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SIMULATION OF CLINICAL TRIALS: 
A REVIEW WITH EMPHASIS ON THE DESIGN ISSUES 

A. Giovagnoli, M. Zagoraiou 

1. INTRODUCTION 

Simulation run on a computer is a formidable tool to aid and complement real 
life experiments. It presupposes the availability of a “simulator”, i.e. a computer 
code that can be run to imitate the behaviour of the system of interest. Simulators 
make it possible to explore complex relationships between input and output vari-
ables and can be used in settings where physical experimentation is impossible, 
such as rare event risk assessment. They are also invaluable when only few physi-
cal runs can be made due to their high cost. For these reasons the practice of 
complementing laboratory experiments or field observations by means of simu-
lated ones has been steadily growing in recent years. The books by Santner, Wil-
liams and Notz (2003) and by Fang, Li and Sudjianto (2005) provide a useful in-
troduction. In a recent conference dedicated to computer experiments, Levy and 
Steinberg (2010), starting from applications, have reviewed some of the main 
ideas that have been proposed for the statistical analysis and design of studies that 
use computer simulators, including a brief mention of validation of the simulator 
by means of real data. 

Despite the understandable misgivings of the non-experts, the idea that the 
functioning of the human body can be mathematically modelled and analyzed has 
been widely accepted in the scientific community, at least since the second half of 
last century. Mathematical models and numerical methods are used to approxi-
mate physiological functioning, disease progression and drug behaviour in the 
human body, thus making computer simulation possible in the pharmaceuti-
cal/biomedical field too. One of the characteristic features of clinical trials is the 
well-known “individual-versus-collective ethics” dilemma: potential harm to the 
subjects must be minimized, especially when they are patients presently under 
care, and at the same time the trial must maximize the experimental information 
for the sake of future patients. As well as the ethical considerations, time and 
costs are also important. To bring down the costs, prevent possible failures in fu-
ture trials, reduce the trial time frame and avoid possible side effects in humans, 
clinical trial simulation (CTS) is asserting itself as an emerging technique to im-
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prove the efficiency of the drug development process, thanks also to the advent 
of new powerful software tools. The excellent set of guidelines (Holford et al., 
1999) for correct CTS suggested in 1999 covers the following topics: planning a 
simulation project, models for simulation, computational methods, execution, 
critical assessment of simulation results and reporting, but it is not clear whether 
they are used or not in actual practice. A very recent substantial review by 
Holford, Ma and Ploeger (2010) of relevant papers published during the period 
2000-2010 discusses methodological developments and applications of CTS. An 
important contribution is also the collective volume edited by Kimko and Duffull 
(2003) which gives a general overview of simulation for clinical trials presenting a 
large number of case studies (see also Taylor and Bosch, 1990; Holford et al., 
2002). A very useful introductory article has appeared recently (Krause, 2010). 

In this paper – which is mainly of a review character – we look at computer 
simulation in clinical trials paying special attention to the design aspects. We aim 
at making medical statisticians more aware of the statistical issues and problems 
arising in this field. Section 2 presents some remarks about protocols for simula-
tion studies. All the potential aims of simulation in clinical research are over-
viewed in Section 3. Section 4 contains a short description of the models used in 
clinical contexts, which must be implemented in a simulator, and in Section 5, the 
central part of this paper, we discuss the ensuing experimental design problems: 
the design of a simulated experiment is not necessarily the same as for a real one, 
due also to a possible difference in the endpoints, the aims etc. Section 6 explores 
existing software for CTS and Section 7 contains a brief introduction to the use 
of metamodels in medicine. Section 8 is dedicated to the question of validating 
the simulator of a virtual trial, in which statistics should play a crucial role. All the 
above topics will be illustrated by studies recently published in biopharmaceutical 
or biomedical journals. In the final section we make some comments and express 
some criticisms. Given that the subject is vast, we have made no attempt at cov-
ering all the existing bibliography: we refer to Holford et al. (2010) and some of 
the other papers we cite for additional references.  

2. THE SIMULATION PROTOCOL 

In the Western world and the major developing countries, guidelines for the 
correct conduct of a clinical study have been issued by authoritative regulatory 
agencies. In drug development studies, a joint regulatory-industry initiative is the 
Technical Requirements for Registration of Pharmaceuticals for Human Use by 
the International Conference on Harmonization (ICH). As is well known, a pro-
tocol is demanded for every trial, namely a written document setting out the rules 
and the steps to follow in the study, aimed at assuring the safety and health of the 
trial subjects, and also adherence to the same standards by all the study investiga-
tors when the trial is a multicentre one. Among the statistical decision to be made 
in advance of the trial, there is the description of the experiment itself, which in-
cludes: 
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– the choice of the treatments, which often include one or more controls 
– the eligibility criteria (inclusion/esclusion of potential subjects)  
– stratification of the subjects and the sampling rule 
– the sample size. When the design is carried out sequentially, this is replaced 

by the stopping rule 
– the allocation rule of the subjects to the treatment arms. Very often this rule 

has a strong randomization component in it 
– the use of blinding or double blinding i.e. masking the treatments to the sub-

jects and often to the investigators as well 
and so on. In simulated trials one can safely assume that there are no ethical 
problems involved, and the costs are often a minute fraction of those of a real 
trial, but even for a virtual trial a protocol is still necessary, as clearly explained in 
the 1999 Guidelines (Holford et al. 1999). The primary focus of the protocol is to 
identify the question(s) that the project team wants to answer by means of the 
simulation experiment, but the document should also specify: 

– assumptions 
– description of the virtual experiment 
– statistical methods and analyses  
– suitable data to support the simulation model 
– techniques for model validation  
– extrapolation questions 

and many more issues. The added value of a simulation protocol is discussed by 
Kimko and Duffull (2003): among other things, an approved simulation plan in-
creases the credibility and acceptance of the trial simulation process.  

3. PURPOSES OF SIMULATION IN CLINICAL RESEARCH 

In a drug development program, virtual experimentation may be resorted to 
for a variety of purposes, both as an aid to in vivo experimentation and in place 
of a physical trial. We illustrate them quoting specific studies. 

 Pre-trial purposes 

Simulation is often run before a trial with one or more of the following pur-
poses: 

1. testing several scenarios to evaluate the implications of the assumptions 
and/or testing various models for model selection 
– Abbas et al. (2006) develop five simulation models of a clinical trial for 

evaluating the changes in cholesterol as a surrogate marker for lipodys-
trophy in HIV patients treated with different drugs. The models are 
based on different assumptions on treatment variability and cholesterol 
reduction over time. The primary aim of the paper is to validate and se-
lect the “best” model. Selection of the best model is based on the princi-
ple of parsimony and specific validation criteria proposed by the authors. 
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2. choosing the sample size  
This typically means running simulations to assess the power of the test 
that we intend to perform once we observe the data, when analytical calcu-
lations are not feasible, keeping in mind, however, that the common as-
sumption of no dropouts leads to underestimating the number of patients 
who need to be recruited to achieve a desirable statistical power. 
– Chabaud et al. (2002) have simulated several clinical trials to investigate 

the number of subjects to include in a Phase III study of a bradycardic 
agent called ivabradine developed for the treatment of stable angina pec-
toris. The findings of the paper suggest that in order to obtain a desired 
reduction of the outcome it is necessary to include 239 patients per 
group (control placebo and treated group) with a twice-a-day low dose or 
196 patients with a higher everyday dosage assuming an alpha risk of 
0.05 and a power of 0.9. 

3. finding robust designs, namely designs not too sensitive to some particular 
experimental choice 
– Lockwood et al. (2006) use clinical trial simulations to find a robust de-

sign in order to test the hypothesis that a novel treatment was effective 
for Alzheimer. The primary aim of the study was to compare the power 
of several experimental designs to detect a treatment effect using several 
dose response models, since the true effect of the treatment taken into 
account was unknown. The simulation results allowed the research team 
to compare the trial designs and one of those proved to be more effi-
cient than the traditional one, leading to savings in time and costs.  

4. predicting the outcome of real trials (this issue can also be viewed as a post-
trial purpose) 
– Chan et al. (2007) use CTS to predict the outcome of a failed real trial in 

order to improve the understanding of its failure. The trial had been per-
formed to detect a difference between placebo and levodopa, a drug 
therapy for Parkinson’s. 

 Extrapolation purposes 

As stated by Sale (in Bonate and Howard Eds, 2004), the dimensions across 
which one may extrapolate include:  

1. Species (e.g. mouse/rat/dog to human) 
– Dickinson et al. (2007) make predictions of pharmacokinetic and pharma-

codynamics based on in vitro to in vivo extrapolations via simulations.  
2. Phases (from a small number of strictly selected patients to a full clinical 

study or from Phase (k-1) to Phase k trial) 
– De Ridder (2005) illustrates a case study where the aim was to predict the 

outcome of a Phase III trial through data from two Phase II trial. In par-
ticular the real data were related to two placebo-controlled double-blind 
Phase II dose ranging trials with patients treated for 4 weeks. Simulations 
were used in order to obtain the outcomes of the Phase III trial, assess 
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the robustness of an ongoing Phase III trial in the same context (patient 
variability, dose-response, drug-response), assess the chance of achieving 
a clinically relevant response with a reduced dose as compared with 
those included in the trial. 

3. Endpoints (from a surrogate to a clinical endpoint, namely a characteristic 
that reflects how a patient feels, functions, or survives)  
– Chabaud et al. (2002) examine the use of a physiological model aimed at 

transforming a biomarker (heart rate) into a clinical binary outcome (“ab-
sent” or “at least one chest pain”). 

4. Populations (e.g. healthy to patients, adults to paediatric)  
– Albers et al. (2007) conducted a simulation study aimed at developing an 

age-suitable carvedilol dosing strategy for paediatric patients since the 
dose given to young subjects was generally derived via linear extrapola-
tion on the basis of the dose for adults but with dubious results.  

5. Dose/dosing regimens 
– Ozawa et al. (2009) perform trial simulations in order to evaluate the 

dose reduction strategy in patients with liver dysfunction of a clinically 
well established medication – called docetaxel – used to treat breast, 
ovarian, non-small cell lung and other types of cancer. Docetaxel clear-
ance is decreasing in patients with liver dysfunction therefore it may be 
indispensable to reduce the dose for this kind of patients and a reduction 
strategy linked to the gravity of liver dysfunction has been proposed 
(Minami et al., 2009). Since it is difficult to have a sufficiently large num-
ber of these patients for a real clinical trial, because of the typical exclu-
sion criteria, the authors of this paper use a number of dose-response 
models and a pharmacokinetic model of docetaxel in order to simulate 
drug exposure. The results of the clinical trial simulations suggested that 
it is possible to decrease toxicity via a reduced amount of docetaxel 
without loss of efficacy. 

 Learning about the effects of a new drug, or new dosage, new dose scheduling, etc. 

The virtual experiment is run instead of a physical trial, or interactively, to pro-
vide direct knowledge about the drug(s) under investigation. This is what is prop-
erly meant by a simulated trial  

– Lockwood et al. (2003) use simulations to determine how precisely the 
minimum effective dose of a new treatment for neuropathic pain could be 
estimated. Concerning this treatment, only limited preclinical information 
was available and therefore clinical data on a different drug, shown to be 
clinically effective in diabetic neuropathy, were used in the simulation study. 

In the final Section of the paper we shall discuss running simulations interac-
tively with a real trial. 

 

We end this section with two more examples relative to population studies and 
not drug development, to illustrate the broad spectrum of applications in medical 
research. 
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– Lee et al. (2010) have tried to gain a better understanding of the possible 
effects of vaccinating employees with the new H1N1 influenza vaccine 
through the development of a simulation model. In particular, they de-
velop an agent-based computer model “consisting of a virtual population 
of computer commuter agents, each having a set of sociodemographic 
characteristics and behaviours, and which, like virtual people, moved 
among virtual households, workplaces, schools, and other locations 
every day and interacted with each other through simulated social net-
works” (Lee et al., 2010). The model outcomes were daily disease inci-
dence, prevalence, clinic visits, work absenteeism, hospitalizations and 
deaths. The simulation shows how several actions regarding vaccination 
may have an important impact during an epidemic, especially in terms of 
the labour force. 

– The use of simulations can be very fruitful as regards identifying ques-
tions to be addressed by a screening trial, as well as for suggesting 
screening strategies. Indeed, Urban et al. (1997) simulated the effects of 
offering screening to a given population in order to identify an efficient 
protocol because a randomized controlled trial to assess the efficacy of 
screening for ovarian cancer is costly (ovarian cancer is a rare disease and 
its diagnosis requires surgery). A stochastic model was developed with 
the aim of evaluating the cost-effectiveness of several alternative proto-
cols involving transvaginal sonography and/or a cancer anti-
gen/biomarker called CA 125, and the study suggests the importance of 
considering CA 125. 

4. SIMULATION MODELS FOR CLINICAL TRIALS 

The computer models that simulate real scenarios are generally developed 
from previous data sets that may include preclinical data, as well as previous 
phases of real trials. As clearly stated in the 1999 Guidelines (Holford et al., 1999), 
a model for fully simulating a trial in drug development will include at least three 
submodels: 

 an input-output (IO) model  
 a covariate distribution model 
 an execution model 

 
Input-output models: They are the models that describe the patient’s response to the 
treatment in mathematical terms and they would normally be used for an in vivo 
experiment as well. These models include pharmacokinetic, pharmacodynamic, 
disease progression models or a combination of these. Often IO models are de-
fined implicitly by a set of differential equations, which makes the implementing 
code computationally much slower to run. This will be discussed in Section 7. 
However, other types of models can also be used, such as physiological models 
(Chabaud et al., 1999) or agent-based models, for simulating the behaviour of in-
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dividuals and the overall consequences of their local interactions (Lee et al., 2010). 
For a rich collection of PK/PD model equations see Chapter 11 of ADAPT 5 
User’s Guide (D’Argenio et al., 2009). Descriptions of the IO models actually 
used by the authors can be found in the papers of Pillai et al. (2004), Gruwez et al. 
(2007), Zierhut et al. (2008); the paper by Post et al. (2005) includes a family of 
disease progression models. 
 
Covariate distribution models: IO models usually include terms for covariate effects 
(prognostic factors), as models used for simulation studies must deal with the 
variability from individual to individual. Covariate distribution models describe 
in a probabilistic way, on the basis of previous trials or clinical experience, the 
variability of patients’ demographic and physiological characteristics in the 
population of interest that might affect the response. Correlation between co-
variates should be considered, where appropriate. Methods for simulating from 
a joint distribution (whether continuous, discrete or mixed) are well-known in 
statistics. Given an IO model, the distribution function of covariates may be 
altered in the what-if scenarios of simulation to reflect different characteristics 
in another population. Thus the impact of the different covariate distributions 
on the expected outcome of a simulated trial can be assessed, making it possible 
to explore conditions that have been ruled out in the inclusion/exclusion pro-
cedures of the actual trial. 
 
Execution and/or dropout models: Although the protocol of a clinical trial is a bind-
ing document, it is well-known that some deviations from protocol are inevita-
ble, due to patients’ dropping out, non-compliance, lost to follow-up etc, but 
also due to acquiring subsequent information which was not available when the 
study protocol was written. In simulation, execution models describe uncontrol-
lable factors leading to deviations from protocol and therefore can be exten-
sively used as a tool for anticipating weaknesses and limitations in a proposed 
study. Indeed, consequences of protocol deviations such as insufficient statisti-
cal power and patients’ discontinuation can be studied via modelling and simu-
lation techniques.  

– A simple example is a dropout model in Lockwood et al. (2006) describing a 
random 1% weekly dropout rate derived from previous studies.  

– Girard et al. (1998) develop a Markov execution model for patients’ non-
compliance assuming that the probability of taking a wrong dose (or not 
taking any dose at all) at a given time depends on the number of doses taken 
at the previous dose timing.  

– Wang, Husan and Chow (1996) propose statistical models in the case of 
multiple dose regimen trials aimed at studying the impact of two different 
non-compliance scenarios: patients who do not take the prescribe dosage or 
patients who do not adhere to the dosing schedule. 

For further discussion of execution models see also Girard (2005). 
A word of warning: features of a model that are not relevant to the questions 

that have been posed from the simulation team should not be considered. For 
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instance, even though “weight” could be a covariate of primary importance for a 
real trial, if the virtual experiment we want to conduct concerns the same weight 
group, we should not include “weight” in the model. This may seem a fairly ob-
vious statement, but it is frequently violated. 

5. EXPERIMENTAL DESIGNS FOR SIMULATION 

All the modern books on clinical trial methodologies, see for instance Pianta-
dosi (2005), Senn (2007), Friedman et al. (2010), devote at least one chapter to the 
experimental design. Here we want to discuss the design of a virtual experiment, 
which will be different from planning a real trial. However the design still needs 
to be efficient so as to gather information in the best possible way. 

The design and analysis of deterministic computer experiments has a vast lit-
erature (Santner et al., 2003; Fang et al., 2005). The design consists in choosing the 
settings of the input variables, with the proviso that a deterministic simulator 
provides “observations” without error, so replication is pointless. Space-filling, 
Latin Hypercubes, Minimax and Maximin Distance criteria, Uniform designs are 
used in a non-model based approach, and special analysis procedures such as the 
Kriging methodology are employed (Santner et al., 2003). However, the simulator 
of a clinical trial – the IO model, as well as the covariate model and the execution 
model – will very likely include a stochastic component and the rationale of using 
standard statistical tools, in particular, standard experimental design theory, is re-
stored. This includes traditional design techniques going back to Fisher, based on 
replication, randomization and blocking, and also the use of specific designs, for 
instance cross-over designs and play-the-winner. It must be borne in mind that 
the choice of the experimental design will depend on the statistical model, and a 
model-based theory of optimal experimental design for clinical trials, including 
dose-finding ones, has come to a mature development stage, as shown in statisti-
cal journals and conferences (see for instance Giovagnoli et al., 2010). But how 
relevant is this literature to the simulated experiments? 

In simulations, we would normally experiment on a wider design space and/or 
increase the number of factors of interest and their levels that are simultaneously 
tried. An important point is that the usual rules of factorial experiments apply, 
namely we should not vary the factor levels one-at-a-time, to avoid masking pos-
sible interactions. When simulating, we would normally not confine ourselves to 
fractional factorials but instead use full factorials to evaluate all the interactions 
among the experimental factors (e.g. dosage and dose timing of the drug). Frac-
tional factorials would still be required, however, when the number of combina-
tions of factors and levels is too large, as pointed out in the 1999 Guidelines 
(Holford et al., 1999). In actual practice often only a subset of factors proves to be 
responsible for most of the output variation, but not much use is made by clinical 
triallists of the literature on screening experiments, i.e. experiments for choosing a 
few relevant factors out of a potentially very large number (Dean and Lewis, 
2006). Furthermore, since virtual experiments are often run for choosing among 
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possible models, the theory of designs for model-selection (to be found for in-
stance in Atkinson et al., 2007) may be useful. 

It is important to note however that often the experiment is a comparative one 
for the choice between two treatments. One may wonder about the role of ran-
domization in simulation: it is usually preserved for realistic purposes, at the ex-
pense of exact balancing. However, more sophisticated ways of trading randomi-
zation and balance exist, for instance, the Biased Coin Design (Efron, 1971), or 
the Adjustable Biased Coin Design (Baldi Antognini and Giovagnoli, 2004), 
where at each step the probability of selecting the under-represented treatment is 
a non-increasing function of the current difference between the two groups of 
allocations, so that the tendency towards balance is stronger the more we move 
away from it. These could be implemented in simulation too. 

Sequential design deserves special attention. In general clinical trials are con-
ducted sequentially on groups of patients and interim analyses of the data are per-
formed. Adaptive designs have come into use: adaptation of the study protocol in-
volves changes in sample size, changing doses, dropping treatment arms, changing 
the timing and number of interim analyses, etc. Clearly the crucial inferential prob-
lem is to assess the impact of such changes on the statistical analysis (Posch et al., 
2003; Cui et al., 1999). Going from real to virtual, it makes sense to ask ourselves 
whether a simulated trial in clinical research should or should not be carried out se-
quentially, since frequently recurring issues of slow patient recruitment to the trial, 
side effects, ethical demand of early stopping, etc. do not apply to computer ex-
periments. One answer is, again, to achieve greater realism, but also sometimes the 
sequential nature of the experiment is dictated by inferential aspects, e.g. recursive 
estimation of unknown parameters of the model in response adaptive trials (Hu 
and Rosenberger, 2006) or parametric and non-parametric convergence to the un-
known MTD in the Up-And-Down experiments for Phase I (Baldi Antognini et al., 
2008; ’O Quigley, 2002). The severe handicap of the generally slow convergence of 
the algorithms is no longer a problem when the experiment is a simulated one. 

It is worth mentioning that the problem of determining optimal experimental 
designs for pharmacokinetic and pharmacodynamic models has been addressed 
by several authors in the statistical and biomedical literature (for instance Fedorov 
et al., 2007; Ogungbenro et al., 2007; McGree et al., 2009). However, Holford, Ma 
and Ploeger (2010) regret that the statistical theory of optimal design of experi-
ments deals mainly with parameter estimation rather than hypothesis testing, 
whereas the main purposes of a clinical trial is usually assessing superiority or 
equivalence/non-inferiority of one drug over another. It will be interesting to see 
if a combined approach of optimal design methods and simulation will bring use-
ful results: optimal design theory deals more often than not with designs that are 
most efficient for asymptotical inference, but possibly not fully so for small sam-
ple sizes. So, to be able to simulate a large sample according to an optimal ex-
perimental design should prove to be a good choice for accurate inference from 
the virtual data. 

As regards covariates, in simulations the choice of their levels is under the ex-
perimenter’s control and this allows for exploring conditions that are ruled out in 



 A. Giovagnoli, M. Zagoraiou 72 

the inclusion/exclusion procedures of the actual trial, exploring in depth all pos-
sible levels of the concomitant variables, looking for possible interactions also be-
tween the treatments and the prognostic factors, since in general one wishes to 
use simulation for detecting also the possible side effects of a therapy. More in 
general, the full strength of simulation lies in being able to treat prognostic fac-
tors as random noise in the virtual experiment, and letting them vary according to 
a prescribed probability law, whereas in an actual trial we would have to content 
ourselves with just a few set levels, either chosen by the experimenter or occur-
ring by pure chance. The statistical literature on experimental design does not 
seem to have caught up with this novelty. An IO model including random covari-
ates is a mixed effect one (linear or non-linear), and appropriate experimental de-
signs for these models are present in the literature, but they are all non-stochastic. 

Lastly, what are the appropriate designs that enable accounting for possible 
protocol deviations? Again, this aspect has not been the object of statistical inves-
tigation as yet.  

As a final thought, we like to add that often the choice of the simulator itself is 
the output of a trial-and-error process that can be regarded as a virtual experi-
ment. This is, yet again, a different problem, since in this case the endpoint is a 
measure of the performance of our simulator. In other words, maybe we should 
apply experimental design for choosing the simulator as well. Different tech-
niques and different computer codes should be compared by the expert members 
of the simulation team.  

6. SOFTWARE 

Simulation for clinical trials includes different types of models and involves 
several statistical issues. Therefore often researchers use more than just one soft-
ware, each software being targeted for specific purposes. In particular, sophisti-
cated software packages are employed for IO models, which are usually quite 
complicated. Programs specifically designed for IO modeling of data in this con-
text are the non-linear mixed-effect model program NONMEM or the Pharma-
cokinetic/Pharmacodynamic Systems Analysis Software ADAPT, which includes 
an extensive library of models to choose from. MathWorks provides a software 
tool, the so-called SimBiology, for the complete PK/PD workflow. Since Sim-
Biology is based on MATLAB, users can employ MATLAB in order to program 
their simulations.  

Concerning the description of virtual patients, i.e. the distribution of covariates 
in a target population, general-purpose statistical packages can be employed. Note 
that, since IO models usually include terms for covariate effects, the choice of 
methodology for generating virtual subjects is often dependent on the software for 
IO modeling. Mouksassi et al. (2009) use the R package library GAMLSS, which fa-
cilitates the simulation of demographic covariates specific to the targeted patient 
populations. Other authors (Chabaud et al., 2002) prefer to resample patients from 
existing epidemiological databases rather than creating realistic virtual subjects. 
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To our knowledge, there are no particular software specifically designed for 
simulating execution models, but often a random number generator suffices. 
However, there also exists multi-purpose software for full clinical trial simulation 
that incorporates specialized methodologies for patients dropouts or for the solu-
tion of awkward differential equations, such as the Pharsight Trial Simulator and 
another, originally developed for Vertex Pharmaceuticals, which has recently be-
come publically available. The software documentation can be found in  

http://www.biopharmnet.com/doc/2010_02_13_cts_documentation.pdf. 
In general, however, existing prepackaged software is, by definition, not flexi-

ble and this may turn out to be an obstacle. Furthermore, without a reasonable 
understanding of the statistical methods behind a specific clinical trial simulation 
software it is difficult to interpret the results correctly. Thus, rather than accept-
ing library models and their assumptions, some scientists create models according 
to their own needs using the free environment statistical package R, or some gen-
eral modeling and simulation packages such as Sigma for Windows (see Abbas et 
al., 2008). 

7. METAMODELS 

The requirement for the IO model to be accurate in describing the problem 
under investigation means that the simulator may be rather complex. In some in-
stances the simulator consists of the simultaneous solution of a large number of 
linear or non-linear, ordinary and/or differential equations and, consequently, 
running it does take up an appreciable amount of computer time or other re-
sources. A possible solution consists in employing so-called emulators or surro-
gates, i.e. simpler models which represent a valid approximation of the original 
simulator. Since emulators imitate the original simulator, which is itself a model 
of reality, they are often called metamodels. One of the fundamental characteris-
tics of these surrogate models is computational speed. Furthermore, the case 
where data cannot support estimating all of the parameters in a complicated 
simulation model is not rare. Therefore, models with fewer parameters should be 
fitted to the data. Particular optimal design problems for metamodels can be 
found in the recent literature (see for instance Baldi Antognini and Zagoraiou, 
2010) but, in the clinical context, this aspect has not been the object of statistical 
investigation. 

– In a study by Pillai et al. (2004), the authors state that “although the complex 
physiological PK/PD model described the data well, its major disadvantages 
were the long computer run-times [...] and the numerical difficulties associ-
ated with solving a rather stiff problem”. In order to reduce the computer 
run-times associated with the simulator, the authors have constructed a ‘ki-
netics of drug action’ (K/PD model) and its performance was assessed by 
fitting data simulated with the PK/PD model under various scenarios. The 
authors observe that the simplified model was virtually indistinguishable 
from the complex one.  
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– Another use of metamodels in clinical research is to be found in Kowalski 
and Hutmacher (2001) who decided to adopt a one-compartment model in-
stead of a two-compartment one to face the problems arising from a sam-
pling design that, due to logistic reasons and clinical convenience, was in-
adequate for the more complex model.  

8. VALIDATING SIMULATED TRIALS 

In the context of clinical trials there is special emphasis on the need for the 
simulators to be “reasonable”. The key issue is whether a particular simulator is 
an adequate representation for the real system that it is trying to represent, and 
consequently the question of its ability to accurately predict real situations. This 
concern is related to model verification and validation (Sargent, 2010). Model 
verification deals with errors that might have occured in the computer program 
and its implementation, while model validation is usually defined as “substantia-
tion that a computerized model within its domain of applicability possesses a sat-
isfactory range of accuracy consistent with the intended application” (Schlesinger 
et al., 1979). Thus, the primary aim of validation is to make the model useful, in 
the sense that it addresses the right problem and provides accurate information 
about the trial of interest. It goes without saying that to a certain extent this ques-
tion arises in real experiments as well, since real data too are subject to random or 
systematic errors, but in most cases we are inclined to believe that a real experi-
ment has “empirical validity”, whereas a simulated one is fictitious and therefore 
far away from reality. When real data provided by physical experiments are taken 
to be the “gold standard” of the true relationship between factors and outputs, 
they should be used to confirm the computer model and the results obtained by 
simulation. In some cases, experimental data may not be available and data ob-
tained from observational studies or surrogate data (e.g. derived from experi-
ments on animals or prototypes) may be used. 

We can distinguish between retrospective and prospective validation. The so-
called prospective validation is the one that uses data from simultaneous or sub-
sequent clinical trials in the same context (e.g. same disease). Retrospective exter-
nal validation uses the data of earlier trials to validate the model and, if necessary, 
modify it in order to present higher degree of credibility and confidence. Some-
times it is possible to collect a new dataset for validation. If not (e.g. studies of 
rare diseases), an internal validation is used, which is based on “cheap” methods 
such as data-splitting, where data utilized in order to build the simulator are com-
pared with data generated by the model. The validation problem is tackled with 
the aid of a family of resampling methods, at the expense of further computa-
tions. 

Concordance of simulated with real data under the same study design can be 
checked via: 

 statistical goodness-of-fit methods (e.g. chi-squared or Kolmogorov-Smir- 
nov tests).  
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 the use of graphs (or descriptive statistics), e.g. visual comparison of pre-
dicted versus observed values of the response variable, or residuals versus 
predicted;  

 metrics (e.g. standardized distances between observed and predicted values); 
 other methods like for instance PPC (posterior predictive check). 

8.1 Examples 

– In the carvedilol dosing strategy study described earlier (see §4), Albers et al. 
(2007) make use of a visual predictive check in order to evaluate the pro-
posed simulation model: plasma concentrations (dependent variable) from 
17 real patients were observed and compared with the simulation data. The 
authors observe that about 90% of the real data are within the 90th percen-
tile of the simulated concentrations. The precision of the unknown parame-
ter estimates of the pharmacokinetic model was assessed by establishing 
95% confidence intervals using a bootstrap analysis. 

– In Ozawa et al. (2009) the model was validated with Phase II data provided 
by Kunitoh et al. (1996) by comparing the predicted trial results obtained by 
the medians of simulation with the real data. 

– Eddy and Schlessinger (2003) validate the so-called Archimedes diabetes 
model, namely a representation of the anatomy, treatments and outcomes 
related to diabetes, by comparing Kaplan-Meier curves of real and virtual 
data. In particular, they examine whether the difference between the out-
come of the actual trial and the model is statistically significant by using the 
corrected chi-squared and the correlation coefficient.  

– Duffull et al. (2000) develop a pharmacokinetic model for ivabradine and 
they use two different kinds of datasets in order to test its ability to describe 
the real data. The authors “assessed the predictive performance by inspec-
tion of the prediction plots visually and comparing the cumulative density 
functions of the simulated and observed using a Kolmogorov-Smirnov test 
for two samples”.  

– Abbas et al. (2006) propose an innovative approach for the validation and 
selection of a simulation model based on the standardized distance, in mean 
and variance, between real and simulated data.  

There may also be alternative ways for validation that have never been ex-
plored so far, e.g. tests for agreement (Shoukri, 2004).  

9. SOME CHALLENGES 

It is worth pointing out that although we have concentrated on research for 
drug development, which is the aim of the majority of clinical trials, there is a 
wide variety of additional areas of investigation that require trials on humans: in 
particular, new approaches to surgical and radiation therapies, to physiotherapeu-
tic treatments, new vaccines, new medical devices and test kits, new diagnostic 
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tools and procedures, new methods of population screening, not to mention im-
proving the quality of life: healthy eating, lifestyle changes, comfort for chronic 
illnesses, old age, etc. In all of them the practice of simulating experiments, 
wholly or partially, will sooner or later gather momentum.  

It goes without saying that clinical trial simulation poses several challenging 
problems. First of all, some burning questions need an answer that is convincing 
for the laymen too. 

 Scientificity: Is this new discipline rigorous enough? Can results obtained by 
computer experiments really be trusted?  

 Efficacy: Is it true that simulated clinical trials can speed the drug develop-
ment process? After all, the model development procedure too is associated 
with time and high costs.  

 Ethics: Is it safe for the patients? Is it to their best advantage? Or do these 
efforts only help the pharmaceutical companies to reduce costs without any 
benefit for the patient community? 

Much work lies ahead for statisticians. The successful execution of a simulation 
project requires a multi-disciplinary approach: interaction and cooperation are 
needed among scientists from various disciplines (clinicians, statisticians, com-
puter scientists) and institutions (e.g. regulatory agencies and industry) and it is up 
to the statisticians to develop appropriate methodological tools including, among 
other things, a suitable theory of experimental design for simulation. We stress 
that simulations are not aimed at replacing real life trials; rather, physical and 
computer experiments are two complementary sources of information with dis-
tinct roles and different degrees of cost, speed, and reliability. Simulation is usu-
ally cheaper and faster, and, what is more important, avoids the major ethical 
problems involved in clinical research, but in order to be of use, simulation must 
be fairly close to the physical set-up. Thus a virtual experiment may be part of a 
sequence in which simulations and physical observations play a part with alternat-
ing roles. The fundamental steps in designing such a mixed trial would consist of  

 designing actual (small) trials that provide the physical data; 
 designing the simulated ones, to be run in groups, one after another, to im-

prove our knowledge of the process; 
 choosing a “switching rule”: when do we change over from a virtual ex-

periment to a real one to acquire more data, and vice-versa? 
 choosing a final stopping rule. 
To the best of our knowledge, the best strategy of integrating real and simu-

lated trials to build actual knowledge while dynamically modifying the computer 
code to get closer and closer approximations to the reality, has not yet been the 
object of theoretical investigation in a clinical research context. 
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SUMMARY 

Simulation of clinical trials: a review with emphasis on the design issues 

Simulation is a widely used tool to investigate real-world systems in a large number of 
fields, including clinical trials for drug development, since real trials are costly, frequently 
fail and may lead to serious side effects. This paper is a survey of the statistical issues aris-
ing in these simulated trials, with particular emphasis on the design of such virtual ex-
periments, stressing similarities and differences with the design of real trials. We discuss 
the aims and peculiarities of the simulation models used in this context, including a brief 
mention of metamodels, and different validating techniques. We illustrate each specific 
issue through one or more studies recently reported in the medical and/or pharmaceutical 
literature. We end the paper with some challenging questions on the scientific rigour, eth-
ics and effectiveness of simulation in clinical research, and the interesting research prob-
lem of how to integrate virtual and physical experiments in a clinical context. 




