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INTEGER VALUED AUTOREGRESSIVE PROCESSES WITH 
GENERALIZED DISCRETE MITTAG-LEFFLER MARGINALS 

K.K. Jose, K.D. Mariyamma 

1. INTRODUCTION 

Integer valued time series are common in practice, yet methods for their analy-
sis have been developed only recently. In the last three decades, there have been a 
number of imaginative attempts to develop a suitable class of models for time se-
ries of counts. Integer valued autoregressive (INAR) models are one way of deal-
ing with count data in time series. Such data may arise from the discretization of 
continuous variate time series. See (McKenzie, 2003) for a detailed review. The 
pioneer work on integer valued time series modeling was proposed by McKenzie 
(1986). A first order autoregressive model with count (or integer valued) data is 
developed through the binomial thinning operator ‘*’ due to Steutel and van 
Harn (1979). Let X be an Z  valued random variable and [0,1] , then the 
thinning operator ‘*’ is defined by 

1
*

X

i
i

X V  (1) 

where iV ’s are independent and identically distributed (i.i.d.) Bernoulli random 
variables with P ( iV = 1) = 1 – P ( iV  = 0) = , and are independent of X. If 

j=0
( ) P(X=j)X

jG s s  = E[ sX ] represents the probability generating function (pgf ) 

of X, then the pgf of * X is obtained as (1 )XG s . 
A sequence { , Z}nX n  of Z -valued random variables is said to form an in-

teger-valued first order autoregressive (INAR (1)) process if for any Zn , 

1*n n nX X  (2) 

where [0,1]  is the first order autocorrelation coefficient of the process and 
{ }n  is the innovation process. Under the assumption of strict stationarity, (2) 
can be rewritten in terms of pgf as 
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Gx(s) = Gx(1- + s) ( )G s , 1 1s , [0,1]  (3) 

where ( )G s  is a proper pgf. 
McKenzie (1986) introduced a class of discrete valued sequences with negative 

binomial and geometric marginal distributions obtained as discrete analogues of 
the standard autoregressive time series models of Lawrance and Lewis (1980), re-
placing the scalar multiplication by the thinning operation. We consider the alter-
nate probability generating function (apgf ) defined as A(s) = G(1-s) = XE[(1-s) ]  
instead of the pgf in (2), which yields an expression analogous to the Laplace 
transform for positive valued continuous random variables, so that (3) can be re-
written as  

Ax(s) = Ax( s) ( )A s  (4) 

for every [0,1] . The equation (4) is analogous to the definition of self-
decomposability for continuous random variables. For more details see (McKen-
zie, 2003). INAR models have been discussed by Al-Osh and Alzaid (1987, 1988), 
Jayakumar (1995), Jin-Guan and Yuan (1991), among others. Pillai (1990) devel-
oped Mittag-Leffler functions and related distributions. The more general INAR 
(p) processes were first introduced by Alzaid and Al-Osh (1990). First order auto-
regressive semi-alpha-Laplace processes were developed by Jayakumar (1997). 
Bouzar and Jayakumar (2008) discussed time series with discrete semi-stable mar-
ginals. Recently, Lishamol and Jose (2011) introduced geometric normal-Laplace 
distributions and autoregressive processes. 

In recent years, data modelling with heavy-tailed distributions and processes 
has been an object of great interest. Kotz et al.(2001) have shown that heavy 
tailed distributions and processes serve as good models for diverse sources of da-
ta like network traffic, engineering, financial modeling and risk management. In-
teger valued time series with heavy tailed marginal distributions have been devel-
oped by several authors. Pillai and Jayakumar (1995) developed discrete Mittag-
Leffler INAR (1) process. Jayakumar and Davis (2007) introduced INAR models 
with bivariate geometric marginal distribution. Zheng and Basawa (2007), Zheng 
et al. (2008) generalized these to random coefficient and observation driven mod-
els. Generalised geometric Mittag-Leffler distribution and autoregressive proc-
esses were developed by Jose et al. (2010). 

Pakes (1995) introduced non-negative random variables in terms of Laplace-
Stieltjes transform of the form, 

, ,
1( )

1cL s
cs

, 0s , 0 1 , 0c , 0 . (5) 

and referred to them as positive Linnik laws. Christoph and Screiber (1998b) in-
troduced a random variable with pgf 
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(1 )( ) 1
asG s  

        = exp{ (1 ) }s  for  (6) 

and referred to it as discrete Linnik distributed with characteristic exponent 
(0,1] , scale parameter 0  and shape parameter 0 . If 1, then (6) 

gives the pgf of discrete Mittag-Leffler distribution. Distributional representations 
for discrete stable distribution, discrete Linnik distribution and Sibuya distribu-
tion are available in Devroye (1993). Christoph and Schreiber (1998a, b) consid-
ered explicit and asymptotic formulae for the tail probabilities of the discrete sta-
ble and Linnik distributions. Bouzar (2002) gives mixture representation for the 
discrete Mittag-Leffler and Linnik laws. Marshall-Olkin assymmetric Laplace dis-
tribution and processes can be found in Jose and Krishna (2011). Jose and Abra-
ham (2011) extend the count models with Mittag-Leffler waiting times. Puna-
thumparambathu (2011) introduced a new family of skewed distributions gener-
ated by the normal kernel and discussed its various applications. The purpose of 
this paper is to introduce and develop autoregressive processes with geometric 
generalized discrete semi-Mittag-Leffler distributions and study some properties 
of generalized discrete Mittag-Leffler distributions. 

The paper is organized as follows. In Section 2 we introduce Generalized Dis-
crete Mittag-Leffler (GDML) distribution and discuss its various properties. We 
also develop a first order INAR (1) process with GDML stationary marginal dis-
tribution and obtain the joint distribution of adjacent values of the process. Ge-
ometric Generalized Discrete Mittag-Leffler (GGDML) distributions and their 
properties are discussed in Section 3. We also introduce and study geometric gen-
eralized discrete Mittag-Leffler processes and INAR (p) processes. A further ex-
tension to obtain a more general class called Geometric generalized discrete semi-
Mittag-Leffler distributions and processes are developed in Section 4. An applica-
tion with respect to an empirical data on customer arrivals in a bank counter is 
discussed in Section 5. The conclusions are given in Section 6. 

2. GENERALIZED DISCRETE MITTAG-LEFFLER DISTRIBUTION 

Definition 2.1. A random variable X on Z  is said to follow generalized discrete Mittag-
Leffler distribution denoted by GDML ( , , )c , if it has the probability generating function 

1( )
1 (1 )

G s
c s

; 1 1s , 0 1 , 0c , 0 . (7) 

For 1, it reduces to the DML( ). When  = 1,  = 1 it reduces to geometric 
distribution. 
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Theorem 2.1. The GDML ( , c, ) distribution is discrete self-decomposable. 
 
Proof. From (3) the pgf of GDML ( , c, ) is 

1 1G(s)= (1 )
1+c (1 ) 1 (1 )s c s

(1 ) ( ).G s G s  

 
Theorem 2.2. The GDML ( , c, ) distribution is geometrically infinitely divisible and hence 
infinitely divisible. 
 
Proof. 
Consider the probability generating function of GDML ( , c, ) given by, 

1G(s)=
1+c(1 )s

. 

Replacing ‘s’ by exp (– ), we get the Laplace transform and using the criterion 
used in Pillai and Sandhya (1990), we see that the GDML ( , c, ) is geometri-
cally infinitely divisible. 
 
Theorem 2.3. Let G(s) be the pgf of a GDML distribution with 

(0,1], 0, 0,0 1, 1 1.c s  Then there exists a strictly stationary INAR 
(1) process { , Z}nX n  having structure given by (2) with G(s) as the pgf of its marginal dis-
tribution. Also the marginal distribution of the innovation sequences { , Z}n n  has apgf 
A (s)  given by 

1( )
1

c sA s
cs

 (8) 

 
Proof. 
In terms of apgf, the INAR(1) model defined in (2) can be rewritten as 

1
( ) ( ) ( )

n n nX XA s A s A s  

Under strict stationarity assumption, it reduces to 

( ) ( ) ( )X XA s A s A s  

Hence we have, 
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( )( )
( )

X

X

A sA s
A s

 

The INAR(1) with GDML marginals is defined, only if there exists an innovation 
sequence n  such that ( )A s  is an apg f. 

From (7), we have 

1( )
1XA s

cs
. 

Then we have, 

1( )
1

c sA s
cs

 

          1(1 )
1 cs

. 

Therefore, the innovations n  are -fold convolutions of DML ( , c, ). 

2.1 Joint distribution of 1 ,n n( X X )  

The joint pgf of ( 1,n nX X ) is given by 

1 1
1, 1 2 1 2( , ) ( )n n n

n n

X X
X XG s s E s s  

                      
12 1 2( ) [ (1 )]

n nXG s G s s  

                      2

1 22

1 1
1 { (1 )}1

c s
c s scs

. 

By inverting this expression the joint distribution can be obtained. The above 
expression is not symmetric in s1 and s2 and hence the process is not time re-
versible. 

3. GEOMETRIC GENERALIZED DISCRETE MITTAG-LEFFLER DISTRIBUTION 

Jose et al. (2010) introduced and studied the geometric generalized Mittag-
Leffler distribution and its properties. Now we shall introduce its discrete ana-
logue as follows. 
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Definition 3.1 A random variable X on Z  is said to follow geometric generalized discrete 
Mittag-Leffler (GGDML) distribution and we write X ~ GGDML ( , c, ), if it has the 
alternate probability generating function 

1( ) ; 1 1,0 1, 0, 0
1 ln[1 ]

A s s c
cs

. (9) 

Remark 1. The GGDML distribution is geometrically infinitely divisible. 
 
Theorem 3.1. Let 1 2, , ...X X  are independently and identically distributed GGDML ran-
dom variables where 1 2 ( )... N pY X X X  and N(p) be geometrically distributed with 

mean 1
p

, 1[ ( )] (1 ) , 1, 2,..., 0 1.kP N p p p k p Then Y~GGDML ( , c, ). 

Proof. 
Taking the apgf of Y we have, 

1

1
( ) { ( )} (1 )k k

Y X
k

A s A s p p  

           1

1 ln[1 ]cs
p

. 

3.1 Geometric generalized discrete Mittag-Leffler processes 

In this section, we develop a first order new autoregressive process with geo-
metric generalized discrete Mittag-Leffler marginal distribution. 
 
Theorem 3.2. Let { , 1}nX n  be defined as 

1 (1 )
n

n
n n

with probability p
X

X with probability p
 (10) 

where { }n  is a sequence of i.i.d. random variables. A necessary and sufficient condition that 
{Xn} is a strictly stationary Markov process with GGDML (a, c, ß) marginals is that n  are 
distributed as geometric Mittag-Leffler provided X0 is distributed as geometric generalized dis-
crete Mittag-Leffler. 

Proof. 
Rewriting (10) in terms of apgf we have, 
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1
( ) ( ) (1 ) ( ) ( )

n n n nX XA s pA s p A s A s  

Assuming strict stationarity, it becomes, 

( ) ( ){ (1 ) ( )}X XA s A s p p A s  

That is, 

( )( )
(1 ) ( )

X

X

A sA s
p p A s

 

where 

1( )
1 ln[1 ]XA s

cs
 

On simplification we get, 

1( )
1 ln[1 ]

A s
p cs

 

and hence n ~GGDML( , c, p ). 
The converse part can be proved by the method of mathematical induction as 

follows. Now assume that 1nX ~GGDML ( , c, ). Then 

1 2
( ) ( ){ (1 ) ( )}

n n nX XA s A s p p A s  

              1 1(1 )
1 ln[1 ] 1 ln[1 ]

p p
p cs cs

 

              1
1 ln[1 ]cs

 

The rest follows similarly. 

3.2 INAR(p) process with GGDML marginal distribution 

Now we consider a pth order integer valued autoregressive (INAR (p)) process 
with probability structure, 
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1 1 1

2 2 2

*
*

*

n n

n n

n

p n p n p

X with probabilty
X with probabilty

X

X with probabilty

 (11) 

where 
1

0 , 1, 1, 2,... ; 1
p

i i i
i

i p . 

In terms of apgf, the above equation can be written as 

1
( ) ( ) ( )

n n n i

p

X i X i
i

A s A s A s . 

Assuming strict stationarity it reduces to 

1
( ) ( ) ( )

p

X i X i
i

A s A s A s . 

Hence 

1

( )( )
( )

X
p

i X i
i

A sA s
A s

. 

For the GGDML marginals, the innovation sequence of the process has apgf given 
by, 

1

1

1

[1 ln(1 )]( )
[1 ln(1 )]

p

i i
i

csA s
c s

. (12) 

For the particular case of i , for i = 1, 2, ..., p, (12) yields a similar pattern of 
apgf as in (8). Hence with an error sequence n  following GGDML distribution, 
the pth order GGDML autoregressive processes are properly defined.  

4. FURTHER EXTENSIONS OF GDML AND GGDML DISTRIBUTIONS 

In this section we extend the GDML distribution to obtain a more general 
class of distributions called generalized discrete semi- Mittag-Leffler (GDSML) 
distribution and study its properties. 
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Definition 4.1 A random variable X on Z  is said to follow generalized discrete semi- Mittag-
Leffler distribution and write X ~ GDSML ( , c, ), if it has the pgf given by 

1( )
1 (1 )

G s
s

 (13) 

where ( )s  satisfies the functional equation ( ) ( )a s a s  for all 0 < s < 1. 
 

Remark 2. The solution of the functional equation is given by ( ) ( )s s h s  where h(s) is a 

periodic function in ln s  with period 2
ln a

. This is a special case of the general equation given 

in pp. 310 in Aczel (1966). For more details see Jayakumar (1997) and Kagan et al. (1973). 
In a similar we can define a geometric generalized discrete semi-Mittag-Leffler distribution 

and write X~GGDSML ( , c, ), if it has the pgf, 

1( )
1 ln[1 (1 )]

G s
s

 (14) 

where (.)  satisfies the above conditions. It can also be verified that the GGDSML distribu-
tion is geometrically infinitely divisible. 
 

Theorem 4.1 If 1 2, , ...X X  are independently and identically distributed geometric generalized 
discrete semi Mittag-Leffler random variables with parameters  and  where 

1 2 ( )... N pY X X X  and N (p) be distributed as geometric with mean 1
p

, then  

Y ~ GGDSM L ( , c,
p

). 

 
Proof. 
In terms of the apgf of Y, we have 

1

1
( ) { ( )} (1 )k k

Y X
k

A s A s p p  

           1

1 ln[1 ( )]s
p

. 
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Theorem 4.2 Geometric Generalized Discrete Semi Mittag-Leffler (GDSML) distribution is 

the limit distribution of geometric sum of GDSML ,
n

 random variables. 

 
Proof. We have, 

[1 ( )] 1 [1 ( )] 1
n

ns s  

is the apgf of a probability distribution since generalized discrete semi Mittag-
Leffler distribution is infinitely divisible. Hence by lemma 3.2 of Pillai (1990), 

( ) 1 [1 ( )] 1
n

n
nA s n s  

is the apgf of a geometric sum of independently and identically distributed dis-
crete semi Mittag-Leffler random variables. Taking limit as n  

( ) lim ( )nn
A s A s  

        
1

1 lim( [1 ( )] 1)nn s  

        1{1 ln[1 ( )] 1}s . 

4.1 Geometric generalized discrete semi-Mittag-Leffler processes 

Here we develop a first order new autoregressive process with geometric gen-
eralized discrete semi Mittag-Leffler marginals. 
 
Theorem 4.3. Let ,{ 1}nX n  be defined as 

1 1
n

n
n n

with probability p
X

X with probability p
 (15) 

where { n } is a sequence of i.i.d. random variables. A necessary and sufficient condition that 
{ nX } is a strictly stationary Markov process with GGDSML ( , , )c marginals is that n  
are distributed as geometric generalized discrete semi-Mittag-Leffler. 

Proof. 
Rewriting in terms of the apgf, the equation (15) reduces to 
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1
( ) ( ) (1 ) ( ) ( )

n n n nX XA s pA s p A s A s  

            
1

( ){ (1 ) ( )}
n nXA s p p A s  (16) 

When nX  is weak stationary, we have 

( ) ( ){ (1 ) ( )}X XA s A s p p A s  

This gives, 

( )( )
(1 ) ( )

X

X

A sA s
p p A s

 

where    1( )
1 ln[1 ( )]XA s

s
 

On simplification we get, 

1( )
1 ln[1 ( )]

A s
p s

 

so that n ~GGDSML ( , , )c p . 
The converse can be proved by the method of mathematical induction as fol-

lows. We assume that nX ~GGDSML( , , )c . Then we have, 

1 2
( ) ( ){ (1 ) ( )}

n n nX XA s A s p p A s  

              1 1(1 )
1 ln[1 ( )] 1 ln[1 ( )]

p p
p s s

 

              1
1 ln[1 ( )]s

  

The rest follows easily. 
 
Remark 3. An INAR(p) process having structure of the form (11) with GGDSML ( , , )c  
stationary marginal distribution can also be easily developed following similar steps as in section 
3.2. 
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Figure 1 – The empirical pdf and theoretical pdf of GDML (0.99, 0.91, 1) distribution. 

5. APPLICATION TO AN EMPIRICAL DATA 

In this section we apply the model to a data on the interarrival times of cus-
tomers in a bank counter measured in terms of number of months from January 
1994 to October 2003, which is taken from the file bank.arrivals.xlsx available in 
the website www.westminstercollege.edu. The empirical pdf shows a decreasing 
trend in the probabilities. Figure 1 gives the empirical pdf and theoretical pdf of 
GDML( , , )c . 

The mean, variance, coefficient of skewness and kurtosis measure for the data 
are respectively 1.5435, 3.2314, 0.9845 and 2.6714. The Durbin-Watson test con-
firms strong autocorrelation in the data with first order autocorrelation coeffi-
cient 0. 92 so that INAR models are needed to explore the future behaviour of 
the data. Since the mean is less than variance the geometric distribution is a pos-
sible probability model. Since geometric distribution is a special case of 
GDML( , , )c , we shall examine whether it is a suitable model to the above 
data. We obtain the estimates of the parameters as = 0.99 , 1 and c = 0.91. 

Now we use the Kolmogorov-Smirnov [K.S.] test for testing 0H : GDML dis-
tribution with parameters = 0.99 , 1 and c = 0.91 is a good fit for the given 
data. Since the computed value of the K.S. test statistic is obtained as 0.1212 and 
the critical value corresponding to the significance level 0.01 is 0.2403, the 
GDML assumption for interarrival times is justified. Using this we can obtain the 
probabilities associated with the stationary distribution of the INAR(1) model as 
well as predict the future values of the process. This will help in developing opti-
mal service policies for ensuring customer satisfaction. 
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6. CONCLUSIONS 

In this paper we have considered GDML distributions and introduced a new 
family of distributions called GGDML distributions and developed integer valued 
time series models. We also developed various generalizations such as GGDSML 
and INAR (p) processes. The use of the model is illustrated by fitting it to an 
empirical data on customer arrivals in a bank counter and the goodness of fit is 
established. The processes developed in this paper can be used for modeling time 
series data on counts of events, objects or individuals at consecutive points in 
time such as the number of accidents, number of breakdowns in manufacturing 
plants, number of busy lines in a telephone network, number of patients admitted 
in a hospital, number of claims in an insurance company, number of persons un-
employed in a particular year, number of aero planes waiting for take-off, number 
of vehicles in a queue, etc. Thus the models have applications in various contexts 
like studies relating to human resource development, insect growth, epidemic 
modeling, industrial risk modeling, insurance and actuaries, town planning etc.  
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SUMMARY 

Integer valued autoregressive processes with generalized discrete Mittag-Leffler marginals 

In this paper we consider a generalization of discrete Mittag-Leffler distributions. We 
introduce and study the properties of a new distribution called geometric generalized dis-
crete Mittag-Leffler distribution. Autoregressive processes with geometric generalized dis-
crete Mittag-Leffler distributions are developed and studied. The distributions are further 
extended to develop a more general class of geometric generalized discrete semi-Mittag-
Leffler distributions. The processes are extended to higher orders also. An application 
with respect to an empirical data on customer arrivals in a bank counter is also given. 
Various areas of potential applications like human resource development, insect growth, 
epidemic modeling, industrial risk modeling, insurance and actuaries, town planning etc 
are also discussed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


