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RESIDUAL DIAGNOSTICS FOR INTERPRETING CUB MODELS1 

F. Di Iorio, M. Iannario 

1. INTRODUCTION 

In ordinary linear regression, graphical diagnostics can be very useful for de-
tecting anomalous features in a fitted model (Atkinson, 1985; Belsey et al., 1980; 
Cook and Weisberg, 1994; Daniel and Wood, 1971; Fox, 1991, 1997; Weisberg, 
1980). This validation step is pursued by residual analysis and it is worth consider-
ing for several purposes: to check the structure of the model, verifying the nature 
and persistence of the postulated dependence, to detect outliers and/or influen-
tial data, to assess the validity of classical linear hypotheses (homoscedastic and 
uncorrelated errors), to test distributional assumptions (Gaussianity, for instance) 
or shape behaviours (skewness, heavy tails), and so on. 

However, when the response variable is not continuous (and specifically of 
categorical nature), it is difficult to interpret the usual definition of residuals and 
the related graphical devices. In fact, the results are invariably discrete and stan-
dard techniques are not very effective. The problem has been mainly raised in the 
framework of Generalized Linear Models (GLM), as proposed by McCullagh 
(1980) and McCullagh and Nelder (1989). In this context, the definition of general-
ized residuals have been derived by first-order conditions of the maximum likeli-
hood equations (Lanweher, Pregibon and Shoemaker, 1984). 

The specification and extensions of residual diagnostics to categorical and or-
dinal data have been successfully pursued with ordered polytomous (probit and 
logit) analysis, as in Pregibon (1981). In this regard, Agresti (2010) synthesizes 
several approaches, and we mention the standardized residuals given by the ratio of 
the difference between the observed and the fitted values and the standard error 
of difference under the hypothesis that the model is correct. In addition, it can be 
informative to quote the residuals obtained by cumulative totals and referred to 
as Pearson-type residuals. In relation to this frame, Liu et al. (2009) proposed graphi-
cal diagnostics based on cumulative sums of residuals to check the misspecifica-
tion of the proportional odd models. Moreover, Pruscha (1994) suggested partial 
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residuals whereas Bender and Benner (2002) introduced a smoothed partial resid-
ual plot. 

Other issues related to the analysis of residuals from a fitted model, have been 
obtained by using univariate and bivariate marginal distributions: Bartholomew 
and Tzamourani (1999) and Jöreskog and Moustaki (2001), among others. Finally, 
Lindsay and Roeder (1992) introduced residual diagnostics for mixture models. 

In this paper, we analyze residual diagnostics with reference to ordinal data 
modelled by means of CUB models (Piccolo, 2003; D’Elia and Piccolo, 2005; 
Iannario, 2012; Iannario and Piccolo, 2012). More specifically, we define esti-
mated residuals, their transformations and related graphical methods and then ex-
tend the concept of binned residuals (Gelman and Hill, 2007) to CUB models. Re-
sidual plots, based on first-order conditions of maximum likelihood equations, 
have been previously discussed by Di Iorio and Piccolo (2009). 

The paper is organized as follows: the formulation and some basic features of 
CUB models are considered in section 2. Section 3 proposes a definition of re-
siduals for such mixture models whereas section 4 introduces binned residual 
plots. Section 5 checks the usefulness of such device by means of empirical data 
set. Section 6 contains some final remarks. 

2. BACKGROUND AND NOTATION 

We analyze ordinal responses expressed on the support {1,2,...,m} where m>3 
for identifiability purposes (Iannario, 2010). To be specific, we consider ratings 
data r =(r1, r2,..., rn)’ as the collection of scores assigned by a sample of n raters to 
a prefixed item. 

Formally, CUB models2 are specified by considering the observed sample r of 
responses as n realizations of a discrete random variable R whose probability dis-
tribution is a mixture of Uniform and shifted Binomial random variables, both 
defined on the support {1,2,...,m}. 

For improving fitting and interpretation, a logistic link among the parameters 
and some selected subjects’ covariates is conveniently assumed. The parameters 
of a CUB model (denoted by  and , respectively) are inversely related to uncer-
tainty and feeling features of respondents, respectively. Instead, the observations of 
subjects’ covariates are collected for the two components in the matrices Y and 
W, respectively. Further details have been discussed by Iannario and Piccolo 
(2012). 

Then, information for explaining the rating ri of the i-th subject, for i=1,2,...,n, 
is: 

1 2 1 2( |1, , , , |1, , , , ) .i i i ip i i iqr y y y w w w  

                
2 The acronym CUB derives from the Combination of Uniform and (shifted) Binomial random 

variables in the mixture which defines the model. 
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It is related to parameters by the systematic links: 

1 1= ( ) = ; = ( ) = ; = 1, 2, , ,
1 1i ii i i iy w i n

e e
 (1) 

where yi and wi are the covariates of the i-th subject for explaining i  and i , re-
spectively, and 0 1 0 1= ( , , , ) ; = ( , , , ) ,p q  are the vectors of the pa-
rameter vectors (supposed fixed across individuals) for yi and wi, respectively. 

As a consequence, for a given m>3, the probability distribution of a CUB 
model with p covariates for explaining uncertainty and q covariates for explaining 
feeling, hereafter denoted as CUB(p,q) model, turns out to be: 
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Given the sample information In=(r | Y | W ), if we let =( ´, ´ )´ the set of all 
p+q+2 parameters to be estimated, then the log-likelihood function is defined by: 

=1
)log ( | )= log[ ( = | , , ].

n

n i i i
i

L I Pr R r y w  (3) 

Notice that, for obtaining maximum likelihood (ML) estimates, an effective 
maximization approach to (3) is required and this is based on EM algorithm  
(Piccolo, 2006). 

In order to assess the closeness between the observed responses and the fitted 
values, goodness-of-fit statistics have been introduced in the literature. Some of 
them are based on deviance and divergence measures (Cameron and Windmeijer, 
1997; Hastie, 1987; McCullagh and Nelder, 1989) and these criteria are particu-
larly useful in presence of covariates for comparing nested models. 

When covariates are absent, the absolute differences between the probability 
ˆ ˆ( = | ) ( )rPr R r p , evaluated by the estimated CUB model, and the corre-

sponding observed relative frequency fr, r=1,2,...,m are often used as inverse 
measures of goodness of fit. Such quantities may be considered as starting points 
for building dissimilarity indexes (Leti, 1979; Simonoff, 2003) or direct normal-
ized fitting measures as: 
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has been proposed by Iannario (2009). This index has been derived by a first-
order property of ML estimates. 

As already mentioned, inferential issues for this class of models have been pur-
sued by ML methods, and the related asymptotic inference may be applied by us-
ing variance and covariance matrix of estimators (with ML estimates plugged in). 
Alternatively, nonparametric inference has been introduced in order to check the 
adequacy of an estimated model or to compare nested CUB models obtained for 
small sample size (Arboretti et al. 2011; Bonnini et al. 2011). 

3. GENERALIZED RESIDUALS IN CUB MODELS 

In a previous work, Di Iorio and Piccolo (2009) discussed generalized residuals 
for CUB models for uncertainty and feeling covariates. They defined, for 
i=1,2,...,n, the quantities: 

( ) ˆ
ˆ

1(1 ( )) 1
( )i i

i

e
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 (4) 
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which may be considered as ML generalized residuals with respect to i and i, 
respectively. They are obtained from first-order conditions of ML equations and 
may be useful to investigate where and how significant covariates affect single 
probabilities. Notice that these quantities assume a number of different values 
depending on the number of modalities of covariates. 

Hereafter, we introduce a different definition of residuals for CUB models 
which is more similar to the standard regression framework. For simplicity, we 
consider the common case where only the feeling parameter  is explained by co-
variates W. Thus, the discussion is limited to CUB(0,q) models. 

We define residuals as: ei=Ri - E(Ri|W=wi; ) and their estimates as: 

iê ( | ; ), 1, 2,..., .i i ir E R W w i n  

Since the expectation of a CUB model is: ( 1)1( )= ( 1)
2 2

mE R m , 

given that covariates affect only the feeling parameter , from (1), the previous 
residuals may be expressed as: 

i ˆˆ ( 1)1ê ( 1) ( ) , 1, 2,..., .
2 2i i

mr m i n  (6) 

If we compare last expression with (4) and (5), the difference between the two 
approaches in defining residuals should be evident. In fact, in (6) the evaluation 
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of iê  is yet conditioned to ˆ  but the explicit reference to ˆ( )ip  in denominators 
– as it happens in definitions (4) and (5) – disappeared. Thus, small probabilities 
are not so influential on the residual computations. 

Notice that: 

( ) ( ( | ; )) ( ) ( | ; ) 0 ;i i i i i i iE e E R E R W w E R E R W w  

2
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where Ai=-wi . Thus, the residuals (6) are heteroscedastic. 

4. BINNED RESIDUAL PLOTS 

In order to avoid the discrete pattern in the residual plot, which is the conse-
quence of the ordinal nature of responses, we introduce a binned residual plot for 
CUB models according to similar proposals for dichotomous data. 

Suppose that X is the variable we use to define J bins for plotting averaged re-
siduals belonging to the selected j-th bin, for j=1,2,...,J. Such variable may be a 
subjects’ covariate (or a combination of them) but also a probability computed by 
the estimated CUB models. 

To be consistent, we define the i-th residual belonging to the j-th bin as: 

[ ] , 1, 2, ..., ; 1, 2,..., .i j je i n j J  

Typically, there is some arbitrariness in choosing the number of bins: we want 
enough points so that the averaged residuals are not so noisy, but it helps to have 
many bins to see more local patterns in the residuals. In this regard, it is a com-
mon practice to specify ni as a constant value ( n , say) but some bins may pos-
ses different size; so, our notation is taking this generalization into account. 

Another approach would be to apply a nonparametric smoothing procedure 
such as lowess (locally weighted scatterplot smoothing: Cleveland, 1979). It com-
bines the simplicity of linear least squares regression with the flexibity of nonlin-
ear regression by fitting simple models to local subsets of data to build a function 
that describes the deterministic variation in the data. 

The graphical device we are discussing about is a representation of the average 
of nj observed realizations of [ ]i je  for each group (bin) selected according to the 
ordered values of a prefixed variable X. Then, the binned residuals are given by: 

[ ]
1
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This random variable is characterized by: 

2
[ ]

1
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jn

j j i j
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n

 

where we denoted by 2
[ ]i j  the variance of a CUB random variable (Piccolo, 

2003) conditioned by the observed value of the X variable for the i–th subject. 
Thus, to obtain a binned residual plot we order data with respect to the X variable 

into categories (bins), and then we plot the average residual versus the average 
value of the variable for each bin. Specifically, each point of the binned residual plot 
is specified by an abscissa computed on some average of X and an ordinate com-
puted on the realizations of je . 

The asymptotic standard-error bounds, within which one would expect about 
95% of the binned residuals to fall if the model is assumed to be true, are: 

2
[ ]1.96 , 1, 2,..., .i j

j

j J
n

 

5. SOME EMPIRICAL EVIDENCE 

To verify the effectiveness of the proposal we implement the analysis of 
binned residual plots for CUB models on a real data set. Specifically, we analyze a 
subset of ISFOL-2006 data by considering 20184 subjects which expressed their 
perception of subjective survival probabilities to 75 years; such data have been 
transformed in a qualitative assessment about the personal perception to survive 
by means of a Likert scale with m=7. For illustrative purposes, we refer to models 
fitted to such data and already discussed in Di Iorio and Piccolo (2009), Iannario 
and Piccolo (2010). 

In the estimated CUB models, only the Gender, the deviations and the squared 
deviations of logarithm of Age turned out to be relevant covariates for explaining 
the feeling parameter, and the main results are reported in Table 1. As we can see, 
the inclusion of covariates for feeling parameter  does not sensibly modify the 
estimation of ˆ , whereas significantly improves the goodness of fit measures (as 
shown by the increase of estimated log-likelihood functions and the correspond-
ing reductions of BIC). 

If we apply the proposed analysis to such models, we obtain different binned 
residual plots. We report in Figure 1 (left panel) the average residuals je  for a 
CUB(0,1) model with deviations of logarithm of Age and (in the right panel) the 
average residuals of a CUB(0,2) model which includes both deviations and 
squared deviations of logarithm of Age. Each bin contains 142n  residuals, in 
both plots. 
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TABLE 1 

CUB models for subjective survival probabilities to age 75 

Models Parameter Estimates Log-likel. BIC 
CUB(0,0) ˆ 0.867(0.005)  ˆ 0.163(0.001)  -30383 60782.3 
     
CUB(0,1) ˆ 0.865(0.005)  0ˆ 1.642(0.011)  -30365 60754.5 

Log(Age)  1̂ 0.135(0.023)    
     
CUB(0,2) ˆ 0.867(0.005)  0ˆ 1.522(0.015)  -30310 60652.7 

Log(Age)  1̂ 0.125(0.024)    

[Log(Age)]2  2ˆ 0.682(0.065)    
     
CUB(0,3) ˆ 0.868(0.005)  0ˆ 1.598(0.020)  -30291 60622.8 

Log(Age)  1̂ 0.108(0.024)    

[Log(Age)]2  2ˆ 0.616(0.066)    

Gender  3ˆ 0.121(0.020)    

 

In the left panel of Figure 1, we observe a quadratic (parabolic) structure, 
which disappears in the right panel after the introduction of deviations of squared 
logarithm of age. Specifically, we observe that about 10% of the binned residuals 
corresponding to small values of the deviance of log(Age) exceeds the upper level 
of confidence bound. 
 

 
Figure 1 – Binned residuals for parameter with covariates Age (left panel) and Age2 (right panel). 

 
A further inspection of these data shows that the pattern definitely improves 

after the introduction of Gender (left panel, Figure 2), as confirmed also by the re-
sults of the last model of Table 1. The points in the plot do not show further pat-
terns and the number of points out of the confidence limits are dramatically re-
duced. 
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In addition, in the right panel of Figure 2, we report another kind of residual 
plot in which we observe the relationship between average residuals and expected 
values of the rating scores. In the left panel, a moderate amount of residuals falls 
outside of the dotted 95% confidence bands for the residual plot, whereas in the 
right panel just few binned residuals are located out of the confidence bands. 
Thus, such representations summarize and support the quality of the estimation. 

Finally, if we compare the graphical devices for the same data set reported by 
Di Iorio and Piccolo (2009), and based on (4) and (5) definitions of residuals, it 
seems evident that Figures 1-2 depict in a sharper manner the information ob-
tained by the model diagnostics step. 
 

  
Figure 2 – Binned residuals for parameter vs average of Age and expected values. 

6. CONCLUDING REMARKS 

In this work, we have discussed the role of residuals obtained by fitting CUB 
models to ordinal data as diagnostic tools for improving the interpretation and 
checking the effect of covariates. The binned residual plot seems a convenient 
trick to avoid the discreteness nature of such data which hides useful relation-
ships and prevent from the detection of influential behaviors.  

In this regard, further studies are necessary in order to explore related issues, as 
the effect of different size of bins since the arbitrariness in choosing the number 
of bins (see Gelman and Hill, 2007, pag. 97) may affect some conclusions. Inves-
tigations of several data sets are important but also simulation studies should be 
performed in order to test the real effectiveness of such new diagnostic tools. 
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SUMMARY 

Residual diagnostics for interpreting CUB models 

CUB models represent a new approach for the analysis of categorical ordinal data. The 
relevant domain of study is the specification and estimation of the behaviour of respon-
dents when faced to ratings by analysing the relationship among ordinal scores and ob-
served covariates. The increasing use of such models suggests to delve into the issue of 
appropriate residuals to be used for diagnostic purposes. In fact, the discreteness of the re-
sponse variable discourages the use of standard regression paradigms. In this context, we 
propose the extension and implementation of a specific graphical methodology, known as 
binned residual plots, in order to check the adequacy of fitted CUB models and/or infer 
about improvements of the maintained model. Such proposals have been exemplified 
through the analysis of real data. 


