarithms of nY  in (6), and let = logn nX Y , then the stationary 

process of { }nX  has the form  

1= , where  = log ,n n n n nX aX      (10) 

which has the form of linear additive autoregressive model of order one. Then we 
can proceed as in the case of AR(1) processes. Now from (10), under the assump-
tion of stationarity, we can obtain the characteristic function of   as  
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X
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We know that X  follows an asymmetric Laplace distribution with characteris-
tic function, 
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This characteristic function can be factored as 
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where 
1

> 0,  =
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, see Kotz et al. (2001). 

Then substituting (12) in (11), we get 
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This implies that   has a convolution structure of the form, 

1 2= ,
d
U V V    (14) 

where U  is a degenerate random variable taking value (1 )a   with probability 

one and 1V  and 2V  are convolutions of 1T  and 2T  where,  

1
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a
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2
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=

, with probability 1

a
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where 1E  and 2E  are exponential random variables with means 
2




 and 

2


  respectively. 

4.2. Sample path properties  

Sample path properties of the process are studied by generating 100 observa-
tions each from the process with various parameter , ,( )    combinations. In 
Figures 4a and 4b, we take = 0.7a  and the values of , ,( )    as (0, 1, 1) and (0, 
10, 10) respectively. In Figures 5a and 5b, we take = 0.4a  and the values of 

, ,( )    as (0, 1, 1) and (0, 2, 2) respectively. The process exhibits both positive 
and negative values with upward as well as downward runs as seen from the fig-
ures. 
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Figure 2a                                                                 Figure 2b 
 

   
Figure 3a                                                                  Figure 3b 
 
 
4.3. Estimation of parameters 

The moments and cumulants of the sequence of innovations { }n  can be ob-
tained directly from (13) as 

2
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1 1
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Since the mean and variance of AL distribution are 

Figure 2a 
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and the higher order cumulants are given by 
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From the cumulants the higher order moments can be obtained easily since 
2

3 3 4 4 2= , = 3k k    and 5 5 2 3= 10k    . Hence the problem of estimation 
of parameters of the process can be tackled in a way similar to the method of 
moments.  
 
Remark 4.1. Another more general model can be constructed by considering the 
double Pareto lognormal distribution of Reed and Jorgensen (2004).  

5. DOUBLE PARETO LOGNORMAL DISTRIBUTION 

The double Pareto lognormal (DPLN) distribution is an exponentiated version 
of Normal-Laplace random variable, which results from the convolution of inde-
pendent Normal and asymmetric Laplace densities. This name was coined be-
cause the distribution results from the product of independently distributed dou-
ble Pareto and lognormal components. It has applications in modelling the size 
distributions of various phenomena arising in economics (distributions of in-
comes and earnings); finance (stock price returns); geography (populations of 
human settlements); physical sciences (particle sizes) and geology (oil-field vol-
umes), see Reed and Jorgensen (2004). Similar to the log-Laplace distributions, 
the DPLN distribution can be represented as a continuous mixture of lognormal 
distributions with different variances.  

A random variable Y  is said to have a DPLN distribution if its pdf is  

2 2 2
11 2 1 11
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1 2
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where   is the cdf and c  is the complementary cdf of (0,1)N . We can write 
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2
1 2( , , , )Y DPLN      to denote a random variable follows double Pareto log-

normal distribution.  

A DPLN 2
1 2( , , , )     random variable can be expressed as  

= ,
d

Y UQ  

where U  is lognormally distributed and Q  is the ratio of the Pareto random 
variables, known as double Pareto random variable. The moment generating 
function does not exist for a DPLN distribution. The lower order moments 
about zero are given by 

2 2
' 1 2

1
1 2

= E( )= exp for  < .
( )( ) 2

r
r

r
X r r

r r

  
  

 

 
    

 

However '
r  does not exist for 1r  . The mean (for 1 >1 ) is  

2

1 2 2

1 2

E( )= e
( 1)( 1)

X
 

 



 
 

and the variance (for 1 > 2 ) is  

22 2 2 21 2 1 2
1 22 2

1 21 2

e ( 1) ( 1)
Var( )= e

( 2)( 2)( 1) ( 1)
X

 
   

 
  

   
     

 

5.1. Product Autoregression with DPLN marginals 

We can develop a product autoregression model given in (6) if 

~nY DPLN( 2
1 2, , ,    ). The autocorrelation function has the form,  

2

1 2 1 2
1 2

1 2
2 2 2

1 2
1 2

1 2

e ( )( )( 1)( 1)

( 1)( 1)
( )= .

e ( 1) ( 1)
( 2)( 2)

ka k k

k k

Y

a a

a a
k





   
 

 


 
 

 

   


   

 


 

 (15) 

Here also the correlation structure is not preserved. It is well known that the cor-
relation structure is not preserved in going from the lognormal to the normal dis-
tributions.  

If we take logarithms of nY  in (6), and let = logn nX Y , then the stationary 

process of { }nX  has the form given in (10). Also we know that if ~Y  
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DPLN( 2
1 2, , ,    ) distribution, = log ~X Y Normal-Laplace distribution 

(NL( 2
1 2, , ,    )) having the characteristic function given by  

2
2 1 2

1 2

( )= exp .
2 ( )( )X t i t t

it it

 
 

 

    
         

 (16) 

For further analysis, we can use the linear AR(1) model with Normal-Laplace 
marginals developed by Jose et al. (2008). They showed that the innovations { }n  
is distributed as the convolution of the Normal and exponentially tailed densities. 
The Normal-Laplace model combines Gaussian and non-Gaussian marginals to 
model time series data. Normal-Laplace distribution has various applications in 
the areas of financial modeling, Lévy process, Brownian motion, see Reed (2007).  

6. MULTIVARIATE PRODUCT AUTOREGRESSION 

A multivariate product autoregression structure of order one (PAR(1)) has the 
form 

1= ,  0 < 1,  = 0, 1, 2, ,a
n n n a n   Y Y ε   (17) 

where { }nY  and { }nε  are sequence of positive d -variate random vectors and 
they are independently distributed. Here also we have a non-additive noise. 

For further analysis, we can take logarithms of nY  in (17), and let = logn nX Y . 
Then obtain a multivariate linear AR(1) model, 

1= ,    0 < <1n n na a X X η  (18) 

where nX  and innovations = logn nη ε  are d - variate random vectors. Clearly we 

know that nX  follows a multivariate asymmetric Laplace distribution having the 

characteristic function given in (5). Then the characteristic function of nη  can be 
obtained from  

( )
( )= ,

( )a





X

η
X

t
t

t
 

where  

( ) = E(exp ' ).i X t t X  

By inverting the characteristic function, we can obtain the density function of η .  
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7. CONCLUSION 

The log-Laplace distribution and its important properties and its extension to 
multivariate case are studied. Some divisibility properties like infinite divisibility, 
geometric infinite disability and divisibility properties with respect to multiplica-
tion, namely multiplicative infinite divisibility, geometric multiplicative infinite di-
visibility properties are explored. A product autoregression structure with log-
Laplace marginals is developed. Self-decomposability property is studied. A linear 
AR(1) model is developed along with the sample path properties and the estima-
tion of parameters of the process. A more general model with double Pareto log-
normal marginals is discussed. A multivariate extension of the product autore-
gression structure is also considered.  

ACKNOWLEDGEMENTS 

The authors are grateful to the reviewer for the valuable suggestions which helped in 
improving the paper. The authors are also grateful to the Department of Science and 
Technology (DST), Govt. of India for the financial support under the INSPIRE Fellow-
ship. 
 
Department of Statistics, St. Thomas College, Palai, K.K. JOSE 
Mahatma Gandhi University, Kottayam MANU MARIAM THOMAS 

REFERENCES 

M. ABRAMOWITZ, I.A. STEGUN (1964). Handbook of Mathematical Functions, U.S. Department of 
Commerce, National Bureau of Standards, Applied Mathematics Series 55.  

R.A. BAGNOLD, O. BARNDORFF-NIELSEN (1980). The pattern of natural size distribution. “Sedimen-
tology” 27, pp. 199-207.  

O. BARNDORFF-NIELSEN (1977). Exponentially decreasing distributions for the logarithm of particle 
size. ‘Proceedings of Royal Society London A” 353, pp. 401-419.  

L. BONDESSON (1979). A general result on infinite-divisibility. “Annals of Probability” 7, pp. 965-
979.  

L. BONDESSON (1981). Discussion of the paper Cox “Statistical analysis of time series: Some recent de-
velopments”. “Scandinavian Journal of Statistics” 8, pp. 93-115.  

D.R. COX (1981). Statistical Analysis of Time Series: Some Recent Developments. “Scandinavian 
Journal of Statistics” 8, pp. 93-115.  

E. DAMSLETH, A.H. EL-SHAARAWI (1989). ARMA models with double-exponentially distributed noise. 
“Jornal of Royal Statistical Society B” 51(1), pp. 61-69. 

L.S. DEWALD, P.A.W. LEWIS (1985). A new Laplace second-order autoregressive time-series model- 
NLAR(2). “IEEE Transactions on Information Theory” IT 31(5), pp. 645-651.  

M. FRÉCHET (1939). Sur les formules de répartition des revenus, “Revue l’Institut International de 
Statistique” 7(1), pp. 32-38. 

Y. FUJITHA (1993). A generalization of the results of Pillai. “Annals of Institute of Statistical 
Mathematics” 45, pp. 361-365. 



A product autoregressive model with log-Laplace marginal distribution 335 

D.P. GAVER, P.A.W. LEWIS (1980). First order autoregressive gamma sequences and point processes. “Ad-
vances in Applied Probability” 12, pp. 727-745. 

J.D. GIBSON (1986). Data compression of a first order intermittently excited AR process. In Statistical 
Image Processing and Graphics. pp. 115-126 (Edited by E.J. Wegman and D.J. De-
priest, Marcel Deckrer Inc., New York).  

M.J. HARTLEY, N.S. REVANKAR (1974). On the estimation of the Pareto law from underreported data, 
“Journal of Econometrics” 2, pp. 327-341. 

D.V. HINKLEY, N.S. REVANKAR (1977). Estimation of the Pareto law from under reported data, “Jour-
nal of Econometrics” 5, pp. 1-11.  

T. INOUE (1978). On Income Distribution: The Welfare Implications of the General Equilibrium 
Model, and the Stochastic Processes of Income Distribution Formation, Ph.D. Thesis, University 
of Minnesota.  

K. JAYAKUMAR (1997). First order autoregressive semi-alpha-Laplace processes, “Statistica”, LVII, pp. 
455-463. 

K.K. JOSE, T. LISHAMOL, J. SREEKUMAR (2008). Autoregressive processes with normal Laplace marginals. 
“Statistics and Probability Letters” 78, pp. 2456-2462.  

K.K. JOSE, S.R. NAIK (2008). A class of asymmetric pathway distributions and an entropy interpretation. 
“Physica A: Statistical Mechanics and its Applications” 387(28), pp. 6943-6951.  

K. K. JOSE, B. ABRAHAM (2011). A Count Model based on with Mittag-Leffler interarrival times, “Sta-
tistica”, anno LXXI, n. 4, 501-514. 

O. JULIÀ, J. VIVES-REGO (2005). Skew-Laplace distribution in Gram-negative bacterial axenic cultures: 
new insights into intrinsic cellular heterogeneity. “Microbiology” 151, pp. 749-755.  

L.B. KLEBANOV, G.M. MANIYA, I.A. MELAMED (1984). A problem of Zolotarev and analogs of infinitely 
divisible and stable distribution in a scheme for summing a random number of random variables. 
“Theory of Probability and its Applications” 29, pp. 791-794.  

S. KOTZ, T.J. KOZUBOWSKI, K. PODGORSKI (2001). The Laplace Distribution and Generalizations - A 
Revisit with Applications to Communications, Economics, Engineering and Finance. Birkhäuser, 
Boston. 

T.J. KOZUBOWSKI, K. PODGORSKI (2003). Log-Laplace distributions. “International Journal of 
Mathematics” 3 (4), pp. 467-495.  

T.J. KOZUBOWSKI, K. PODGORSKI (2010). Random self-decomposability and autoregressive processes. 
“Statistics and Probability Letters” 80, pp. 1606-1611.  

E. KRISHNA, K. K. JOSE (2011). Marshall-Olkin assymmetric Laplace distribution and processes, “Sta-
tistica”, anno LXXI, n. 4, 453-467. 

A.J. LAWRANCE (1978). Some autoregressive models for point processes. “In Proceedings of Bolyai 
Mathematical Society Colloquiuon point processes and queuing problems” 24, Hun-
gary, pp. 257-275. 

A.J. LAWRANCE (1982). The innovation distribution of a gamma distributed autoregressive process. 
“Scandinavian Journal of Statistics” 9, pp. 234-236. 

M. MAEJIMA, Y. NAITO (1998). Semi-self decomposable distributions and a new class of limit theorems. 
“Probability Theory and Related Fields” 112, pp. 13-31. 

E.D. MCKENZIE (1982). Product autoregression: a time-series characterization of the gamma distribution. 
“ Journal of Applied Probability” 19, pp. 463-468. 

R.N. PILLAI (1990). Harmonic mixtures and geometric infinite divisibility. “Jornal of Indian Statisti-
cal Association” 28, pp. 87-98. 

R.N. PILLAI, E. SANDHYA (1990). Distributions with complete monotone derivative and geometric infinite 
divisibility. “Advances in Applied Probability” 22, pp. 751-754. 

B. PUNATHUMPARAMBATH (2011). A new family of skewed slash distributions generated by the normal 
kernel, “Statistica”, anno LXXI, n. 3, 345-353.  



 K.K. Jose, M.M. Thomas 336 

W.J. REED (2007). Brownian Laplace motion and its use in financial modelling. “Communications in 
Statistics-Theory and Methods” 36, pp. 473-484.  

W.J. REED, M. JORGENSEN (2004). The double Pareto lognormal distribution-a new parametric model for 
size distributions. “Communications in Statistics-Theory and Methods” 33(8), pp. 1733-
1753. 

V. SEETHALEKSHMI, K.K. JOSE (2004). An autoregressive process with geometric  -Laplace marginals. 
“Statistical Papers” 45, pp. 337-350. 

V. SEETHALEKSHMI, K.K. JOSE (2006). Autoregressive processes with Pakes and geometric Pakes general-
ized Linnik marginals. “Statistics and Probability Letters” 76(2), 318-326.  

D.N. SHANBHAG, M. SREEHARI (1977). On certain self-decomposable distributions. “Z. War-
scheinlichkeitstch” 38, pp. 217-222.  

C.H. SIM (1994). Modelling non-normal first order autoregressive time series. “Journal of Forecast-
ing” 13, pp. 369-381. 

V.R.R. UPPULURI (1981). Some properties of log-Laplace distribution. “Statistical Distributions in 
Scientific Work” 4, (eds., G.P. Patil, C. Taillie and B. Baldessari), Dordrecht: Reidel, 
105-110.  

SUMMARY 

A product autoregressive model with log-Laplace marginal distribution 

The log-Laplace distribution and its properties are considered. Some important proper-
ties like multiplicative infinite divisibility, geometric multiplicative infinite divisibility and 
self-decomposability are discussed. A first order product autoregressive model with log-
Laplace marginal distribution is developed. Simulation studies are conducted as well as 
sample path properties and estimation of parameters of the process are discussed. Further 
multivariate extensions are also considered. 




