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1. INTRODUCTION 

The common regression model for the number of events in a given interval of 
time (count data) used by most researchers is the Poisson model. The widespread 
popularity of the Poisson model for count data arises from its simple derivation 
as the number of arrivals in a given time period assuming exponentially distrib-
uted interarrival times. But of the many other count models that have been de-
veloped over the years, see (Wimmer and Altmann, 1999), very few share this 
straightforward connection between a count model and its timing model equiva-
lent. 

From the relationship between a count model and its timing process, a re-
searcher can develop a model using one form (timing or counting) but apply it 
using the other. For example, marketing managers frequently collect interarrival 
time data and make predictions of the number of arrivals (purchases) that a par-
ticular customer is likely to make over the next year.  

The Poisson count model is valid only in the case where the data of interest 
support the restrictive assumption of equi-dispersion, that is the conditional vari-
ance equals the conditional mean, but typically the conditional variance exceeds 
the conditional mean (over-dispersion). There are also cases where the condi-
tional mean exceeds the conditional variance (under-dispersion). In either case, 
the estimation based on Poisson model is inefficient and leads to biased inference 
see (Winkelmann, 1995b). Thus the Poisson model becomes inadequate in most 
of the econometric applications.  

We assume that the waiting times between the events are independent but not 
exponential (which would lead to the Poisson distribution for counts). Instead 
they follow some other distribution with a nonconstant hazard function. If the 
hazard function is a decreasing function of time, the distribution displays negative 
duration dependence. If the hazard function is an increasing function of time, the 
distribution displays positive duration dependence. In both cases, the conditional 
probability of a current occurrence depends on the time since the last occurrence 
rather than on the number of previous events. Events are dependent in the sense 
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that the occurrence of at least one event (in contrast to none) up to time t influ-
ences the probability of a further occurrence in t t . There is a link between 
duration dependence and dispersion. It is shown that negative duration depend-
ence (asymptotically) causes over-dispersion and positive duration dependence 
causes under-dispersion. 

The Poisson process can be taken as a sequence of independently and identi-
cally exponentially distributed waiting times see (Cox, 1972). To derive a general-
ized model we replace the exponential distribution with a less restrictive non 
negative distribution. Possible candidates are the Weibull see (McShane et al., 
2008), the gamma (including generalized gamma) see (Winkelmannn, 1995a), and 
the log normal distributions. Both Weibull and gamma nest the exponential dis-
tribution and both allow for a monotone hazard rate function that is duration de-
pendent.  

In this paper we develop a new generalized model by replacing the exponential 
distribution by Mittag-Leffler distribution which is a generalization of exponential 
distribution. A corresponding count model is formulated. Advantages of this 
generalized count model are the following. First our count model is based upon 
an assumed Mittag-Leffler inter-arrival process which nests the exponential as a 
well known special case. Second, we demonstrate that the Mittag-leffler count 
model, via the shape parameter can capture over-dispersed as well as equi-
dispersed data. Third, the Mittag-Leffler inter arrival time story is richer than the 
exponential story, because it allows for nonconstant hazard rates (duration de-
pendence). Fourth, we implement the model entirely in standard software. This is 
accomplished by deriving our model using a polynomial expansion (which can be 
expressed in closed form) see (Bradlow et al., 2002), (Everson et al., 2002), (Miller 
et al., 2006) for similar polynomial expansion solutions for negative binomial, beta 
binomial and binary logit models respectively.  

The remainder of this article is as follows. In section 2, a description about 
Mittag-Leffler distribution is given. Section 3 contains the derivation of the Mit-
tag-Leffler count model, focusing on the polynomial expansion that leads to the 
closed form benefits. In section 4 we derive the properties of the new Mittag-
Leffler count model and present the results of a simulation study pertaining to 
the new model. Application of this new counting model to a real data is explained 
in section 5.The mathematical derivations are given in the Appendix. 

2. MITTAG-LEFFLER DISTRIBUTION  
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 was first introduced by Mittag-Leffler 

in 1903. It was subsequently investigated by Wiman, Pollard, Humbert, Aggarwal 
and Feller. Many properties of the function follow from Mittag-Leffler integral rep-
resentation. During the last two decades this function has come into prominence 
after about nine decades of its discovery by a Swedish Mathematician G.M. Mittag-



A count model based on Mittag-Leffler interarrival times 503 

Leffler, due to the vast potential of its applications in solving the problems of 
physical, biological, engineering and earth sciences etc. The Mittag-Leffler function 
arises naturally as the solution of fractional order integral equations or fractional 
order differential equations, and especially in the investigations of the fractional 
generalization of the kinetic equation, random walks, Levy flights, super-diffusive 
transport and in the study of complex systems. It may be verified that 
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where the path of integration C  is a loop which starts and ends at   and en-

circles the circular disc 
1

| |t z  . It may be noted that (Pillai, 1990) proved that 

( )=1 ( ),0 < 1F x E x
      are distribution functions, having the Laplace 

transform 1( )= (1 ) ,t t   > 0t  which is completely monotone for 0 < 1  . 

He called ( ),0 < 1F x   , a Mittag-Leffler distribution. The Mittag-Leffler dis-
tribution is a generalization of the exponential distribution, since for =1 , we 
get exponential distribution. Pillai has shown that ( )F x  is geometrically infi-
nitely divisible (g.i.d.) and is in the domain of attraction of stable laws. The Mit-
tag-Leffler distribution can be defined as follows. 

A random variable X has the Mittag-Leffler distribution if its cumulative dis-
tribution function [c.d.f.] has the form  
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and the p.d.f. is given by, 
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Recently Mittag-Leffler distributions have received the attention of mathemati-
cians,statisticians and scientists in physical and chemical sciences. It can be used 
in reliability modeling as an alternative for exponential distribution see (Lin, 
1998), (Jayakumar, 2003), (Jayakumar and Pillai, 1993), (Jose and Pillai, 1996) have 
done extensive studies on Mittag-Leffler distribution and its applications. (Jose et 
al., 2010) extended this to develop a more generalized Mittag-Leffler model. 

3. MITTAG-LEFFLER COUNT MODEL 

We can describe a general framework utilized to derive the model that is based 
upon the relationship between interarrival times and their count model equiva-
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lent. Let nY  be the time from the measurement origin at which the thn event oc-
curs. Let ( )X t  denote the number of events that have occurred upto time t. The 
relationship between interarrival times and the number of events is  

( )nY t X t n    

Hence 

1

( )= [ ( )= ] = [ ( ) ] [ ( ) 1]

= [ ] [ ]
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If we let the c.d.f. of nY  as ( )nF t , then 

1( )= [ ( )= ]= ( ) ( )n n nM t P X t n F t F t . (3) 

In the case where the measurement time origin (and thus counting process) co-
incides with the occurrence of an event, ( )nF t  is simply the n-fold convolution of 
the common interarrival time distribution which may or may not have a closed 
form solution. Now we assume that the interarrival times are independent and 
identically distributed according to Mittag-Leffler distribution. To obtain equation 
(3) we use a recursive relationship of the form 
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Before proceeding to develop the general solution to the problem, we note 
that 0( )F t  = 1 and 1( )= ( )F t F t  for every t. Therefore we have 
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By equation (4) we can derive 
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Thus we obtain a general form for ( )nM t  which is given in the following theo-
rem. 

Theorem. If the interarrival times are independently and identically distributed as Mittag-
Leffler distribution, then the count model probabilities are given by  
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4. PROPERTIES 

1. The Mittag-Leffler count model generalizes the most commonly used model 
such as Poisson as special case. When =1 , 
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This is a Poisson process with unit rate. 
 
2. Mean and variance of the Mittag-Leffler count model exist and are obtained as 
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3. The hazard function is 
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Through extensive simulations, we have verified that the hazard function of 
the Mittag-Leffler distribution is a decreasing function of time (Figure 1 and 2 
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supports this intuitive fact), so that the distribution displays negative duration de-
pendence which causes over-dispersion. The hazard function is a function of  , 
0 < 1  . The model can handle over-dispersed as well as equi-dispersed data 
when 0 < <1  and =1  respectively. Figure 3 displays the probability histo-
gram for an overdispersed Mittag-Leffler count model and equi-dispersed Pois-
son model. 

        
Figure 1 – Hazard rate of Mittag-Leffler count          Figure 2 – Hazard rate of Mittag-Leffler count 
model (α = 0.2).                                                       model (α =0.9). 
 

 
Figure 3 – Probability histogram of Mittag-Leffler count model (α=0.5) and Poisson model (λ=2). 
 
 
4. If the inter arrival times of the data set are Mittag-Leffler distributed then, we 
have a corresponding counting model to use. The model (5) is derived from Mit-
tag-Leffler timing model, the link between the timing model and its counting 
model equivalent is maintained. Hence in those cases where an analysis of the in-
terarrrival times suggests that a more flexible timing model is needed, it can now 



A count model based on Mittag-Leffler interarrival times 507 

be incorporated via its count model equivalent. Furthermore, in those cases 
where one only has count data, but would like to make forecasts of the next arri-
val time, this can be done given the timing and count model link that is now 
achieved. 
 

5. The probability generating function of the Mittag-Leffler count model can be 
derived as 
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6. If ( )X t  is a Mittag-Leffler count process, then the autocorrelation coefficient 
between ( )X t  and ( )X t s  is obtained as 
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7. Among MCMC methods Metropolis-Hastings algorithm is used to simulate the 
Mittag- leffler count model. The model is computationally feasible to work with 
and it is estimable without requiring a formal programming language or time con-
suming simulation based methods. 

TABLE 1 

Table showing values of autocorrelation of the Mittag-Leffler 
count model for different values of the parameter   at t = 1,2,3 and s = 1,2,3 

t = 1 t = 2 t = 3 
 s = 1 s = 2 s = 3 s = 1 s = 2 s = 3 s = 1 s = 2 s = 3 

0.1 0.6284 0.5963 0.5729 0.5894 0.5714 0.5555 0.5623 0.5515 0.5402 
0.2 0.5519 0.4965 0.4579 0.4852 0.4553 0.4298 0.4411 0.4235 0.4058 
0.3 0.5038 0.4299 0.3806 0.4159 0.3775 0.3460 0.3605 0.3384 0.3171 
0.4 0.4748 0.3850 0.3276 0.3695 0.3244 0.2889 0.3060 0.2806 0.2571 
0.5 0.4598 0.3551 0.2910 0.3393 0.2884 0.2497 0.2693 0.2413 0.2163 
0.6 0.4552 0.3361 0.2659 0.3211 0.2646 0.2232 0.2456 0.2150 0.1888 
0.7 0.4588 0.3254 0.2497 0.3127 0.2503 0.2062 0.2324 0.1989 0.1713 
0.8 0.4688 0.3216 0.2409 0.3128 0.2439 0.1970 0.2285 0.1914 0.1621 
0.9 0.4832 0.3240 0.2397 0.3204 0.2444 0.1948 0.2342 0.1921 0.1607 
1 0.5000 0.3333 0.2500 0.3333 0.2500 0.2000 0.2500 0.2000 0.1667 
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TABLE 2 

Table showing values of Mittag-Leffler count model probabilities for different values of the parameter 
  at t = 1,2,3 

t = 1 t = 2 t = 3 

  1( )M t  2( )M t  3( )M t  1( )M t  2( )M t  3( )M t  1( )M t  2( )M t  3( )M t  

0.2 0.2533 0.1339 0.0679 0.2501 0.1412 0.0787 0.2471 0.1447 0.0836 
0.3 0.2577 0.1398 0.0733 0.2502 0.1500 0.0874 0.2433 0.1537 0.0947 
0.4 0.2642 0.1466 0.0766 0.2505 0.1596 0.0968 0.2378 0.1624 0.1063 
0.5 0.2732 0.1544 0.0792 0.2518 0.1832 0.1191 0.2304 0.1709 0.1189 
0.6 0.2852 0.1628 0.0807 0.2518 0.1832 0.1191 0.2207 0.1794 0.1329 
0.7 0.3006 0.1713 0.0801 0.2534 0.1986 0.1326 0.2084 0.1881 0.1491 
0.8 0.3197 0.1786 0.0768 0.2563 0.2176 0.1478 0.1929 0.1977 0.1686 
0.9 0.3424 0.1834 0.0704 0.2615 0.2413 0.1642 0.1734 0.2090 0.1929 
1 0.3679 0.1839 0.0613 0.2707 0.2707 0.1804 0.1494 0.2240 0.2240 

 

Table 1 gives the values of autocorrelation function for different values of  , t 
and s. The auto correlation of the process increases as the parameter   de-
creases. Table 2 gives the probabilities of Mittag-Leffler count model for different 
values of the parameter   at t = 1,2 and 3. By using Metropolis-Hastings algo-
rithm we simulate the Mittag-Leffler count model and verified that for 0 <1  
the conditional variance exceeds conditional expectation which represents the 
overdispersion, but for =1  conditional mean equals conditional variance at  
t = 1, 2 and 3 which means the equidispersion. Thus Mittag-Leffler count model 
can be used to represent overdispersed as well as equidispersed real data. Table 3 
supports this intuitive fact. 

TABLE 3 

Table showing values of mean and variance of the Mittag-Leffler count model probabilities for different values  
of the parameter   at t = 1,2,3 

t = 1 t = 2 t = 3 
 Mean Variance mean Variance mean Variance 

0.1 1.0511 2.1245 1.1266 2.3595 1.1732 2.5103 
0.2 1.0891 2.1571 1.2511 2.6602 1.3568 3.014 0 
0.3 1.1142 2.1111 1.3718 2.8827 1.5492 3.4763 
0.4 1.1271 2.0041 1.4872 3.0142 1.7490 3.8612 
0.5 1.1284 1.8551 1.5958 3.0493 1.9544 4.1347 
0.6 1.1192 1.6818 1.6964 2.9890 2.1636 4.2663 
0.7 1.1005 1.4994 1.7878 2.8405 2.3746 4.2316 
0.8 1.0737 1.3199 1.8694 2.6157 2.5856 4.0135 
0.9 1.0398 1.1516 1.9402 2.3298 2.7947 3.6030 
1 1 1 2 2 3 3 

5. APPLICATION TO A REAL DATA SET 

In this section we apply the model to a data on the time between customer ar-
rivals for all customers arriving in a bank on a given day taken from the file 
Bank.arrivals.xlsx available in the website www.westminstercollege.edu. The inter 
arrivals times are clearly positively skewed. There is a long tail to the right of the 
peak and none to the left. All interarrival times are expressed in minutes and the 
total number of customers arriving in a bank on a randomly selected day is 275. 
In the data, values over 15 minutes are quite unlikely and there is usually very lit-
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tle time between consecutive customer arrivals. Now and then, there is a fairly 
large gap between arrivals. Here the conditional mean is smaller than the condi-
tional variance.(mean = 3.5174 and variance = 8.2988) Thus this dataset is 
overdispersed and hence we apply the Mittag-Leffler count model. 

 
Figure 4 – The histogram of real data and the frequency curve of Mittag-Leffler distribution. 
 
 

To test whether there is a significant difference between an observed inter arrival 
time distribution and the Mittag-Leffler distribution, we use Kolmogorov-Smirnov 
[K.S.] test for 0H : Mittag-Leffler distribution with parameter = 0.95  is a good fit 
for the given data. Here the calculated value of the K.S. test statistic is 0.098181 and 
the critical value corresponding to the significance level 0.01 is 0.098292, showing 
that the Mittag-Leffler assumption for interarrival times is valid. 

To estimate the number of customers in a class we use the Mittag-Leffler 
count model. The Mittag-Leffler count model can be applied to the overdispersed 
data as well as equidispersed data in which case it coincides with the Poisson 
model. The figure 5 supports this fact clearly.  

 
Figure 5 – Probability histogram of the predicted number of customers arriving in a bank according 
to Mittag-Leffler count model and Posson model. 
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CONCLUSIONS 

In this article we have introduced a new count model based upon Mittag-
Leffler inter arrival time process. More importantly, the model provided a size-
able improvement over the more traditional Poisson process. One important ad-
vantage of the new model is that it removed the artificial symmetry between 
overdispersion and equidispersion, a violation of the constant hazard assumption 
underlying the Poisson model. This new model can be treated as a generalization 
of the Poisson process. The new model has closed form nature and computation 
is possible using Matlab. This new model can be applied to real data sets where 
the assumption of equidispersion is violated. 
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APPENDIX 
 

Appendix 1: Derivation of Mittag-Leffler count model probabilities 
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By using a change of variables =m j  and =l m k  we obtain 
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Appendix 2: The probability generating function of the Mittag-Leffer count model 
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SUMMARY 

A count model based on Mittag-Leffler interarrival times 

In this paper, a new generalized counting process with Mittag-Leffler inter-arrival time 
distribution is introduced. This new model is a generalization of the Poisson process. The 
computational intractability is overcome by deriving the Mittag-Leffler count model using 
polynomial expansion. The hazard function of this new model is a decreasing function of 
time, so that the distribution displays negative duration dependence. The model is applied 
to a data on interarrival times of customers in a bank counter. This new count model  
can be simulated by Markov Chain Monte-Carlo (MCMC) methods, using Metropolis-
Hastings algorithm. Our new model has many nice features such as its closed form na-
ture, computational simplicity, ability to nest Poisson, existence of moments and autocor-
relation and can be used for both equi-dispersed and over-dispersed data. 




