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1. INTRODUCTION 

Cluster analysis methods are among the most known and commonly applied 
multivariate analysis techniques. Renewed stimulus in the development of novel 
clustering methods has been constantly promoted by the questions arising in their 
numerous application domains, at the interface with many different disciplines, 
including pattern recognition and engineering. In the last decades, the progress in 
data capture technologies and data collection capabilities have lead to new re-
search directions. They have permitted the collection of growing amounts of in-
creasingly larger and more complex data, thus rising the need of non-traditional 
statistical techniques for extracting relevant information in wide range of do-
mains. The development of adequate data analysis tools has attracted the interest 
of the statistical community, also in light of the parallel improvements in compu-
tational resources. 

By taking the data-analytic challenges posed by modern data as a fil-rouge, this 
paper aims at providing a selective view of the main research lines currently fol-
lowed by Italian statisticians in the field of quantitative data clustering. Attention 
is focused to a small part of the wealth of methods developed on this research 
field: for each one of the selected research line some representative contributions 
are mentioned, favouring the most recent ones in order to enable the interested 
reader to go back (through these references) to the previous related literature. 

The presentation is organized as follows. Sections 2 and Section 3 refer to the 
traditional real-valued case-by-variable data matrix and focus on the issues raised 
by high-dimensionality and by contaminating observations, respectively. In both 
sections, a separate discussion of the topic is given concerning the clustering ap-
proach based on Gaussian mixture models (GMMs), due to the prominent role 
this approach has gained in the literature as a sound statistical framework to clus-
ter analysis. As an example of the problem of dealing with composite informa-

                
1 The paper presents the content of a presentation to the SIS 2011 Statistical Conference “Statis-

tics in the 150 years from Italian Unification”, held in Bologna, Italy, between 8 June and 10 June. 
Therefore, the proposed review is last-updated on mid-2011. 



 D.G. Calò 272 

tion, Section 4 focuses on time series clustering, which has lately emerged as an 
important research trend especially in data mining applications. Section 5 is de-
voted to some types of data that require specifically-designed clustering methods; 
in particular, it focuses on functional data and interval data, as these types of data 
seem to have most attracted the interest of Italian researchers in the last decade, 
also beyond the field of cluster analysis. Some final remarks are reported in Sec-
tion 6. 
 
 
2. HIGH-DIMENSIONAL DATA 
 

In recent years, growing amounts of data are automatically recorded and stored 
in the form of high-dimensional observations: examples range from DNA mi-
croarray data, about the expression levels of thousands of genes observed on a 
number of sample tissues, to supermarket scanner data, pertaining to the prod-
ucts purchased by each customer. 

In high-dimensional settings, the clustering task is more difficult: the standard 
assumption that units within the same cluster are similar across all variables might 
be restrictive; the simultaneous use of all the observed variables may mask the ef-
fect of the variable subset that contains clustering information; finally, computa-
tional effort increases and interpretation becomes challenging with increasing di-
mensionality. Concerning Gaussian mixture-based clustering, the number of 
model parameters grows quadratically as the number of the variables, p, increases 
when component covariance matrices are not restricted; when p is large relative 
to the sample size, this may negatively affect the clustering performance of the 
model. 

In order to cope with high-dimensional data, statistical methods that simulta-
neously perform clustering and dimensionality reduction have been actively inves-
tigated, according to two main approaches. On one side, the approach based on 
feature extraction techniques and, on the other side, the so-called “two-mode 
clustering” solution, which aims at reducing the set of variables by means of a 
suitable partition. These two approaches have been pursued by Italian researchers 
both in the deterministic framework of least-squares partitioning and in the prob-
abilistic one of Gaussian mixture modelling; a focus on the latter framework is 
given in the next subsection. 

A well known example of a feature extraction solution in the deterministic 
context is Vichi and Kiers’ factorial k-means (Vichi and Kiers, 2001): it aims at 
simultaneously finding an optimal partitioning of the units and an optimal low-
dimensional space by minimizing the within-cluster deviance of the projected 
data. A possible drawback of using factor/component techniques is that some 
observed variables may turn out to be correlated with several extracted features, 
with possible complications in interpretation. In this respect, the factorial k-
means idea of clustering units on a q-dimensional space (q<p) has been aug-
mented by Vichi and Saporta (2009) by adding the constraint that each one of the 
q spanning dimensions is a linear combination of a disjoint set of variables only 
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(more precisely, the linear combination with maximum variance). In this way in-
terpretation is easier, because each observed variable can only be assigned to one 
of the extracted features, which additionally leads to partitioning the variables in q 
clusters; in light of this, Vichi and Saporta’s contribution can also be seen as a 
special case in the class of two-mode clustering methods. 

Two-mode clustering is mainly applied in gene expression data, with the aim of 
identifying subsets of genes that exhibit similar expression patterns across subsets 
of tissues. More generally, it is applicable whenever the local association struc-
tures between the rows and the columns of the data matrix have to be discovered 
(see Van Mechelen et al., 2004, for an overview on two-mode clustering, including 
methods implying nested or overlapping row-and-column clustering). In this re-
search area, Rocci and Vichi (2010) have proposed a generalization of the two-
mode partitioning model known as double k-means (Vichi, 2000). While double 
k-means method specifies the same partition of the variables for each cluster of 
the n units (and vice-versa), Rocci and Vichi’s method allows a different partition 
of the p variables (in, say, qk clusters, for k=1,...,K) within each one of the K clus-
ters of units (by simply transposing the data matrix, the method can also be ap-
plied for discovering a variable partition with a different unit partitioning in each 
cluster of variables): unit membership is specified by a binary nK matrix, and 
variable partitioning is defined by K binary matrices, having generic dimension 
pqk. 

Moreover, in text/web mining applications, where the data matrix entries de-
note the occurrence of a word in a document, Balbi et al. (2010) propose a two-
mode partitioning method for discovering groups of documents that are similar 
across different sets of words: the clustering solution is obtained by optimizing – 
via a genetic algorithm (see Baragona et al., 2011) – a specific index measuring 
predictability in contingency tables. 

Other developments may be found in the paper by Augugliaro and Mineo 
(2011), which improves the performance of a two-mode partitioning algorithm by 
guiding the choice of the tuning parameters it depends on, and in the hierarchical 
mixture model proposed by Vicari and Alfò (2010) for partitioning customers and 
products on the basis of purchase data, which includes customer- or product-
specific covariates to model customers’ choice probabilities. 
 

2.1. A focus on GMM-based clustering 

Concerning the problem of over-parameterization in GMMs, one of the most 
popular approaches based on feature-extraction techniques is the so-called Mix-
tures of Factor Analyzers (MFA, McLachlan et al. 2007). MFA assumes that the 
data are randomly drawn from a population consisting of K subpopulations, with 
unknown mixing proportions, each subpopulation being described by a different 
(i.e. “local”) Factor Analysis model (possibly involving a different number of fac-
tors, qk). Alternatively, Montanari and Viroli (2010a) propose to reduce the num-
ber of parameters by using a global, rather than a local, latent variable model: by 
assuming a generative linear factor model, with q independent common factors 
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modelled as a K-component mixture of q-variate Gaussian densities, the p ob-
served variables turn out to be modelled as a K-component GMM as well, which 
is characterized by a more parsimonious parameterization, in terms of both com-
ponent mean vectors and component covariance matrices. 

Later, Montanari and Viroli (2010b) and Baek et al. (2010) have developed 
more flexible solutions admitting dependence among common factors. The po-
tentialities of Montanari and Viroli’s method, named Heteroscedastic Factor  
Mixture Analysis (HFMA), have been explored along different directions: Galim-
berti et al. (2008) have introduced a lasso penalization on factor loadings, so that 
variable selection is contextually performed; Calò and Viroli (2010) have pro-
posed a finite mixture model for clustering multilevel data, in which HFMA is as-
sumed at the lower level of the hierarchy, thus relaxing the classic “local inde-
pendence assumption”; Viroli (2010) has developed an extension of MFA to non-
Gaussian factor analyzers by modelling each mixture component by HFMA. 

The idea of using a component/factor technique to produce a partition of the 
variables in addition to the partitioning of units (similarly to Vichi and Saporta, 
2009) has been developed in the GMM framework by Martella et al. (2010). The 
paper is inspired by the ability of MFA to perform local dimension reduction 
through a different factor loading matrix in each mixture component. The Au-
thors restrict the component-specific loading matrices to be binary and row-
stochastic, which implies that the component covariance matrices are block di-
agonal. Thus, by introducing variable clustering in MFA, two-mode multi-
partitioning purposes are addressed in the GMM framework: different variable 
partitions are discovered in the clusters of units identified by the mixture model. 

Finally, some contributions have appeared about the idea of including variable 
selection in GMM clustering algorithm, along the lines of Raftery and Dean, 
(2006) (see also Maugis et al., 2009): Raftery and Dean propose a stepwise algo-
rithm in which the decision of including/excluding a variable is taken by compar-
ing (in terms of BIC difference) the two models that are defined whether or not 
the assumption is made that the candidate variable is conditionally independent 
of the cluster membership given the so-far selected variables. 

Moving from the well-known criticisms of stepwise selection strategies, 
Scrucca (2010) considers using genetic algorithms to perform “all subsets” selec-
tion, over the space of all subsets of size q (q<p). At this aim, the fitness value for 
a subset of variables is assessed by the BIC difference between two mixture mod-
els, one assuming “some” clustering structure (i.e. having at least two compo-
nents) and the other one assuming no clustering structure (i.e. having a single 
component). 

Galimberti and Soffritti (2009) have tried to extend Raftery and Dean’s ap-
proach to the more complex setting in which multiple subsets of variables con-
taining different group structures are present among observed variables, including 
the set of uninformative variables. In their proposal, the original assumption of a 
single partition of the units (with cluster membership being specified by a single 
latent multinomial random variable z) across all the relevant variables is replaced 
by assuming q>1 unit partitions (specified by q mutually independent latent vari-
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ables, z1, ..., zq), related to q clusters of relevant variables. Thus, a multi-
partitioning procedure that intrinsically performs variable selection is obtained. 
 

2.2. Data visualization 

Data visualization has gained a relevant role in many applications, thanks to 
modern graphic capabilities, as a valuable aid to explore and interpret high-
dimensional data. Visualization purposes are the main motivation of the paper by 
Scrucca (2010), which proposes a way to integrate dimension reduction into 
GMM-based clustering. Instead of imposing a latent variable model, the smallest 
subspace that captures most of clustering information contained in the data is 
searched for. The orthogonal spanning directions maximizing variation both in 
cluster means and cluster covariances are identified using an eigendecomposition 
method. 

New research efforts in data visualization are being inspired by the possible 
combination of visual interactive tools and data analysis techniques (Palumbo et 
al. 2008). A recent contribution in this direction is given by Iodice D’Enza et al. 
(2008) in the context of association rule mining (which can be viewed as a “mode 
seeking” clustering problem on a very high-dimensional sparse data matrix having 
sales transactions in the rows and all items sold in a store in the columns). The 
correspondence analysis-based strategy proposed in the paper aims at detecting 
the most potentially interesting items; the included graphical representations of 
the items help the user in focusing attention towards the most relevant content in 
output interpretation. 
 
 
3. CONTAMINATED DATA 
 

Contaminating observations are more likely to occur in large data sets, possibly 
masking one another. Multivariate outliers are known to be hardly detectable as 
multivariate data have no “natural ordering”; in addition, it should be stressed 
that in a clustering perspective the term “contamination” concerns different 
sources of heterogeneity, that can occur simultaneously: it denotes not only ob-
servations that are distant from the bulk of the data but also unusual observations 
within a cluster or “bridge-points” lying between clusters. 

Outliers can derail most clustering methods, including GMM-based ones, lead-
ing to poor estimates and clustering results. This has driven a special interest in 
multivariate outlier detection and robust clustering (see Garcìa-Escudero et al., 
2010) (this distinction being elusive since a relatively large group of outliers can 
be considered as a separate cluster, indeed). Among the recent Italian contribu-
tions on these topics, two main research lines can be distinguished: the trimming-
based one (underpinning outlier identification), and the mixture-based one, in 
which contamination is modelled by adding components to the mixture.  

MCD estimators (Rousseuw and Van Driessen, 1999) are popular trimming 
tools that require a trimming proportion to be specified; in particular, the squared 
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Mahalanobis distance involving such estimates is commonly used as a test-
statistic for outlier testing under the normality assumption. Cerioli (2010) has 
found an approximation to the exact null distribution of this statistic yielding 
more accurate cut-off values than those based on the asymptotic 2 distribution. 

In contrast to MCD estimators, the Forward Search methods (FS, Atkinson et 
al. 2010) provide data-dependent flexible trimming: being based on the strategy of 
sequentially fitting the model to data subsets, Sm, of increasing size (m = m0, ..., n, 
starting from a set Sm0 of possibly uncontaminated observations), the FS lets the 
data decide what is best, thus preserving robustness while ensuring high effi-
ciency. Riani et al. (2009) propose to use the minimum squared Mahalanobis dis-
tance (computed on Sm) among points not included in Sm in a testing procedure 
for the null hypothesis of “no contamination” in a normal population. This infer-
ential tool is hopefully going to be extended to a clustering set-up. At present, a 
FS-based method for exploratory cluster analysis has been devised by Atkinson 
and Riani (2007): it provides a variety of informative plots that allow to tackle 
both the problem of robust clustering (with a data-driven assessment of the true 
number of clusters) and that of outlier identification, at the same time. Farcomeni 
(2009) has resorted to the FS in devising a method for coping with contamination 
in the class of double k-means methods. He presents a two-mode extension of 
the trimmed k-means procedure, involving a FS-based selection of the amount of 
trimming (where trimming is allowed both for the units and for the variables). 
The proposed method inherits from FS the benefit of robustly estimating cluster 
centroids, while performing outlier detection at the same time. 
 

3.1. A focus on GMM-based clustering 

When the number of mixture components is treated as fixed, a small propor-
tion of outliers can dramatically affect ML estimates, as well as the corresponding 
clustering solutions. Two main approaches to the problem were proposed in the 
literature: Banfield and Raftery (1993) suggested to add a “noise component”, 
modelled as a uniform density on the convex-hull of the data; Peel and McLach-
lan (2000) considered using mixtures of multivariate t densities. Since the appear-
ance of this latter paper, mixtures of t distributions are becoming more and more 
popular (McLachlan et al., 2007). This motivated Greselin and Ingrassia (2010) in 
investigating the issue of how to prevent the EM algorithm to converge to spuri-
ous solutions in fitting t-mixtures. For mixtures of K multivariate elliptical distri-
butions, they prove that imposing suitable constraints on the eigenvalues of the 
pp definite positive matrices k (k=1, ..., K) ensures that the likelihood function 
has a global minimum; then, following Ingrassia and Rocci (2007), they propose a 
constrained monotone EM algorithm for t-mixture estimation. Still in the frame-
work of t-mixtures, Ingrassia et al. (2010) are working on using t mixtures in Clus-
ter Weighted Modeling (Gershenfeld et al., 1999), with the aim of studying the 
dependence of a response variable Y on some random vector X accounting for 
population heterogeneity. The idea is to use t densities to model, in each popula-
tion group, both the conditional density of Y given X and the marginal density of 
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X (which are usually assumed to be normally distributed in the current literature 
on Cluster Weighted Modeling). 

As far as Banfield and Raftery’s method is concerned, Coretto and Hennig 
(2010) introduce two modifications (limited, at present, to the univariate setting), 
based on different modelling solutions for the “noise component”: the former, 
(i), takes a uniform distribution with unknown support [a, b] (not necessarily co-
inciding with the range of the data); the latter, (ii), takes an improper uniform 
density on the whole real line (with a data-driven choice of the constant density 
value, c>0). Later, the same Authors have theoretically investigated Banfield and 
Raftery’s original proposal (Coretto and Hennig, 2011): they show that it does not 
necessarily define the (global) maximum likelihood (ML) estimator for the as-
sumed model, neither it defines a consistent estimator. On the contrary, a con-
strained ML estimator is shown to exist (and to be consistent) for model (i), and 
an algorithm for constrained ML is derived.  

Lately, in the literature a shift is being observed from the idea of contamina-
tion in cluster distribution to the more general concept of “deviation from nor-
mality”. Even under this wider perspective, GMM-based clustering still suffers 
from the problem that more components (than clusters) are needed to capture 
any deviation. Different solutions have been recently proposed to address this 
difficulty. Asymmetry (or both asymmetry and outliers) in cluster distribution can 
be handled by fitting mixtures of multivariate skew-normal or skew-t densities 
(see Lin, 2009 and Wang et al., 2010). Another way to enable the number of com-
ponents to correspond to the number of clusters is to merge the Gaussian com-
ponents that are not sufficiently separated to be interpreted as clusters (Baudry et 
al., 2010; Hennig, 2010; Rocci, 2010). A similar idea is to assume that each cluster 
is well-modelled by a Gaussian mixture, as proposed by Bartolucci (2005) in the 
one-dimensional setting; the contribution of Viroli (2010) can be also viewed in 
this latter framework. 
 
 
4. TEMPORAL DATA 
 

Temporal data arise in many application fields, ranging from time-course gene 
expression analysis to electricity consumption monitoring (for an example on this 
latter field, see Giordano et al., 2011). When dealing with the problem of grouping 
similar time series, the clustering task is made more complicated by the fact that 
conventional distance/dissimilarity measures ignore the dynamic structure of the 
series and are sensitive to possible distorsion in time axis (Corduas, 2010). More-
over, in the case of multivariate time series, data have the form of a “three-way” 
array and the aim is to cluster p-dimensional time trajectories. A review on dis-
similarity indexes between multivariate time series can be found in Baragona 
(2010). In this Section, Italian contributions on clustering discrete-time series are 
distinguished according to the three main ways to establish the concept of dis-
tance/dissimilarity between time series: the model-based approach, which relies 
on econometric modelling; the feature-based methods, which are more akin to 
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the data-mining framework; finally, the approach based on raw-data. Recent con-
tributions to the topic of Hidden Markov Models for longitudinal data analysis 
are mentioned as well. 

Reference is made to univariate series unless otherwise stated. The case of con-
tinuously varying time points is considered in Subsection 5.2. 
 

4.1. Model-based approach 

The observed series are assumed to be generated by some time series paramet-
ric model; thus, time trajectories are compared according to the properties of the 
respective underlying stochastic processes. In this framework, the idea, proposed 
by Piccolo (1990), of evaluating the dissimilarity between two ARIMA invertible 
processes by the Euclidean distance between the coefficients of their AR( )  rep-
resentation has inspired numerous developments, as reviewed in Corduas and 
Piccolo (2008). In particular, Corduas and Piccolo (2008) obtain the asymptotic 
distribution of the squared Euclidean distance between the vectors of ML esti-
mates of AR weights, and use this result to define a test to determine whether 
two series differ significantly or not; a partitioning method is proposed too, 
which considers the 0/1 distance matrix defined by the testing results and aims at 
ordering its rows/columns so that it best approximates a block-diagonal matrix. 

Otranto (2008) adapts the same idea of comparing autoregressive approxima-
tions to the problem of identifying clusters of series with homogeneous volatility 
within the class of GARCH models; a further extension to a class of multivariate 
GARCH models is given in Otranto (2010), who presents an agglomerative algo-
rithm for automatic detection of clusters of multivariate series having homogene-
ous correlation dynamics. Alternatively, De Gregorio and Iacus (2010) propose a 
nonparametric distance in a situation where observed data form a Markov proc-
ess: by adopting an orthonormal basis estimator of the transition operator of the 
process, a distance between two series is established by comparing the corre-
sponding basis coefficient estimates. 
 

4.2. Feature-based approach 

The so called “feature-based approach” is motivated by the fact that high di-
mensionality (i.e. the possibly large number of time points) can blur the clustering 
structure and slow down the clustering algorithm. It consists in extracting from 
each series a set of lower-dimensional features that capture the dynamic structure 
of the data, and in measuring the distance/dissimilarity between two series in 
terms of such a synthetic representation. 

In this framework, D’Urso and Maharaj (2009) and Maharaj et al. (2010) pro-
pose to use the following features, respectively: the estimated autocorrelation co-
efficients for different time-lags (under the stationarity assumption), and the es-
timated wavelet variances associated with the different frequency bands the series 
is decomposed into (when one aims at distinguishing among different variability 
patterns). In both the papers, the Euclidean distance between two representations 
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is then used in the fuzzy k-means loss function. In the same fuzzy context, Maha-
raj and D’Urso (2011) propose a feature-based comparison in the frequency do-
main, which consists in representing a stationary time series by its estimated cep-
strum, i.e. the spectrum of the logarithm of the spectrum. The same Authors are 
working on extending their methods to the case of multivariate time series 
(D’Urso and Maharaj, in press). 

 A further contribution can be found in Giordano et al. (2011): after the most 
relevant (i.e. dominant) frequencies have been extracted from each series, the C 
dominant frequencies that occur most frequently are selected, and each series is 
represented by a C-dimensional binary vector (1/0 flags whether the selected fre-
quency is/isn’t one of the frequencies extracted from that series). Finally, the set 
of observed series is partitioned by grouping together those having identical rep-
resentative vectors. 
 

4.3. Raw-data based approach 

In this framework, dissimilarity measures are defined directly on raw series data 
rather than on the corresponding model-based or feature-based representations. 
Among Italian contributions to this research line, we focus attention to those per-
taining to multivariate time series, i.e. to complex data structured as 3-way arrays 
(units  variables  time-occasions). Two main options have been pursued in this 
context, depending on whether a cross-sectional or a longitudinal analysis is pre-
ferred. In the former, the emphasis is on comparing the static p-variate character-
istics of the units. In the latter multivariate histories are compared according to 
the geometrical features of the trajectories, like slope or concavity/convexity 
(D’Urso, 2000). 

Along these lines, numerous contributions and developments have appeared. 
In the most recent literature, an example is given by Coppi et al. (2010), where the 
problem of clustering a set of spatial units on the basis of their multivariate time 
trajectories is tackled. Two solutions in a fuzzy k-means approach are proposed 
(which also account for the spatial contiguities among the units), for the cross-
sectional and the longitudinal analysis, respectively: in the former, dissimilarity is 
assessed by a weighted sum, over time, of the “instantaneous” squared Euclidean 
distances between units in the space of the observed variables; in the latter, dis-
similarity is assessed by the sum, over time, of the squared Euclidean distances 
between lag 1 difference vectors. 

Longitudinal and cross-sectional analysis are currently being pursued further by 
Vichi (2010). In the longitudinal approach, a dissimilarity measure comparing tra-
jectories in terms of their shape is used in a T3Clus algorithm (Rocci and Vichi, 
2005), so that a low-dimensional representation of the clusters of trajectories is 
provided too. In addition, a way to combine cross-sectional and longitudinal per-
spectives is presented: it consists in assuming a k-means clustering model for 
each time occasion and a Vector AutoRegression model for the dynamic evolu-
tion of each cluster centroid (in this respect, the proposal is halfway between raw-
data and model-based approaches). Thus, homogeneous clusters can be identified 
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for each time occasion and the dynamic evolution of their centroids can be stud-
ied; this methodological solution aims at discovering patterns of evolving pat-
terns. 
 

4.4. Hidden Markov Models 

New methods for classifying individuals according to the evolution of a latent 
individual characteristic of interest have been developed in the framework of 
Hidden Markov Models (HMMs) for longitudinal data (Vermunt et al., 2008). Ma-
ruotti and Ryden (2009) have considered HMMs for longitudinal count data, with 
Poisson distributions in the conditional part of the hidden Markov model: besides 
including covariates in the generalized linear predictor modelling the Poisson pa-
rameter, they add individual-specific random effects in order to account for the 
unobserved individual heterogeneity not captured by the available covariates. 
Since the maximum likelihood estimate of the random term distribution, which is 
left unspecified, is given by a discrete distribution, their approach yields a finite 
mixture of homogeneous HMMs. Concerning non-homogeneous HMMs, Ma-
ruotti and Rocci (2010) adopt an analogous parameterization for the hidden part 
of the model (i.e. in the transition probabilities among the Markov model latent 
states); following the same nonparametric maximum likelihood approach de-
scribed above, they show that a finite mixture of non-homogeneous HMMs is 
obtained. Mixtures of HMMs have been applied in different research fields: an 
interesting example is given in De Angelis (2011), where the model introduced by 
Vermunt et al. (2008) is applied to the study of the poverty phenomenon in Italy, 
providing insights both on its dynamic behaviour through time and on its hetero-
geneity among Italian households. 
 
 
5. NON-STANDARD DATA 
 

Research efforts are being attracted also by the analysis of specific types of 
data, whose nature requires that specifically-designed methods are defined. Par-
ticularly active research lines in Italy are those devoted to uncertainty-affected 
data and to functional data, as it will be illustrated in the following subsections.  
 

5.1. Uncertainty-affected data 

The classical representation of a statistical unit by means of a single (crisp) 
value for each one of the p considered variables may be indeed reductive or in-
consistent in case of imprecision (due to the difficulty of accurate measurement) 
or to vagueness in the definition of what is being observed. Common ways to de-
scribe the uncertainty affecting observed values is to represent the data by means 
of fuzzy numbers or intervals (of the real line). Along these two approaches, two 
examples of recent contributions in cluster analysis include Coppi et al. (2011) and 
Irpino and Verde (2008), respectively. 
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In the general class of LR2 fuzzy numbers (each number being described by 4 
quantities: the pair of Left and Right centres and the pair of Left and Right 
spreads), Coppi et al. propose to assess the dissimilarity between two fuzzy p-
dimensional objects by taking a weighted sum of the squared Euclidean distances 
between the centres and between the spreads of the objects; by adopting this dis-
similarity measure into the fuzzy k-means loss function, they provide a method that 
is able to deal also with the additional uncertainty pertaining to cluster assignment. 
The paper contains also a first attempt of robust clustering of multivariate fuzzy 
data, which is based on the “possibilistic k-means” approach (Yang and Wu, 2006).  

In the last decades, the analysis of interval-valued data has lately attracted a 
great deal of interest in Italy, within the methodological setting of Symbolic Data 
Analysis (Diday and Noirhomme, 2008). In particular, as far as cluster analysis is 
concerned, Irpino and Verde (2008) have introduced a distance measure for in-
terval-valued data or set-valued data (in the multivariate setting): by interpreting a 
generic interval as the support of a uniform density, the distance between the re-
spective quantile functions is considered, and then employed as an inertia crite-
rion in a classical iterative partitioning algorithm. 

The same Authors have extended the above-mentioned proposal to histogram-
valued data, which represent data with further complexity: in database aggrega-
tion and synthesis, after the values of a variable have been aggregated over a set 
of lower-level individual observations, histograms have the attractive property of 
preserving distributive information. In Verde and Irpino (2008), a distance meas-
ure between histograms is proposed, which is shown to satisfy the decomposition 
property in “between-clusters” and “within-clusters” components. It is employed 
in association with Dynamic Clustering methods. 
 

5.2. Functional data 

In functional data analysis, the generic observation is given by the values of a 
smooth random function, measured (with error) on a fine discrete grid: examples 
are earthquake waveforms (Adelfio et al., 2010) and the surfaces obtained by 
modern image analysis tools. On these data, smooth function estimation is usu-
ally performed by means of Fourier or B-spline basis functions; examples of al-
ternative estimation approaches can be found in Pigoli and Sangalli (2010) and 
(Di Battista et al., 2011). A problem peculiar to functional data is curve misalign-
ment, which can act as a confounding factor when trying to cluster the curves 
(Morlini, 2007). To avoid this risk, Sangalli et al. (2010) propose a procedure that 
simultaneously performs clustering and alignment on a set of n functional obser-
vations. The aim is to find k template curves, one for each cluster, and n aligning 
functions such that the overall similarity between each aligned curve and the most 
similar template curve is maximized: this optimization problem is tackled through 
a k-means-like algorithm, alternating (at each iteration) a template estimation step 
and an alignment-assignment step. 

Moreover, clustering applications on geographically referenced functional data 
(like meteorological data recorded over a period by sensors located in different 
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sites) create the need for methods that take spatial dependence among the curves 
into account. In this context, Romano et al. (2010) are exploring how the spatially 
constrained clustering methods proposed in the literature can be integrated in the 
functional framework. 
 
 
6. FINAL REMARKS 
 

The leading thread followed in the paper forced us to leave aside contributions 
concerning specific problems in the selected topics. 

It is the case of GMM likelihood unboundedness, which has been deeply stud-
ied by Ingrassia and Rocci (2011). In light of the results obtained on the conver-
gence behaviour of the EM algorithm towards degeneracy, they have observed 
that the risk of unboundedness can be prevented by putting a numerical con-
straint in EM iterations: the specification of this constraint does not require any a 
priori information about mixture components, unlike what happens in other 
methods already presented in the literature (Ingrassia and Rocci, 2007). 

Other types of non-standard and complex data with relevant clustering appli-
cations could have been mentioned as well. It is the case of dissimilarity data ma-
trices, which represent complex objects describing different classification struc-
tures of a set of units. The issue of partitioning a set of dissimilarity matrices 
(concerning the same set of units) into homogeneous clusters has been addressed 
by Vicari and Vichi (2009); the same idea of classification comparison has moti-
vated Morlini and Zani (2010) in studying an index for comparing two hierarchi-
cal clusterings. Another example is image segmentation, which has inspired the 
contribution by Alfò et al. (2009) on the use of a spatial model for the cluster 
membership process in a finite mixture on geographical units. Furthermore, it 
should be mentioned the case of the highly evolving multiple streams of data, 
emerging continuously over time, on the web or in financial applications: they are 
the object of ongoing research by Balzanella et al. (2011) on incremental cluster-
ing methods, in order to cope with the need of “on the fly” methods of data 
analysis.  

These brief final notes only serve to remark that the challenges posed by the 
data nowadays arising in an increasingly wider range of domains are one of the 
main drivers of new developments in cluster analysis and, more generally, in data 
analysis. It is reasonable to expect this trend will continue in the future since, as 
John Tukey is reported as having said, “the best thing about being a statistician is that 
you get to play in everyone’s back yard” (Hand, 2009). 
 
Department of Statistical Sciences DANIELA G. CALÒ 
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SUMMARY 

Italian contributions on some recent research topics in cluster analysis 

The paper presents a selective view of the issues that are attracting the interest of Ital-
ian statisticians working on clustering methods and applications. It does not aim at pro-
viding a comprehensive overview of the wealth of methods developed in Italy on the se-
lected topics: indeed, it focuses on methods dealing with quantitative data and, in this 
context, only on the most recent literature. The fil rouge is given by the developments 
which have been inspired in quantitative data clustering by the complex nature of the data 
nowadays arising in a broad range of applications. 




