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ESTIMATION OF FINITE POPULATION MEAN IN TWO-PHASE 
SAMPLING WITH KNOWN COEFFICIENT OF VARIATION 
OF AN AUXILIARY CHARACTER 

H.P. Singh, R. Tailor, R. Tailor 

1. INTRODUCTION 

In sample surveys we often use an auxiliary variable x  to construct more pré-
cised estimates of the population mean Y  or total ( )Y NY  of the study vari-
able y  where N  (finite) is the population size. A large number of estimators of 

the population mean Y  using information on the population mean X  of the 
auxiliary variable x  have been proposed by various authors for instance see 
(Singh, 1986), (Singh and Upadhyaya, 1986), (Singh, 2003), (Singh et al., 2004) and 
the references cited therein. Using information on the population mean X  and 
the coefficient of variation xC  of the auxiliary variable x  motivated by (Singh 
and Ruiz Espejo, 2003) and Singh and Tailor, 2005) suggested the following ratio-
cum-product estimator for the population mean Y  as 
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   are sample 

means of y  and x respectively based on n  observations drawn by using simple 
random sampling without replacement (SRSWOR) from the population of size 
N . 

In many situations of practical importance it may happen that the population 
mean X  of the auxiliary variable x  is not known before start of the survey. It is 
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well known that if the necessary auxiliary information is not readily available for 
the population before sampling it might pay to collect such information for a lar-
ge preliminary sample and then collect more precise information for the variable 
under study on a final or second phase sample. This technique known as two 
phase sampling is very much in use in the practice see (Adhvaryu and Gupta, 
1983, p. 223). More precisely the double sampling model is as follows: 
(i) The first phase sample ‘ s ’ of fixed size 1 1( )n n N  is drawn to observe the 

auxiliary variable x  in order to furnish an estimate of the population mean 
X  

(ii) The second phase sample ‘ r ’ of fixed size 1( )n n n  is drawn to observe the 
study variable y  only in either of the following manners, 

Case I: “as a sub sample from the first phase sample” 
Case II: “independently to the first phase sample” 
When the population mean X  of x  is not known using the two-phase sam-

pling procedure as described above we define the classical ratio and product esti-
mators for the population mean Y  respectively as  

1
Rd

x
t y

x
 , (2) 

and 

1
Pd

x
t y

x
 , (3) 

where y  and x  are the sample means based on second phase sample of size n  and 
1

1 1
1

(1/ )
n

i
i

x n x


   is the first phase sample mean of x  based on 1n  observations. 

In this paper we have suggested the two-phase (or double) sampling version of 
the estimator due to (Singh and Tailor, 2005) and its properties are studied under 
large sample approximation. An empirical study is carried out to judge the merits 
of the proposed estimator over other competitors. 

We shall use the SRSWOR sampling scheme through out the paper. 

2. SUGGESTED CLASS OF RATIO-CUM-PRODUCT ESTIMATORS  

Replacing X  by 1x  in (1) we define the double sampling version of the (Singh 
and Tailor, 2005) estimator t as 

1

1

(1 )x x
d

x x

x C x C
t y

x C x C
 
     
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, (4) 
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where notations have the same meaning as described in Section 1. For 1   dt  
reduces to the (Kawathekar and Ajagaonkar’s, 1984) estimator 

(1) 1 x
d

x

x C
t y

x C

 
   

. (5) 

while for 0   it boils down to the product-type estimator 

( 2)

1

x
d

x

x C
t y

x C

 
   

. (6) 

To obtain the variance of dt  we write 

0(1 )y Y e  , 1(1 )x X e  , and '
1 1(1 )x X e  , 

'
0 1 1( ) ( ) ( ) 0e e e      . 

in both the cases I and II. The other expected values ignoring finite population 
correction (fpc) terms in case I and case II are given by, 

Case I: 2 2
0( ) ye C n  , 2 2

1( ) xe C n  , ' 2 2
1 1( ) xe C n  ,  

2
0 1( ) xe e CC n  , ' 2

0 1 1( ) xe e CC n  , ' 2
1 1 1( ) xe e C n  . 

Case II: 2 2
0( ) ye C n  , 2 2

1( ) xe C n  , ' 2 2
1 1( ) xe C n  ,  

2
0 1( ) xe e CC n  , ' '

0 1 1 1( ) ( ) 0e e e e    ,  

where y yC S Y , x xC S X , y xC C C , xy x yS S S  , 
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1
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1
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Expressing (4) in terms of 'e s  we have 

'
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, 

    ' 1 ' 1
0 1 1 1 1(1 )[ (1 )(1 ) (1 )(1 )(1 ) ]Y e e e e e              , 

where /( )xX X C   . 
Expanding, multiplying and neglecting terms of 'e s  having power greater than 

‘unity’ in the right hand side of the above expression we have 
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'
0 1 1( ) [ (1 2 ) ( )]dt Y Y e e e      . 

Squaring both the sides of the above expression we have 

2 2 2 2 2 2 ' 2 ' '
0 1 1 1 1 0 1 0 1( ) [ (1 2 ) ( 2 ) 2(1 2 ) ( )]dt Y Y e e e e e e e e e            . (7) 

Taking expectation of both the sides of (7) and using the results in case I and 
case II we get the variance of dt  to the first degree of approximation in case I 
and case II respectively as  

 2 2

1

1 1 1
( ) (1 2 ) (1 2 ) 2d I yV t Y C C

n n n
   
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    

, (8) 
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( ) (1 2 ) (1 2 )d II y

C
V t Y C

n n n n
   

              
       

. (9) 

3. OPTIMUM CHOICE OF THE SCALAR ' '  

Minimization of ( )d IV t  and ( )d IIV t  with respect to   yields the optimum 
values of   in case I and II respectively as  

( )
( )
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C

 



  , (10) 

and 

1
( )

1

1
1
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n C

n n
 



 
    

. (11) 

Substitutions of ( )opt I  and ( )opt II  in place of   in (4) respectively yield the 

optimum estimators in the case I and case II as 
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1
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2

x x
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x x

x C x Cy n nC C
t

n n x C n n x C 

        
                     

. (13) 

It is observed from (12) and (13) that the optimum estimators ( )d opt It  and 

( )d opt IIt  depend upon the unknown population parameters such as X ,  , yC ,C  
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and   which lacks the practical utility of these estimators. For the application of 
such estimators one has to use the close guessed values of these parameters ob-
tained from the past studies or with the familiarly of the experimental material. 
(Das and Tripathi, 1978) have illustrated that the estimators based on guessed va-
lues are better than the conventional estimators. On the other hand if the guessed 
values close enough are not available then it is worth advisable to replace the un-
known population parameters by their consistent estimators. Thus replacing X , 

  and yC  by their consistent estimates 1x , ˆ xy x ys s s   and ˆ
y yC s y  re-

spectively in (12) and (13) we get the estimator based on ‘estimated optimum’ as  

1
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ˆ
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and 
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, (15) 

where 1 1
ˆ ( )xx x C    and ˆ ( )xy x xC s ys C  are the consistent estimator of   

and C  respectively.  
Using the standard technique it can be shown to the first degree of approxima-

tion that 
2

21
( ) ( )

1

( )ˆmin. ( ) ( ) ( ) 1y
d I d opt I d opt I

S n n
V t V t V t

n n


 
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, (16) 

2
21

( ) ( )
1

ˆmin. ( ) ( ) ( ) 1
( )

y
d II d opt II d opt II

S n
V t V t V t

n n n


 
     

, (17) 

where min. ( )d IV t  and min. ( )d IIV t  stand for the minimum variance of the pro-
posed class of estimators in case I and case II respectively. 

It can be easily seen from (16) and (17) that the difference 

( ) ( ) ( ) ( )
ˆ ˆ( ) ( )d opt I d opt I d opt II d opt IIV t or t V t or t  is always positive which follows that the 

optimum estimator (or estimator based on estimated ‘optimum’) in case II is 
more efficient than the optimum estimator (or estimator based on estimated ‘op-
timum’) in case I.  

4. EFFICIENCY COMPARISON OF dt  WITH OTHER ESTIMATORS  

It is well known under SRSWOR sampling scheme (ignoring fpc) that 
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2

( ) yS
V y

n
  (18) 

This can be expressed as 

2

( ) yYC
V y

n
 . (19) 

For the purpose of comparison we write the variance expression of the estima-

tors Rdt , Pdt , (1)
dt  and ( 2)

dt  to the first degree of approximation in case I and case 
II respectively as: 

2 2 2
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
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1
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1
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, (24) 
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( 2 ) 2 2 2

1
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n n n n
 
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       

. (27) 
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4.1 Efficiency Comparison of dt  With Other Estimators 

From (8) (19) (20) (21) (22) and (23) we note that the suggested estimator dt  is 
more efficient (under case I) than: 

(i) sample mean y  if 

1 1

2 2

1 1

2 2

C
either

C
or






       


       

 

or equivalently 

1 1 1 1
min. , max. ,

2 2 2 2

C C


 
               

      
, (28) 

(ii) usual two-phase sampling ratio estimator Rdt  if 

(1 ) ( 2 1)

2 2

( 2 1) (1 )

2 2

C
either

C
or

 


 

 


 

         


        

 

or equivalently  

(1 ) ( 2 1) (1 ) ( 2 1)
min. , max. ,

2 2 2 2

C C   


   
            

   
, (29) 

(iii) usual two-phase sampling product estimator Pdt  if  

( 2 1) ( 1)

2 2

( 1) ( 2 1)

2 2

C
either

C
or

 


 

 


 

         


         

 

or equivalently  

( 1) ( 2 1) ( 1) ( 2 1)
min. , max. ,

2 2 2 2

C C   


   
            

   
. (30) 
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(iv) Kawathekar and Ajagaonkar’s, 1984 estimator (1)
dt  if 

1

1

C
either

C
or







  

  


 

or equivalently 

min. 1 , max. 1 ,
C C


 

       
   

, (31) 

(v) ( 2 )
dt  if 

0 1

1 0

C
either

C
or

 




       


       

  

or equivalently 

min. 0 , 1 max. 0 , 1
C C


 

               
      

. (32) 

We note from (9) (19) (24) (25) (26) and (27) that the proposed estimator dt  
dominates over the estimator (in case II),  

(i) sample mean y  if 

1

1

1

1

1 1
1

2 2 ( )

1 1
1

2 ( ) 2

n C
either

n n

n C
or

n n







  
      


       

 

or equivalently 

1 1

1 1

1 1 1 1
min. , 1 max. , 1

2 2 ( ) 2 2 ( )

n C n C

n n n n


 

                            
, (33) 
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(ii) two-phase sampling ratio estimator Rdt  if 

1

1

1

1

(1 ) ( 1)

2 2 ( )

( 1) (1 )

2 ( ) 2

n C
either

n n

n C
or

n n

 


  

 


  

   
      


        

 

or equivalently 

1 1

1 1

(1 ) ( 1) (1 ) 1
min. , max. ,

2 2 ( ) 2 2 ( )

n C n C

n n n n

   


     

                               
, 

(34) 
(iii) two-phase sampling product estimator Pdt  if 

1

1

1

1

(1 ) ( 1)

2 ( ) 2

( 1) (1 )

2 2 ( )

n C
either

n n

n C
or

n n

 


  

 


  

   
      


        

 

or equivalently 

1 1

1 1

( 1) (1 ) ( 1) 1
min. , max. ,

2 2 ( ) 2 2 ( )

n C n C

n n n n

   


     

                               
, 

(35) 

(iv) Kawathekar and Ajagaonkar’s, 1984 estimator (1)
dt  if 

1

1

1

1

1
( )

1
( )

n C
either

n n

n C
or

n n







   

  
 

 

or equivalently 

1 1

1 1

min. 1, max. 1,
( ) ( )

n C n C

n n n n


 

   
    

    
, (36) 
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(v) ( 2 )
dt  if 

1

1

1

1

0 1
( )

1 0
( )

n C
either

n n

n C
or

n n







  
      


       

 

or equivalently 

1 1

1 1

min . 0 , max. 0 ,
( ) ( )

n C n C

n n n n


 

   
    

    
. (37) 

5. COMPARISON WITH SINGLE – PHASE SAMPLING 

Case I 
For case I we consider the cost function  

0 1 1 2C C n C n  , (38) 

where 0C  is the total cost 1C  and 2C  are cost per unit of the first and the sec-
ond phase samples. 

The variance of dt  at (8) is written as, 

1 2 1

1

( )
( )d I

V V V
V t

n n


   (39) 

where 

2 2 2
1 [ (1 2 ) { (1 2 ) 2 }]y xV Y C C C        , 

2 2
2 yV Y C . 

The optimum values of n and 1n  for fixed cost 0C  which minimizes the vari-

ance of dt  are given by 

0 1 2

2 1 1 2 1

0 2 1 1
1

2 1 1 2 1

( )

( )

( )

opt

opt

C V C
n

C V C V V

C V V C
n

C V C V V


 

  


    

. (40) 
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The variance of dt  corresponding to optimal two-phase sampling strategy is 

2

2 1 1 2 1
0

1
( ) ( )opt d IV t C V C V V

C
     . (41) 

If all resources are devoted to a single sample on which only study variate is 
measured then 

0 2C nC     and 

2 22 2
2

0 0

( )opt y
C C

V y Y C V
C C

  . (42) 

Thus the two-phase sampling estimator dt  would be beneficial so long as 

( ) ( )d I optV t V y  

i.e. 

2

2 11

2 2 1( )

V VC

C V V

 
  

  
. (43) 

In particular if we use ( ) ( )
ˆ( )d opt I d opt It or t  then (43) reduces to 

2
2

1
2

2

1 (1 )C

C





     . (44) 

 
Case II 

We note from (16) that the variance of the optimum estimators ( )d opt IIt  (or the 

variance of the estimators ( )d̂ opt IIt  based on the estimated ‘optimum’ values) is  

2
21

( )
1

ˆ( ) 1
( )

y
d opt II

S n
V t

n n n


 
   

 = ( )( )d opt IIV t  (45) 

Under this case let the auxiliary variate x  be measured on 1( )n n  units and 
the study variate y on n units. 

We consider the cost function of the following form 

* * *
0 1 1 2( )C C n n nC    (46) 

[for instance see Srivastava, 1970)] where *
1C  and *

2C  are cost per unit of observ-

ing x  and y respectively. The optimal selection of sample sizes n and 1n  subject 

to the condition that (45) is minimum under the fixed cost *
0C  is such that  
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1/2* 2
1
* 2

1 2

(1 )Cn

n n C




 
    

. (47) 

This equation with (47) determines optimum values of n and 1n  and hence of 

1( )n n . 

The resulting variance corresponding to these optimum values of n and 1n  is 
given by 

2 2
2 * *

( ) ( ) 2 1*
0

ˆ ˆ( ) ( ) (1 ) .y
d opt II opt d opt I

S
V t V t C C

C
       

 (48) 

If the sample mean y  is to be used then its variance corresponding to optimal 
sampling strategy is 

*
22

*
0

( )opt y
C

V y S
C

 . (49) 

From (48) and (49) it is obtained that the two phase sampling estimator 
( ( )d opt IIt ) or ( ( )d̂ opt IIt ) yields fewer variance than that of y  for the same fixed cost 

if 

* *
2 2 1

* * 2
1 2

4

( )

C C

C C
 


. (50) 

6. EMPIRICAL STUDY 

To examine the merits of the suggested estimator we have considered five na-
tural population data sets. The description of the populations are given below. 
 
Population – I: Murthy (1967 p. 228) 
 N= 80 y: Output  
 n’ = 30` x: Fixed Capital 

51.8264, 11.2646, 0.3542,yY X C    

0.7507, 0.9413, 0.4441xC C   0.9375.   
 n=10. 
 
Population – II: Murthy (1967 p. 228) 
 N= 80 y: Output  
 n’ = 30` x: Number of Workers 
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51.8264, 2.8513, 0.3542,yY X C     

0.9484, 0.9150, 0.3417xC C   0.7504.   
 n=10. 
 
Population – III, Das (1988) 
 N= 278 y: Number of agricultural laborers for 1971  
 n’ = 50 x: Number of agricultural laborers for 1961 

39.0680, 25.1110, 1.4451,yY X C     

1.6198, 0.7213, 0.6435xC C          0.9394.   
n=25. 
 
Population – IV, Steel and Torrie (1960 p. 282) 
 N= 30 y: Log of leaf burn in secs 
 n’ = 12 x: Clorine percentage 

0.6860, 0.8077, 0.700123, 0.7493,y xY X C C     

0.4996, 0.3202 , 0.5188C       
 n=6. 
 
Population – V, Maddala (1977) 
 N= 16 y: Consumption per capita  
 n’ = 8 x: Deflated prices of veal 

7.6375, 75.4313, 0.2278, 0.0986,y xY X C C      

0.6823, 1.5761, 0.9987C       
 n=4. 
 

We have computed the ranges of   for which the proposed estimator dt  is 

better than (1)
,, ,Rd Pd dy t t t  and ( 2)

dt . The optimum value of  and the common 

range of   in which dt  is better than (1)
,, ,Rd Pd dy t t t  and ( 2 )

dt  have also been 

computed. Findings are displayed in Table 1. The percent relative efficiencies 
(PREs) of ( )d opt It  ( )

ˆ( )d opt Ior t ( ) ( )
ˆ( )d opt II d opt IIand t or t  with respect to 

(1), , ,Rd Pd dy t t t  and ( 2 )
dt  have been computed and results are shown in Table 2. 
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TABLE 1 

Range of   in which dt  is better than y , Rdt , Pdt , (1)
dt  and ( 2 )

dt  in case I and II 

Range of  in which dt  is better than the estimator 
Optimum 

value of 
Population case 

y  Rdt  Pdt  (1)
dt  ( 2)

dt  0  

Common range of 
 in which dt  is 

better than y Rdt  

Pdt (1)
dt  and (2)

dt  

I 
(0.50,  

0.9737) 
(0.4404, 
1.0333) 

(- 0.0333, 
1.507) 

(0.4737, 
1.00) 

(0.00,  
1.4737) 

0.7368479 (0.50, 0.9737) I 
 

' 30, 10n n   II 
(0.50,  

0.6776) 
(0.3219, 
1.0333) 

(-0.0333, 
1.3886) 

(0.3553, 
1.00) 

(0.00,  
1.3553) 

0.6776359 (0.50, 0.6776360) 

I 
(0.50,  

0.9554) 
(0.2891, 
1.0166) 

(-0.1663, 
1.6217) 

(0.4554, 
1.00) 

(0.00,  
1.4554) 

0.7276785 (0.50, 0.9554) II 
 

' 30, 10n n   II 
(0.50,  

0.67075) 
(0.1752, 
101663) 

(-0.1663, 
1.5078) 

(0.3415, 
1.00) 

(0.00,  
1.3415) 

0.6707589 (0.50, 0.6707590) 

I 
(0.50,  

1.1850) 
(0.6528, 
1.0323) 

(-0.0323, 
1.7173) 

(0.6850, 
1.00) 

(0.00,  
1.6850) 

0.8425058 (0.6850, 1.00) III 
 

' 50, 25n n   II 
(0.50,  

0.7283) 
(0.4244, 
1.0322) 

(-0.0322, 
1.4889) 

(0.4567, 
1.00) 

(0.00,  
1.4567) 

0.7283372 (0.50, 1.00) 

I 
(-0.1172,  

0.50) 
(-1.0810, 
1.4638) 

(-0.4638, 
0.8466) 

(-0.6172, 
1.00) 

(0.00,  
0.3828) 

0.1914032 (0.00, 0.50) IV 
 

' 12, 6n n   II 
(0.2942,  

0.50) 
(-0.8752, 
1.4638) 

(-0.4638, 
1.0523) 

(-0.4115, 
1.00) 

(0.00,  
0.5885) 

0.2942688 (0.29427, 0.5885) 

I 
(-1.0782,  

0.50) 
(-1.5788, 
1.0007) 

(-0.5775, 
0.0007) 

(-1.5782, 
1.00) 

(-0.5782, 
0.00) 

0.2890758 (-0.5775, 0.00) V 
 

' 8, 4n n   II (-0.02605,  
0.50) 

(-1.0527, 
1.0006) 

(-0.0514, 
0.0006) 

(-1.0521, 
1.00) 

(-0.0521, 
0.00) 

0.0260505 (-0.0514, 0.00) 

 
 

TABLE 2 

Percent relative efficiencies (PREs) of ( ) ( )
ˆ( )d opt I d opt It or t  and ( ) ( )

ˆ( )d opt II d opt IIt or t  

with respect to y , Rdt , Pdt , (1)
dt and ( 2 )

dt  

Percent relative efficiencies (PREs) of (.) 
Population Estimator 

w.r.t. y  w.r.t. Rdt  w.r.t. Pdt  w.r.t. (1)
dt  w.r.t. ( 2)

dt  

( ) ( )
ˆ( )d opt I d opt It or t  244.32 326.15 1625.82 278.15 1496.65 I 

 
' 30, 10n n   ( ) ( )

ˆ( )d opt II d opt IIt or t  298.10 894.16 3272.85 752.33 2982.41 

( ) ( )
ˆ( )d opt I d opt It or t  226.32 568.79 2047.30 280.71 1390.17 II 

 
' 30, 10n n   ( ) ( )

ˆ( )d opt II d opt IIt or t  268.76 1521.09 4154.73 727.31 2703.59 

( ) ( )
ˆ( )d opt I d opt It or t  135.16 110.79 329.34 107.43 312.74 III 

 
' 50, 25n n   ( ) ( )

ˆ( )d opt II d opt IIt or t  153.10 194.07 689.19 175.16 640.28 

( ) ( )
ˆ( )d opt I d opt It or t  114.26 221.60 137.79 153.61 110.13 IV 

 
' 12, 6n n   ( ) ( )

ˆ( )d opt II d opt IIt or t  119.96 414.06 238.07 221.08 129.78 

( ) ( )
ˆ( )d opt I d opt It or t  130.34 181.03 104.06 180.95 104.08 V 

 
' 8, 4n n   ( ) ( )

ˆ( )d opt II d opt IIt or t  145.00 271.38 100.11 271.16 100.12 

 
 

Table 1 indicates that there is enough scope of choosing the scalar   involved 

in the suggested estimator dt  to obtain better estimators than y , Rdt , Pdt , (1)
dt  

and ( 2 )
dt . It is observed from Table 2 that the optimum estimators ( )d opt It and 
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( )d opt IIt  or estimators based on ‘estimated optimum’ values ( )d̂ opt It  and ( )d̂ opt IIt  

are better than y , Rdt , Pdt , (1)
dt  and ( 2 )

dt . It is further observed from Table 2 that 

the performance of the estimator ( )d opt It  (or ( )d̂ optt ) in case I is better than case II. 

Larger gain in efficiency is observed by using proposed estimators over other es-
timators except in few cases where the gain is marginal (or the estimators are al-
most equally efficient). Thus we recommend the use of the proposed estimators 

dt  for its use in practice.  

7. CONCLUSION 

This paper deals with the problem of estimating population mean Y  of the 
study variable y  using two-phase (or double) sampling procedure. The double 
sampling version of the class of estimators envisaged by Singh and Tailor (2005) 
has been suggested and its properties are studied under two well known cases 
designated as case I and case II. Optimum estimators in the proposed class have 
been identified in both the cases alongwith their approximate variance formulae. 
Estimators based on estimated optimum values are also derived along with their 
approximate variance formulae. It is interesting to mention that the estimators 
based on ’optimum value’ and ‘estimated optimum value’ have the same ap-
proximate variance formula which follows that the proposed estimator can be 
used fruitfully even if the optimum values of the constants involved in the esti-
mator are not known.  

An empirical study is carried out to throw light on the merits of the proposed 
estimator over other existing competitors.  

Theoretically and empirically it has been demonstrated that the proposed op-
timum estimators (or estimators based on estimated optimum values) in case I is 
more efficient than in case II. Results of this paper are quite illuminating and use-
ful to the practitioners  
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SUMMARY 

Estimation of finite population mean in two-phase sampling with known coefficient of variation of an 
auxiliary character 

In this paper a double (or two-phase) sampling version of (Singh and Tailor, 2005) es-
timator has been suggested along with its properties under large sample approximation. It 
is shown that the estimator due to (Kawathekar and Ajgaonkar, 1984) is a member of the 
proposed class of estimators. Realistic conditions have been obtained under which the 
proposed estimator is better than usual unbiased estimator y  usual double sampling ratio 

( Rdt ) product ( Pdt ) estimators and (Kawathekar and Ajgaonkar, 1984) estimator. This 
fact has been shown also through an empirical study. 




