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THE MULTIVARIATE ASYMMETRIC SLASH LAPLACE 
DISTRIBUTION AND ITS APPLICATIONS 

Bindu Punathumparambath 

1. INTRODUCTION 

Symmetric distributions generalizing normality have got lot of attention in the 
statistical literature. Regression models applied in the field of biology, economics, 
psychology, sociology, need not obey Gaussian law in all situations. It is sug-
gested that error structures in these cases should be handled beyond the normal-
ity frame work. Hence there is a special interest in constructing distributions that 
could describe symmetry, skewness and heavy tails observed in the data. One 
such family of distributions is the slash distribution proposed by Kafadar (1982 
and 1988). The slash distribution is the ratio of a standard normal random vari-
able to an independent uniform random variable U  on the interval (0,1)  raised 
to the power 1/q , > 0q  and has heavier tails than normal distribution. 

Genton and Wang (2006) generalized the univariate slash normal of Kafadar to 
multivariate skew-slash normal and investigated its properties. An alternative to 
multivariate skew-slash distribution is introduced by Arslan (2008 & 2009). Tan 
and Peng (2005) introduced multivariate slash Student’s t  and skew slash Stu-
dent’s t  distributions and studied their properties. A generalization of the slash 
distribution using the scale mixture of the exponential power distribution was in-
troduced by Ali Gen (2007). Jose and Lishamol (2007) introduced the slash 
Laplace distribution. A new family of slash distributions with eliptical contours 
was proposed by Go’mez et al. (2007). Also Arslan and Genc (2009) introduced  
a generalization of the multivariate slash distribution. Recently Bindu (2011, 
2012(a)) introduced a family of skew-slash distributions generated by normal and 
Cauchy kernels. Also Bindu (2012(b)) introduced a new family of multivariate 
skew-slash t and skew-slash Cauchy distributions.  

In this paper we study the multivariate asymmetric slash distribution and de-
rive its various properties. The standard classical slash Laplace distribution is ob-
tained as the distribution of the ratio 1/= ( / )qX Y U , where Y  is a standard clas-
sical Laplace random variable, U  is an independent uniform random variable 
over the interval (0,1)  and > 0q . The probability density function (pdf) is given 
below, 
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The pdf of the univariate canonical slash Laplace distribution is symmetric 

about the origin and has the same tail heaviness as the Cauchy distribution. In the 
present work we study the multivariate symmetric and asymmetric slash Laplace 
distribution and several of its properties were explored. This article is organized 
as follows. Section 2, introduces multivariate slash Laplace distribution and de-
scribes various properties. In Section 3, multivariate asymmetric slash Laplace dis-
tributions are developed and properties are studied. In section 4, we illustrate the 
application of the asymmetric slash Laplace distribution to the microarray gene 
expression data. 

2. MULTIVARIATE SLASH LAPLACE DISTRIBUTION 

In this section, we define a multivariate slash Laplace distribution and derive its 
pdf. Also an alternative definition of the multivariate slash Laplace distribution 
based on elliptically contoured distribution is also given. 
 
Definition 1 A random vector dX R  has a d-dimensional slash Laplace (SLL d ) distri-
bution with location parameter = 0 , positive definite scale matrix parameter  and tail pa-

rameter > 0q , denoted by ~ (0, , )dX SLL q , if 1/= q
YX

U
, where Y  is a Laplace 

random vector with characteristic function (cf) given by 1( )= , 11
2

d
Y t t

t t
R  and 

~ (0,1)U U  independent of Y . 
Here  is a d d  positive definite matrix. The pdf of the dSLL  random vec-

tor can be given as  

1 1
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where ( )df  is the density function of the d-dimensional Laplace random vector, 
which is given by 

/21
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where (2 )=
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d  and ( )K u  is the modified Bessel function of the third kind 

(see Kotz et al., 2001) and is given below,  
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For the simulation purposes we consider Y  as 

= ,
d

Y W N  

where W  is the standard exponential variate and N  follows (0, )dN  independ-

ent of W . Then 1/= q
YX

U
 will follow (0, ; )dSLL q . The cumulative density 

function (cdf) of the dSLL  random variable can be obtained as 

1 2
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where ( )dF  is the cdf of the d-dimensional Laplace random vector. 
 
Remark 1 Note that the slash Laplace random vector in (1) is a scale mixture of the Laplace 
random vector and so it can be represented as,  

1/|( = )~ (0, ),q
dX U u L u  

where dL  is the d-dimensional Laplace distribution. 
 
Remark 2 The limiting distribution of multivariate slash Laplace, ( , , )dSLL O q , as 
q  is the multivariate Laplace distribution ( ( , ))dL O . 

In the univariate case, i.e. for =1d  in equation (1) we get the univariate slash 
Laplace distribution and its pdf is given by  

|( )|
1

0
( ; , , ) =   d , < < , < < , , > 0.

2

vx
qqh x q v e v x q  (3) 



 B. Punathumparambath 238 

Figure (1) gives the probability density curves of the slash Laplace distribution 
for various values of parameters and figure (2) gives the probability density curves 
of slash Laplace (SLL), slash normal (SLN), slash t (SLT) and slash Cauchy (SLC). 
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Figure 1 – Density functions for the univariate slash Laplace distribution for = 0 , = 1  and for 
two values of q, along with standard normal and Laplace densities. 
 
 

 
Figure 2 – Slash Laplace density function along with slash normal, slash t  and slash Cauchy densi-
ties. 
 

Figure (1) gives the density curves of the standard Laplace(the dotted line), nor-
mal (dashed line), slash Laplace with = 1q  (lowest one) and slash Laplace with 

= 4q  (second one). We can see that for = 1q  the slash Laplace density has heavy 
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tails, hence the parameter q  control the tail behaviour. A comparative study be-
tween the density curves of slash Laplace (highest one), slash normal, slash t  and 
the slash Cauchy (lowest one) distributions, for = 2q  is given in Figure (2). 

Now we define the multivariate slash Laplace distribution as a family of slash 
distribution generated from an elliptically contoured distribution. Ernst (1998) 
introduced a multivariate Laplace distribution via an elliptic contouring. Fang et 
al. (1990) defined an elliptically contoured random vector on dR  with characteris-
tic function of the form  

( )=  ( ),it mt e t t  

for some function  , m is a 1d  vector in dR  and  is a d d  positive-
definite matrix. 
 
Definition 2 A random vector dX R  has a d-dimensional slash elliptical contoured 
Laplace (SECL d ) distribution with location parameter = 0 , positive definite scale matrix 
parameter  and tail parameter > 0q , denoted by (0, , )dX SECL q~ , if 

1/= ,q
YX

U
 where ( , )dY ECL O~  is an elliptically contoured Laplace random vector 

with pdf given by 
1 1/21/2 [ ]( )= | | y y

Y df y k e , dk  is a proportionality constant (see, 
Fang et al.(1990)) and (0,1)U U~  independent of Y . 
 
Remark 3 The elliptically contoured Laplace random vector Y  in definition 2 has the polar 

representation ( )=
d

dY RHU , where H  is a d d  matrix such that =HH , R  is a 
positive random vector independent of ( )dU  and ( )dU  is a random vector uniformly distributed 
on the surface of the hyper-ellipsoid 1{ : =1}.dy y yR  

If ( , )dY L O~  then R has the density  
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where K  is the modified Bessel function of the third kind given in equation (2). 
 
Proposition 1 If ( , , ))dX SLL O q~ , then the density of X  can be expressed as  
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where 1= ( ) | | ( )Tx x , ( )h w  is the density generator function corre-

sponding to the multivariate Laplace distribution with 2=w u . If ( )h w  is some 

non-negative function such that 1 2
0

( ) <pu h u du  (see, Fang et al. (1990)), then 

X  has a multivariate slash-elliptical distribution proposed by Go mez  et al. 
(2007). Hence multivariate slash Laplace distribution is a special case of the mul-
tivariate slash-elliptical distributions.  
 

Remark 4 If the density generator function in the Proposition 1 is /2
/2

1( ) =
(2 )

w
ph w e , 

then the random vector X  has the multivariate slash model introduced by Wang and Genton 
(2006).  
 
Theorem 1 If Y be an elliptically symmetric distribution on dR  known as multivariate ex-
ponential power distribution (Ferna ndez  et al. (1995)) with pdf given by,  

1 /21/2 [( ) ( )]( )= | | ,y m y m
Y df y k e  

where dm R ,  is a d d  positive-definite matrix and dk  is the proportionality 

constant. Then 1/= q
YX

U
, follow a multivariate slash exponential power distri-

bution with pdf  

1 /211/2 1 [ ' ]
0

( ; 0, , )=  | | d ,  .q d v x xv d
d dg x q q k v e v x R  

 
Remark 5 If =1  in theorem (1), then Y  has the elliptical Laplace distribution (Haro-
Lope z  and Smith (1999)) and X  has the multivariate slash elliptical Laplace distribution. 
For = 2 , X  has the multivariate elliptical slash distribution.  
 
Remark 6 If =1d  in theorem (1), then Y  has the exponential power distribution and X  
has the univariate slash exponential power distribution. For =1d  and =1 , Y  has the 
univariate slash Laplace distribution. If =1d  and = 2 , then Y  has the univariate slash 
distribution.  

STOCHASTIC REPRESENTATION 

Here we give a stochastic representations for the multivariate slash Laplace dis-
tribution based on the stochastic representation of the multivariate Laplace dis-
tribution. Let Y  is standardized Laplace random vector then it can be repre-
sented as 
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= . ,
d

Y W N  

where W  is the standard exponential variate and N  follows (0, )dN  independ-
ent of W . Then multivariate slash Laplace, ( , , )dSLL O q  can be represented as, 

= . ,
d

X W S  

where S  is the multivariate slash normal distribution (Wang and Genton (2006)). 

MOMENTS 

If ( , , )dX SLL O q~ , then 1/2
1/= q

YX
U

, where Y  is standardized Laplace 

random vector and (0,1)U U~ . 
Then the mean vector and dispersion matrix are 

( )= , > 1  ( )=  , > 2.
( 2)

qE X O q and D X q
q

 

CHARACTERISTIC FUNCTION 

If ( , , )dX SLL O q~ , then the characteristic function is  

1( ) 1/
0

( )= ( )= ( )d ,
Ti X q

X YE e u u  

where (.)Y  is characteristic function of dL  given by  

  

1( )= .11
2

Y  

From the definition and the pdf Eq. (1) of ( , , )dSLL O q , the following proper-
ties hold. 
 
(i) If ( , , )dX SLL O q~ , then its linear transformation 

= ( , , )T
dV b AX SLL b A A q~ , where b  is a vector in dR , A  is a non-

singular matrix. This property implies that the multivariate slash Laplace distribu-
tion is invariant under linear transformations.  
 
(ii) The multivariate slash Laplace has heavier tails than the multivariate Laplace 
distribution. 
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(iii) The multivariate slash Laplace distribution tends to the multivariate Laplace 
distribution as q . That is 

/21
1

/2 1/2
2( ; , , )=  ( 2 ),lim

2(2 ) | |d dq

y yg x O q K y y  

where  is a d d  positive-definite matrix, (2 )=
2

d  and ( )K u  is the modi-

fied Bessel function of the third kind given in equation (2).  
 
(iv) The multivariate slash Laplace distribution is symmetric. Here Symmetric re-
fers to the elliptically contoured or elliptically symmetric distribution. 
 
(v) Star Unimodality property 
 

We know that univariate standard Laplace and slash Laplace distributions are 
unimodal with the mode at zero. There are many nonequivalent notions of uni-
modality for probability distributions in dR  (see, Dharmadhikari and Joag-Dev 
(1988)). A natural extension of univariate unimodality is star unimodality in dR . 
This property requires that for a distribution with continuous density f  the den-
sity be non-increasing along the rays emanating from zero.  
 
Definition 3 A distribution P with continuous density f on dR  is star unimodal about zero 
if and only if whenever 0 < < <     0,t u and x  then ( ) ( ).f ux f tx  

 
The d-dimensional Laplace laws are star unimodal about zero (see, Kotz et al. 

2001). The multivariate slash Laplace distribution is a scale mixture of the multi-
variate Laplace distribution, hence the multivariate slash Laplace laws are also star 
unimodal about zero. 

3. MULTIVARIATE ASYMMETRIC SLASH LAPLACE DISTRIBUTION 

In this section, we define a multivariate asymmetric slash Laplace distribution 
and derive its pdf. We discuss various properties and provide the stochastic rep-
resentation of the multivariate asymmetric slash Laplace distribution, which is 
useful for simulation studies. 
 
Definition 4 A random vector dX R  has a d-dimensional asymmetric slash Laplace 
( dASL ) distribution with location parameter =O , d d  positive definite scale matrix 

, skewness parameter dm R , and tail parameter > 0q , denoted by ( , , , )dASL O m q , 
if 
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1/= ,q
YX

U
 (4) 

where ~ ( , , )dY AL O m  with characteristic function (cf) given by 
1( ) = 11

2

Y t
t t im t

, where =O  is the location parameter,  is a d d  

positive definite scale matrix, dm R  is the skewness parameter and (0,1)U U~  
independent of Y . 

The pdf of the random vector X  in (4) is given by  

1 1
0

( ; , , , ) =  ( ; , , ) ,q d
d df x O m q q v g xv O m dv  (5) 

where ( ; , , )dg x O m  is the density of d-variate asymmetric Laplace ( dAL ) ran-
dom vector, which is given by 

/21 1( )
1 1

/2 1/2 1
'2( )=  (2 )( ' ) ,

(2 ) | | 2

y m

d d
y yef y K m m y y
m m

 

where  is a d d  positive definite scale matrix, dm R  is the skewness parame-

ter, (2 )=
2

d  and (.)K  is the modified Bessel function of the third kind given 

in equation (2). 
For the simulation purposes, we consider Y  as,  

= ,
d

Y mW W N  

where W  is the standard exponential variate and N  follows ( , )dN O  inde-

pendent of W . Then 1/= q
YX

U
 will follow ( , , , )dASL O m q . Here we consid-

ered the more general non-central d-dimensional AL  random vector with loca-
tion centered at m . 
 
Remark 7 Note that for =m O , the distribution ( , , )dASL O m  reduces to multivariate 
symmetric Laplace Law and hence X  reduces to symmetric multivariate slash Laplace denoted 
by ( , , )dSLL O q .  
 
Remark 8 The asymmetric slash Laplace random vector given in (4) is a scale mixture of the 
asymmetric Laplace random vector.  
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Remark 9 The limiting distribution of the multivariate asymmetric slash Laplace distribution 
as q , is the asymmetric Laplace density. Also for = 0m  and q  the multivariate 
asymmetric slash Laplace distribution tends to multivariate Laplace distribution.  

 
In the univariate case, i.e. for =1d  in equation (5), we get the univariate 

asymmetric slash Laplace distribution and figure (3) gives probability density 
curves of the asymmetric slash Laplace distribution for various values of parame-
ters. 
 

−8 −6 −4 −2 0 1 2 3 4 5 6 7 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

D
en

si
ty

 fu
nc

tio
n

ASL(µ = 0, σ = 1, q=1, m=1)
ASL(µ = 0, σ = 1, q = 6, m=2)
ASL(µ = 0, σ = 1, q = 6, m= 0.5)
L(µ = 0, σ = 1)

 
Figure 3 – Asymmetric slash Laplace densities along with Laplace density. 

 
The density plot of asymmetric slash Laplace distribution for various values of 

the parameters are compared with the standard Laplace distribution, is given be-
low. From the Figure (3), we can see that asymmetric slash Laplace distribution 
has heavier tails, asymmetry of varying degrees and peakedness than the Laplace 
distribution. We can see that the asymmetric slash Laplace density is symmetric, 
negatively skewed and positively skewed for = 0m , >1m  and <1m  respec-
tively. Also for =1q  asymmetric Laplace density has heavier tails like Cauchy 
distribution. The main feature of the asymmetric slash Laplace distribution in (4) 
is that the parameters m  and q control skewness and tail behaviour. 

STOCHASTIC REPRESENTATION 

Here we give a stochastic representations for the multivariate asymmetric slash 
Laplace distribution based on the stochastic representation of the multivariate 
asymmetric Laplace distribution. 
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Let Y  is multivariate asymmetric Laplace random vector then it can be repre-
sented as 

= ,
d

Y mW W N  

where W  is the standard exponential variate and N follows ( , )dN O  independ-
ent of W . Then ( , , )dASL m q  can be represented as,  

1/=  . ,
d

qX mW U W S  

where S  is the multivariate slash normal distribution (Wang and Genton (2006)). 
 
Remark 10 In the above representation of Y  if W  has a generalized inverse Gaussian dis-
tribution (Barndorff-Nielsen (1997)) with parameters , ,( )  denoted by , ,( )GIG  
with pdf 

/2 11 1/2( )/( )( )=  ,
2 ( )

x xf x x e
K

> 0,x  (6) 

where K  is the modified Bessel function of the third kind given in equation (2), 
0 , > 0  and R . Then the random vector Y  has the multivariate gener-

alized hyperbolic distribution and hence the random vector X  has the multivari-
ate generalized slash hyperbolic distribution, with =m  and  is some d-
dimensional vector. 
 
Proposition 2 If ( , , , )dX ASL O m q~  and let =V b AX , where b  is a vector  
in dR , A  is a non-singular matrix. Then the random vector 

( , , , )T T
dV ASL b A A A m q~ . This property implies that the multivariate asymmetric 

slash Laplace distribution is invariant under linear transformations.  
 
Remark 12 Let 1 2= ( , , , ) ( , , )d dY Y Y Y AL O m~  for any 

1 2= ( , , , )d db b b b R , the random variable 
=1

= d
b i iiY b Y  is univariate ,( )AL  

with = b b  and = m b . Further, if Y is symmetric, then so is bY . Hence, if 

1 2= ( , , , ) ( , ; )d dX X X X ASL m q~  for any 1 2= ( , , , )db b b b R , the random 

variable 
=1

= d
b i iiX b X  is univariate ( , , )ASL q  with = b b  and = m b . 

 
Remark 13 The above remark implies that the sum 

=1
d

ii X  has an ASL distribution if 

all iX s  are components of a multivariate ASL  random vector. Thus all iX s  are univari-
ate ASL  random variables. 
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Remark 14 If X  has a univariate (1,1, )ASL q  law and dm R , then the random vector 
=X mX  has the ( , , )dASL m q , = mm  with characteristic function  

1( ) 1/
0

( )= ( )= ( ) d ,
Ti X q

X E e u u  where (.)  is given by  

1( )= .11
2

mm im
 

 

Remark 15 Let ( , )dY AL m O~  with characteristic function 1( ) =
1Y t

im t
. Let 

1/= ,
d

q
YX m

U
 then X has the multivariate slash Laplace distribution denoted by 

( , ; )dX ASL m O q~ . 

4. APPLICATIONS 

In this section we will present an application of the asymmetric-slash Laplace 
distribution in univariate setting. We downloaded the cDNA dual dye microarray 
data sets (Experiment id-51401) from the Stanford Microarray Database. Each 
array chip contains approximately 42000 human cDNA elements, representing 
over 30000 unique genes. The data set was normalized using locally weighted lin-
ear regression (LOWESS) (Cleveland and Delvin, 1988). This method is capable 
of removing intensity dependence in 2( / )i ilog R G  values and it has been success-
fully applied to microarray data (Yang et al., 2002). Where iR  is the red dye (for 

treatment) intensity and iG  is the green dye (control) intensity for the thi  gene. 
After normalization, each distribution of the gene expression has a similar shape 
and exhibits heavier tails compared to a Gaussian distribution and a certain de-
gree of asymmetry. We use the maximum likelihood estimation method to esti-
mate the parameters. The maximization of the likelihood is implemented using 
the optim function of the R statistical software, applying the BFGS algorithm 
(See R Development Core Team, 2006). Also the function nlminb in the S-Plus 
package can be used to locate the maximum point of the likelihood function as-
suming that all the parameters are unknown.  

Figure (4) given below, depicts the histogram of the gene expression data and 
the fitted probability density function evaluated at the MLEs. We compared the 
empirical distribution function of the microarray gene expression data with the 
asymmetric slash Laplace (ASL), skew-slash, skew-slash t and skew-normal distribu-
tions evaluated at the MLEs. It can be clearly seen that the estimated density of the 
ASL  fits the data quite well compare to skew-slash, slew-slash t and skew-normal 
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densities. ASL captures skewness, peakedness and heavy tails. Hence, ASL  pro-
vides the possibility of modelling impulsiveness and skewness required for gene ex-
pression data. From figure (4) it is observed that the gene expression data are 
asymmetric and the asymmetric slash Laplace distribution describes the data  
well. The parameter estimates together with the standard errors (given in brackets) 
are ˆ = 0.154(0.003) , ˆ = 0.501(0.016) , ˆ =1.455(0.023)m  and ˆ = 16.85(0.010)q . 
It can be clearly seen that the estimated density of the asymmetric-slash Laplace dis-
tribution fits the data quite well compare to skew slash and normal densities. It cap-
tures skewness, peakedness and heavy tails. 
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Figure 4 – Fitted asymmetric slash Laplace (ASL) probability density function (red dashed line (the 
peaked one)) to the microarray gene expression data along with skew slash t (black line), skew slash 
(blue dash and dot line) and skew normal (dotted line). 

 

We have used Akaike’s Information Criterion (AIC) (Akaike (1973), Burnham 
and Anderson (1998)) to evaluate the comparative appropriateness of ASL . Let 

( )f  is our model, then AIC is given by  

1
ˆ= 2 ( ( | ,..., )) 2 ,f nAIC log L x x K  

where K  is the number of parameters being estimated, L  is the likelihood  
function of the model f , and ˆ  is the maximum likelihood estimate of the  
parameters of f . A smaller value of AIC indicates a better fit. We found  
that < 0ASL skew slashtAIC AIC , < 0ASL skew slashAIC AIC  and 

< 0ASL skew normalAIC AIC , which implies a better fit for the ASL .  
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SUMMARY 

The multivariate asymmetric slash Laplace distribution and its applications 

We have introduced a multivariate asymmetric-slash Laplace distribution, a flexible dis-
tribution that can take skewness and heavy tails into account. This distribution is useful in 
simulation studies where it can introduce distributional challenges in order to evaluate a 
statistical procedure. It is also useful in analyzing data sets that do not follow the normal 
law. We have used the microarray data set for illustration. The asymmetric slash Laplace 
distribution provides the possibility of modelling impulsiveness and skewness required for 
gene expression data. Hence, the probability distribution presented in this paper will be 
very useful in estimation and detection problems involving gene expression data. The 
multivariate asymmetric-slash Laplace distribution introduced in this article is clearly an 
alternative to multivariate skew-slash distributions because it can model skewness, 
peakedness and heavy tails. One interesting advantage of the multivariate asymmetric 
slash Laplace distribution is that its moments can be computed analytically by taking ad-
vantage of the moments of the multivariate asymmetric Laplace distribution, see the dis-
cussion in Section 3. Another attractive feature is that simulations from the multivariate 
asymmetric-slash Laplace distribution are straightforward from softwares that permit 
simulations from the multivariate asymmetric Laplace or Laplace distribution. We believe 
that the new class will be useful for analyzing data sets having skewness and heavy tails. 
Heavy-tailed distributions are commonly found in complex multi-component systems like 
ecological systems, biometry, economics, sociology, internet traffic, finance, business etc.  
 
 
 
 
 
 
 
 
 


