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NONPARAMETRIC DENSITY ESTIMATION OF CONTINUOUS PART
OF A MIXED MEASURE

Rachid Sabre

1. INTRODUCTION

This paper deals with the estimation of the bivariate density of the continuous
part of a certain mixture. More precisely, we consider a pair of the random vari-
ables (X,Y) whose probability measure is the sum of an absolutely continuous
measure with respect to the Lebesgue measure, a discrete measure and a finite
number of absolutely continuous measures on several lines:

q q'
du= f(x, )ds dy+ 320" 8+ D000 sy MER (1)
/=1

J=1

where the numbers g and ¢' are supposed nonnegative integers and known. f
is the density of the continuous variable which is supposed to be a nonnegative

uniformly continuous function. The real positive number &', is the amplitude of

J
the jump at (»;;,w, ) and is assumed unknown. The densities ¢; are nonnega-
tive uniformly continuous functions assumed unknown. The coefficients of the

lines @, b, are real numbers assumed known. & is the Dirac measure. The jump
points (w,;,w,;) are known real numbers. The theorem 3.1 gives an estimator

which can be used to verify the existence of jump at any point, see the remark
3.1. However, in an experimental way, we suggest an intuitive technique for local-

ize the jump point (w,;,w, ) in a block [a,;, 5, |X[a,,, B, ;]. Indeed, we calcu-
late the empirical distribution for several samples of (X,Y) and if we remark for
different samples the presence of a jump at points close each other, we give
therefore a block containing this jump point, obviously this block depends on the
number of samples taken. The block is assumed sufficiently small to contain only
one jump point.

A concrete example concerns the study of structural fissure of the agricultural
soil. On a homogenous soil, measures of the resistance variable X and the humid-
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ity variable Y are taken at several locations at a depth of a 30cm. The measure-
ment values are distributed according to a Gaussian law, except in certain locations
where the experimentalist find small galleries where measurement values of resis-
tance and humidity decrease (the presence of jumps). When the measures are made
in places where the passage of tractors is frequent, the variable Y becomes linear
with respect to the variable X and their measurers follow a new distribution noted
@; (the presence of some measures continuous on the lines determined by the fre-

quent passages of tractors). In this case we will consider the model (1).
The goal of this work is to estimate, for every real pair (x, y), the density

f(x,y), from a sample with a finite size of the random variables (X,Y). Indeed,
when (x, y) satisfies x €[, ,B,;], y€l|a,,,B,;] and y#a.x+b;, we use the

classical kernel estimate as in (Parzen, 1962), (Rosemblatt, 1965), (Bosq and Le-
coutre, 1987) and (Deheuvels, 1977, 1979, 1980). For the other points, in order to
obtain an asymptotically unbiased and consistent estimate, we smooth the kernel
estimate by using four windows satisfying some conditions. The same technique
is used in (Sabre, 1994, 1995) to estimate the spectral density function. We give
an estimator 4',(x, y) converging to the amplitude «'; if (x, y)=(w,,,»,,) or

to zero otherwise. Thus, we have an estimate of the amplitude of jump point
when this jump point is exactly known. We can use this result to verify the pres-
ence of the jump at any point (x, y). We give an asymptotically unbiased and
consistent estimate of the density ¢, .

Theoretically, our work is true for all ¢ and ¢' real numbers. Because it is not
always easy to determine the blocks containing the jump points and the fact that
we propose different estimates with respect to the location of the point, our esti-
mation is interesting where ¢ and ¢' are small.

We conclude this paper by considering and studying the simulation of the par-
ticular case where we have one random variable X whose probability measure u

is a sum of an absolutely continuous measure with respect to the Lebesgue meas-
ure and a discrete measure:

9
du= f(x)dx+ a,05, @)

m=1

As in the two-dimensional case, we smooth the kernel estimate by using two
windows satisfying certain conditions. Thus we give an asymptotically unbiased
and consistent estimate of the density function f .

The motivation of this work is that, in practice, it often occurs that the ob-
served data have the same distribution as the one of a usual law except in some
points where we have a discontinuity of the law observed. In this case we can
consider that the law of data observed is the sum of the usual law with another
discrete law. It is therefore interesting to estimate the density of the continuous
part, especially at jump points.
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For example when we consider the regression model, Y=A(X)+¢, & must
be a centered Gaussian variable. To show that we take a sample of the resi-
dues ¢ =Y, -N(X,)7=12,..n. If the empirical distribution of residues is
Gaussian except at discrete points, for example A4, and A,, the law of ¢ is:

du= f(x)dx+a6, +a,6, .1f we show that f is the density of a Gaussian cen-

tered variable, we are sure that we must change our model by adding an other
discrete variable.

A concrete application of the one-dimensional case deals with the process of
filling bottles of a 33cl volume each. To control the quality of this process, we
check that this process is evenly distributed according to a Gaussian distribution.
The experimentalist has taken a sample of 115 bottles and measured the quantity
of liquid contained in these bottles. The measures usually gives about 33cl. Due
to an abnormal disfunction caused by a random slowing or acceleration of the
motion of the rolling band. Thus the measure randomly increases or decrease to
reach a constant.

We briefly indicate the organization of this paper: In the second section we
consider a pair of random variables defined by (1). First, we estimate the density f
outside the neighbourhood of the jump point (theorem 2.1) and we study the es-
timation of the density f inside the neighbourhood of a jump point (theorems 2.2,
2.3). In the third section we estimate the amplitude of the jump points and the
densities on several lines (theorem 3.1 and theorem 3.2). The fourth section pro-
vides the proofs the theorems. We finish by studying the simulation of the esti-
mate for the univariate case.

2. KERNEL ESTIMATE OF THE DENSITY FUNCTION

In this section we consider a pair of random variables (X,Y) whose probabil-
ity measure, 4, is defined by (1). Our goal is to estimate, for every real pair
(x, y), the density function f.

Notation:

B={(x,y)eR* suchthat Jie{l,..q'}: y=a,x+b}
A= (@, 8, 1xRURx|a, . 5, ) UB.

Let (5, 91),(%x5, )5 (x,, ¥,) Independent observations of (X,Y). To esti-
mate the density function f at point (x, y) we distinguish two cases.

2.1. The estimation of the function f ontside A

Let (x, y) be a pair outside A, we consider the kernel estimate defined as fol-

lows:
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~ S| X=x;, y— .
ﬁ(x,ﬁiﬁbzz{ ., ”j 3)

where K is defined by K(#,»)=K,(#)K,(v) with K, and K, two continuous,
P(AJ)@/ <o 7=1,2. The smoothing

- 2
even, decreasing kernels such that: IH 9y
2 .
parameter 4, , converges to zero and #h, converges to the infinite.
First we show that f, is an asymptotically unbiased and consistent estimate of

1 1 1 1
f outside A, we assume that /9—K1 (b—j and /9—K2 (b_j converge to zero, for

n n

1 x?
exp| — |.
T &Xp >

(27)?

n n

example K, (x)=

Theorem 2.1. Let (x, y) be a pair outside A, then ;‘;(x, y) is an asymptotically
unbiased and consistent estimate. If f is twice differentiable and its partial de-

rivatives are continuous and bounded, then

7 2ol Lr L Tl
E(fﬂ(x,y))f(XJ)—O(/%)JrO(/y Kl(/?JJH?[b Kz[/%j] )

n n

~ 1 T oo 1 Lot L
Var(f, (%, ) = O[7J + O(7K [/9” D ' O[n/a; " (@ ]J ;

2.2. Estimation of the function [ inside A

In order to estimate the density f(x, y) where (x, y)e A, we smooth the

kernel estimate }”; by using four windows defined as follows:
WU)(;) — M(l)W<l)(l‘M(l)) . W(2>(z‘) — M(Z)W(2>(2‘M(2)) .
W(3>(f) =1 DOp® (Z‘L(D) et WH)U) — L(Z)W(4>(Z‘L<2))

where MV, M'? 1!V and L'* are nonnegative real sequences satisfying:

n o n > n

M — +o0; I — o0; MU, —0; 195, —0;
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where 4, is defined in (3). W) is a nonnegative, even, integrable function van-

] .
ishing outside the interval [—1,1] such that j:lLV(Z)(X)dX =1, /=1,2,3,4 and

moreover satisfying the following equalities:

11 1
(2) (2) M MWy —
WAMPe)y—w O (MDey=0 Ve WW{ ©6)
WPy - Mey=0 Vo _—_1 b 7
n ( n >_ ( n >_ < L(D’L(l) . ()

Now we consider the estimate (; defined by:
8,60 =[,S,(x =1)R, (y=m) f, (), 1, )d,dlny, where
M

W) ——2=w " ()
S, (v)= :

R 1 1 1 1
and f, is defined in (3) we assume that /9—K1 [m] and /9—K2 (—/9 ij

n n n n

1 _ 2
converge to zero, for example K, (x)= - exp( il j
(27)?
We show in the following theorem that ;f;(x, y) is an asymptotically unbiased

estimate of f on the set A and we give the rate of convergence of the bias.

Theorem 2.2. Let (x, y) be an element of A. Then (;(x, y) 1s an asymptotically
unbiased estimate. If f is twice differentiable and its partial derivatives are

bounded, we have:
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E(g, (%, )~ f(x, 3) = O(4] )+O[ K, [ij biK (1n+

1 1 j€ilnq;:
O] =K K if
bz ! M(1)/9 ? L(Db j] {(X )/)E al/>ﬂ1/] [a2j’ﬂ2j]

1 1 1 Jdje{l,..,q}:
O™ %)) " Vxela .8 1 andy 2la, .5, ]
n 7 n 1/ 1/ J 227725

Jjedl,..,,
of el )] e

Xg al/JlBl/ and}e[a2j>ﬂ2j]

L) a Vjell,...q}
O[/?_IQ Lly_ij/y_Kz (_ j if XE[“1/'>IB1/]§ J’g[azpﬂzj‘] and
! ’ ! die{l,.,q}: y=ax+b

We show in the following theorem that g (x, y) is a consistent estimate of the

function f on the set A, thus giving the rate of convergence of its variance.

Theorem 2.3. Let (x, y) belong to A. Then (;‘;(x,)/) is a consistent estimator. If
f 1s twice differentiable and its partial derivatives are bounded, then

~ 1 1o 1 ' 2|t
var(gﬂw,y»O(@jm( PR (J]*O( e (@]}

o 1K 1 K iy die{l,..q}:
nht T\ MOy ) L(l)/a (%, )= (wy,,m,)

n n n

Jje{l,..q}:
@) 1K1 ! biij] 1f{ e

nh! MV x=w;andy#w,;
1 1 1 Jje{l,..q}:
O| —K,| — |K, if ] d
7’]/?: h, L(;) h, x#w;andy=w,,
Vie{l,..,q}:

X;twlj;yiwzj
and F7 e{l,...,q'}:
y=ax+b,
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2.3. Univariate case

In the univariate case, we consider one random variable X whose probability
measure, 4, is the sum of an absolutely continuous measure with respect to the

Lebesgue measure and a discrete measure, defined in (2).
The estimate of density function f can be given as a particular case of the

two-dimensional case, namely

é;(x): IRS”(x—j)ﬁ(y)dy if xeA

h(x) = A
£, (%) if x¢A
(2) - M
R " ~— . Wn (z)_ M(1) Wn (%)
where £ (x)= z ” K /7 ~| and S, (3)= Mﬂ(z) and
i=1 n n 1— n
MO

A=Uizl[am, pB,] the intervals contain the jump points (4, €[«,,,B,]). The

windows are defined as follows:
WO ()= MOW O MDY, 17 (8 = MOW O (M),
where M" and M'® are nonnegative real sequences satisfying:
M — 400 MPh —0

where 4, is defined in (3). W is a nonnegative, even, integrable function van-

i .
ishing outside the interval [—1,1] such that LW(l)(x)dx:l, /=1, 2 and

moreover satisfying the following equalities:

-1 1
(2) (2) M Moy =
174 (M” 0)—W (M” 9)—0 VQE:|W,M(1)|:

3. THE ESTIMATION OF THE AMPLITUDE 4 '/- OF THE JUMP AND THE DENSITIES @;

In this section we purpose the following estimator:

7

~ Vs 1 —x. Y=
d'ﬂ(X,_y): ” z ZK X Xz,_)/ Ji
KO0S > \ b b

n n

where K is defined in (3) such that K(0,0)#0.
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Theorem 3.1. We have

O(h,) if (x,)#(w;,m,;) Vje {1,2,..,9}

E(a', x, ¥))= ,
(a'5(x,9)) {ﬂ-ﬁowﬂ) if (e, )=y ,m,,)  j€{1,209)

~ 1
Var(a'y(x, y)) = O(—j .
n

Remark 3.1. This result can be used to prove the presence of jump at point

(x, y). Indeed, we calculate the empirical mean of a', (x, y) from several sam-
ples. If its value is approximatively zero we consider that there not a jump at the
point (x, 7). If not there exists a jump at (x, y).

In the following theorem we give an asymptotically unbiased and consistent es-
timate of the density ¢, .

Let 4, a real number and 4, is such that A, =44, +b, where 7 €{1,2,....4"}.
We estimate ¢,(4,) by

~ 1 & 1 A= A=,
(A) = K L :
7:(h) KZ(O)ZZ_]:M”/?'” [ b b j

n n

where 4', =0 and /j—'”—>0 and #h', —> o0 and uhh' —> .

n

Theorem 3.2. We have

N L ! !
Ecoi(m—@(mow»”(zK(Z’ZD

n

~ 1
Var(coz(ﬂq))—O(ﬂbjb,”]-

4. PROOFS

4.1. Proof of the theorem 2.1

From (1) we have
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—~ 1 5 — —
fﬂﬁmmy»=zng[ L, gb}f@p@ﬁkﬁ&

n bﬂ
1 & X =Wy YT W,
+—>a' K L /
j; ! ( bn bﬂ )
¢ x—v, y—auv —b,
+>» —|K L Lo (v,)dy
;bf I ( 5 5 ](01( 1)y

We note respectively the 3 terms of the last equality by A4,, B, and C,. We know,
from the works of (Parzen, 1962), (Rosemblatt, 1965) and (Bosq and Lecoutre, 1987),
that A — f(x, y)= O(bf) . On the other hand as (x, y) # (w

5% ;2) s we have

el )

—b
Let us now show that C, tends to 0. Indeed, we assume that x < S
a.

z

(same

arguments in the case where x > J

a;

~) and we split the integral, in the expres-

sion of C, as follows:

n—E X — —auv,—b,
IOO K, 5 sz(J} /;1 /)@(”1)"’”1

n

1

e

1 ¢ X —0 —a.v, —b.

/?_2 L8K1( 5 1) (JJ /;1 Z]@(%)dﬁ
ﬂZ:1

1

/7—2 K

n

& x—v y—auv, —b,
Z'fe 1 ) . K, =t @, (vy )dvy

=1 n b

n

;[*5 X = y—av, —b,
+72La{& K| T g ()
ﬂ i=1 ) n

n

J—a —b
2 ,&+g [ } 2( bl j@(ﬂl)d’/l,

n

where ¢ is a nonnegative real sufficiently small for having x + & < J

L—¢.We

a -

7

note the five terms of the last equality by I,, I,, I;, I, and I;. Since the func-

tions K, and K, are decreasing and even, we can write
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1 X —v y—a
I,£— su K 1 su K|=—-——7 v )dy
1= p 1[ ) Jvle] p [ /9” jr @;(vy)dv, .

n l’le]*w,X*E[ 7 —00, X — 8[

—b
The two ‘sup’ reach values respectively different from x and from J % ,

a;

hence

o)e(t)
bﬂ bﬂ bﬂ

as in above, it is shown that

1 1 1 1 1 1
13 = Olb—zKl [/Q—J K2 [/y—]j and I5 = O(/y_zKl (/9—} K2 [/y_jJ .

On the other hand for all » belonging to [x —&,x +¢] we have y#av—10,.
Therefore we have

1 —a,v—0b, 0 xX=v
I, S/?_z sup K, [%j J:O K, [/j—lj@‘(”l)dyl -

n VE[x—s,x+¢] ”

1 1 1
Since x _)/9_K1 (%) is a kernel, we conclude that I, = O([)—K2 [/y—j} .In

n

the same manner we increase the expression of I, . Thus we obtain

Cﬂ_O(AK{i]}O[LKZ[LD. 0
bﬂ bﬂ bﬂ bﬂ

A~ 1 —~
From (1) and (3) we have Var f,(x, y)=H, + H, + H, ——E*(f,(x, 7)) , where
n

1 X—=3, J—
H,= _[KZ( o ’ & jf(%szz)d%d%z )

nh! h, h,
1 2| X T I T,
H =—>» a.K , ,
2 b ; / { b, b,

‘w IZ {X < 2o f’}awﬂ

n

putting x —zg, =4,¢, and x —g, =A,#, in the integral of H, , we obtain
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1
H, 271/9_2 IKz(f1>f2)f(llbn —x,15h, = y)dhdt,

From the theorem of the finite increments, we have

1 '
H, $— [k (0t max(r ) 6,.20,)

dt,dt,

1
o [K2(01,02) f (v, ),

1
Thus’ we obtain Hl :O(—j-}-O{% J.J.KZ) . On the other hand as
n,

nh

n

1 1 1
X F Wy and J#EW,,;, we have H, —O(7K2 {/ﬁ_’b_jj

n

qV
We write H, = ZR and we split this integral as follows:

i=1

—b. J=b;
1 N —& x+e )b —& . +e 0
P=— _[ = + | @ +J.)f + |-

‘ ﬁb4 —00 Ix—¢ Ix+e i_g L e
n a; a;

where ¢ is a nonnegative real number satisfying the following inequality:
J—b,

a;

xte<

— ¢ . We note respectively the five integrals of P. by P.,, P, P,,

and P. . Similar to the proof of the equality (9) we have:

1 1 1
P, =P,=P,= O£7K12 [b_JKZZ [/?—JJ The amount P, is bounded by

n n n

1 —au—b. o 1 -
— sup K;[%]sup(&)f ;Kl[uj(pi(ﬂ)dﬂ since K, 1s a

3
”b” ue[x—s,x+s] bﬂ

kernel function, we then have

r, —O(M%Kf [%D (1)

In the same manner, we increase the expression of P, and we obtain
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1 X2 1
b, _o£ Lk [/?_J]
Consequently
1 1 1 1
P.=0| —K{|—||+0| —=K;| —||.
nh, h, nh, h,
Thus we deduce the equality (5).

4.2. Proof of the theorem 2.2

For alarge 7, we have

(12)

(13)

BL&, (5 )= £ ) =[S (=R, (5 =, )(BLS, )= %, )ity

Split this integral to 9 integrals as follows:

1

1 1 1 +— 1
—~ "X ') X L(l) - *®
_ _ e 1D e (0
Elg, ()= fe,yy= [ w7 [ o [ [ 5 o [
J D Y

wm T M<1 ) ,<1> T I
. 1
-00 ]—7 00 }’ L 00 00
M
T S WY B N
RAVIO! YOS, 1 RS VORI

1
1 L
ot y+ X+
M“) ) M<1> L<1> M e
.[ L 1” 1
—— Yty

We note these integrals: E,, E,, E,, E,, E;, E,, E,, E; and E;. From
(11) we get that E,, E,, E., E, and Eg are null. Let us show that E,, E,, E,,

and E, tend to 0. Indeed, by putting v, = M*(x—u,) and v, =L (y—u,) in

the integral E,, and using the fact that W) s vanishing outside the interval

[ —1,1], we obtain

1

El = 2 2 o) : n
1-— MIE : 1-— L(n : 1\/1,(,1> L(ﬂI>
MWD

n

EE(X_ g »J - j f(xaﬂ):ldﬂldyz-
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In the same way, by using the fact that ") is even, we get the followings:

1 o
Fe = (2) @) fogb J&W@(%)WW(MX
1— Mﬂ 1— Lﬂ MY <
MWD T
Ef,| x——bs, y+—4 |- dnd
" M(Z) ")/ L(Z) f(X>J) ”1 yz.
1 ] i 5
1 M” 1 Lﬂ A/I’(Il) L(ﬁ1)
B MO N [0
E7| x+ dl ) — F(e, ) |dvydo
" M® »J 12 > ) 140,
1 | 1
By =y e e W eow e
1_ Mﬂ 1_ L” ]w’(ll) L<nl)
MWD T

We group all expressions in the form noted E':

1
E'= _[Ma) J.ﬁ @ )7 (0,)x

M L2 5
o )
, : (14)

Eﬁ(xi “ yx %2 ]—f(x,y)}dﬂldyz.

MO

Let us now show that E' tends to 0, indeed we can write

" v v ' ' '
Ef”(xiMzz) ,yiL(ZZ)j—f(x,])ZR”+Sﬂ+Dﬂ where

Yy 4 )
1 X—M(z)_zl J—F_zz
R', =7 K /y” , /9 S Ri>32)d%08%, — f(x, )
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1« XE @ Ty IE Ty
N p—— ' K " , n
’ /yj; / h, h,
_ Ya__ ., _
1 4 YE e T T e T b
D, = [K| —— 0, (),
n j=1 ” ”

Since [ is uniformly continuous, R, tends to zero uniformly in »,, », of

[ —1,1]. The rate of convergence is O(h.) see (Bosq and Lecoutre 1987).

Yy Yy

, xx o My y=x 2 "W
] 1 ] Mﬂ Lﬂ
S, :_zzd J K, 2
b = h, h,

We distinguish the four following cases:

1) If (Xs]):(wlj’WZ/)

v 1 1 v 1
i <—L < <—2 -
Since YRR Y2 and RO ICR As K, and K, are de

creasing functions, we obtain

, 1 1 1
%= O(/TK (w,s“ jK (L% D

1 1 1
2)If x#w; and y#w, ,itis clear that §', = O{—K1 (b_JKZ [/9—}}

' 1 1 —,l
4) If ~x # wlj and y :”/2/': we get S” O{/y_ZK1 (/y_sz(L(;)bﬂ j} .

n n

On the other hand, the expression D' can be written as the sum of D .
> p n ne

where D, is defined as
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z

Uy vy
iW—%l jiﬁ—dﬁﬁ—b
h

> - jﬂdﬂ.
) @, (n, )dny

n n

1 X
D, Wi [k

a) If y#a,x+b, from the equality (10) we get:

)

b) If y=a,x+b, we have

v v
| Ve —u, iL<2> +al.(x—ﬁ1)
D, = /9_2 IK1 /: K, s ) @, (m ),
Yy 2
1 PE @ @ Tl
_b_ZIKl ) : 2 ”/7 @;(x —1)dt

1 1
—If 2, =0,we have D, =O(—K2 [—J}
z n b L<”1>bﬂ

n

— Let us show that for 2, #0 when 7 is large, the numerators of K, and K, are

not vanishing at same value 7. Indeed we assume that there is a real number 7

(2)
v v Vy o
such that #=+—— and #=+—2—_ therefore —2—=+—2 Since I, M?,

MO ok MO
1% v
v, and 2, are nonnegative, the last equality becomes —-= 2 We choose
M, a;|v
) . ) . 1% MP
M and 1.V such that M* > 4,17 Since — <7, <1l and ——<», <1, we
IS MO
n n
1® MO 1@ @ o
get that ”(1) <2 ?2) and therefore —= 7 < }ZZ) contradicts with the
all’ av, M, al:’ M,

fact that Mf) > aiL(ﬂl) .



456 R. Sabre

v v,
12) <+ R . We can split
M, al

Without losing the generality, we assume that +

the integral of D, as follows:

v 4
| + ¢ t—2-+ar
1 ety M@ 1@
D, =— [ 7K | - |K, | — 0, (1 + 5)dt
0 h h
bﬂ n n
A vy
g | Tu@ || E
[ K : K| — 0.(++ x)dt
/?ﬂ _ZVI§2>777 ” n
v, vy
B i Vo ot
+TI K - K, - Q. (1 +x)dt
1
bﬂ \4(2)+77 bﬂ /9;1
4| &)
B VoI B s R
+— | “" K - K . @, (¢ +x)dt
/92 2 1 b 2 b i
n ZL<12>7’7 " p
vy 2
1 i M@ 1o Tt
= K[ — K,| —= 0.(1+ x)dt
+
bﬂ T L i /911 bﬂ

D,=Z+Z,+7Z,+7Z,+Z,

where 7 is a nonnegative real number satisfying + -n.In

4 &)
<+

w® T Te

the first integral the numerators of K, and K, , are not vanishing. K, and K,

are continuous, decreasing, even functions. Thus Z; is bounded by

+ta;t

1 M Ly PR .
[—j } su}: {Kl — K, — f MY g, (r4x)dt - which s
te 57
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n bﬂ n

1 1
same rate: O(%Kl [b_jKZ [IQ_J] .

In the second integral, since the numerator of K, is not vanishing, we increase

1 1 1
O(/?—ZIQ [—}Kz (/y_]} In the same way we show that Z; and Z, have the

K, as follows:

vy

1 L0 e | T )
25|~ { sup K,| —+—o L LK | |, (r+ ).
te

h +———p b
v v n (2) n
OV OR Ms
M M

As K, is a kernel, ¢ is uniformly continuous, we obtain

Z,=0| —K, [—j] In the same manner it is shown that:

1 1
Z,=0| —K, (/j—jj . Thus we obtain

Dﬂ_o(iKl(ij}o(iK{LD. 5
bﬂ bﬂ bﬂ bﬂ

4.3. Proof of the theorem 2.3

By using the same arguments used to show the equality (14); it is easily shown
that:

Var@(x,ﬁ):zﬂE[ Z ](k,/é')—E(](/éﬂé'))j :

kk'=1

where Z = 5 > and
M @

= MO - 1D

e [0 W) w,)7, [x +(1) o+ (1) ”—2}101402-

@
MO L) L,

J(k, k)= |

n

Therefore
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Var(g,(x, ) =2, 2 [ WO@W @)W D0 W ',)C)d

kR p,p'=1

2
N (R
where ﬂ:([}byz’[} 1,V 2)’ dﬂ :£|:M(1) ’1:|X|:L(1) >1 and

L(”Z):|’f |:X ( 1)[’ M(Z)’.)/ ( )P LEZZ) :D

From Cauchy-Schwartz inequality, we have

() =cov[7{x+<_1y< 20

1
2
vV
C)<| Var £ | x+(=1)* M(Z),]+(—1)k LTZZ)H

' ' E
x| Var £, | x +(=1) Mff)’ﬁ( 1) _L(f)D .

It is easy to show that

Xt T IE TG T
M@ ! 1%
l 7 n
VarfL M(z J/ L(Z)J_ :;E K bﬂ 5 bﬂ
1 2 i/l 7/2 16

1 v v,
=H, +H,+H, ——E [f [X_'_M(Z)’jiL(Z)J]

n

where H, are defined by:

v v
x+ 12) ES )ji (22) -2
1 ) M L.
_[K ; > . (1532043143,

n n n
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vy
AN B VIO RV A S R
Hy=—>4a K z —
’ b:; ! bn /9;1
< x @) yE—Gyman—b,
K , - - (u)du
D

h,t,, in the integral of H,,

. Z) V
Putting x =+ MEZ) -z, =ht and yt—0— @ 0=

n

we obtain
IK (2,2, )f[lb M<2>’ t,h, —)/_L(Z)]dz‘ dt, .

From the theorem of the finite increments, we have

1 1
Hlsﬂ/j—z IKz(tl,tz)maX(f W(ib,,125,)| dt,dz, + jK (4,,2,) f[ m, _L@deldz‘z.

1
Thus we obtain H; =0| — |+ O fL;)’) _”KZ .
nh, nh,

For H, we distinguish four cases:

a) If (x, y)=(wy;,m,;), we obtain H, _O(ﬂ/y;‘ : {Mff)/aﬂ LY, D

~ - N T G T
b) If x =w,; and y#w, ,itis easy to show that HZ_O(ﬂlyj (M,El)b” ’ZJJ

1 (1 1
o If x#w,; and y=w, , we easily obtain H, O( r (2, 10y ]] :

. 1 11
d) If x#w,, and y#w,,,itis clear that HZ—O( b4K (b 7 Jj

,
On the other hand, we note H; = ZGi where

i=1
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v v
xt—1——u yE—2-—an—1b
1 ) M@ ) M@ ¢ ¢
G =—+|K . K . (u)dn.
s J. 1 5 2 5 @; (1)
Distinguish the two following cases:
D If y#ax+b, trom (10), we have
1 1 1 1
G =0l —K/|—||+0| —=K;| — ||
nb, h, nb, h,
2) It y=a,x+0b,,we get the following:
v v
. 1 1@) —u 2 iMiiz)—di(x—ﬂ)
G =—F|K - K - (u)du.
i ﬂ/ﬁ: J 1 bﬂ 2 bﬂ goz( )

By a similar work used to show (15), namely splitting the integral to 5 integrals
under the neighbourhoods of the points where the numerators of K, and K, are

respectively vanishing and the remaining points, we get

1 1 1 1
G =0| —K/|—||+0| —=K;| — ||
nb, h, nh, h,
Thus we conclude the result of this theorem.

4.4. Proof of the theorem 3.1

From (1) we have

E(a,(x, 7)) = [[x (X L zz}f(zl,zz)dzldzz

K(O 0) b b

n

Zd (X wl/,J Wij
h

K<OO>/1 n ”

— J’ a;v, —b;
K(O O)ZJ‘ [ ) j%(”l)dﬁ

n

=A"+B' +C",
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As in the proof of theorem 2.1, we have

2 4

f( >}}) ( } if (x,y)=(w1/,w2j)

A" = K(0.0)
O(,) i (o, ) # (w15 2).

K(0,0)

On the other hand, if (x, y)# (w;;,,,;) we have from (8),

o2

If (x, y)=(w,;,w,,) we obtain

— Wy . —W
kE ] /9;7 /9;7
, \ 1 1
B p =da /-+ O(Kl (ZJKZ (2} .

\ L . _
For the term €, we distinguish two cases: if (x, y)=(w;,»,;), therefore

y#ax+b forall i=1,2,.,4", from (10) we have

el o)

If y=a,x+b,,we obtain

C', < K(O O) sup(K z)z_[ K[ ]%(”1)‘[”1
Thus
C''=0(,).

Thus the result of this theorem follows.
For showing that the variance tends to zero, we use (16) we obtain
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~ /94 1 X=x, y—79,
Var(a,(x, y))= “—Var K - -
(a,(x,7)) K*(0,0) (ﬂbz [ b b j]

b4 ( 1 2’\ )
= u H +H,+H,——E X,
KZ(O,O) 1 2 3 p ACH)

1 o X=31 =%
leﬂ/yj IK[ J 19 ) 2 S (R1532)82,4%5-

n n

1 2| X TPy T Wy
H,=—)>» a K , ,
? 2 h h

n =1 " ”

1 x—=u y—au—>b,
Hy=— ¥ K p 2 p ]wxﬂym.

n  j=1 ” n

It is easy to see that

B ol E)sof B e
KZ(O,O)Hl_O[nj+O(;¢jf( >J’)IIK

h 1 h 1 .
i 0[7“‘2 [XBO[—K [ZB )
7 H — n n

O(—j if (x,9)# (”’1_/:”’2,/)

Since K, and K, are bounded functions, we have

1 (1) ,(1 .
Lieliof)) o

1 1 (1) (1 .
o{elasi)el)) = enmenm

Thus the result follows.

/74
K*(0,0)

3=

4.5. Proof of the theorem 3.2

Let A, areal number and A, is such A, = a4, +b, where 71 €1,2,..4".
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~'h, b b

n n

¢2<a>=lfif<[il_x" iz_”j
n3h

-~ 1 A=z A=z
E(op. = K K R dz.d
(@;(A4)) K (0) 5 1( bﬂ j 2( b S (15%2)4214%
1 AT /12_”/2/'
s <0>/1 /oﬂ L,
/Iz—a.vl—b‘
: ~ e (v,)dy
K (O) ( b j%( 1)a,
:A'V”+B"”+C"”

It 1s easy to see

A", =0(,)

b, of L[ L) [
bﬂ bi’l b'ﬂ

[ — ’d (ﬂ;'ﬂ p1>j¢z’(”l)dyl

n

K (0)

Putting A v, we have

W 1 g , auvh,
"= (O)ZIIQ( >K2[ x

Using the theorem of dominated convergence the result of theorem follows.

Let us show that the estimate is consistent

~ 1 1,
Vargp,(4,) = KZ(O) (H"1+H"2+H"3—;E (%(%))j

where

n

" 1 2 /11_% A <
H 1:”/?’%,5 J.K [ ) - Zb'ﬂ : S Ri532)4204%,
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1 Ay, Ay,
H" = Z K ,
2 /92/?122 J ( b /j'

n,n, J=1 " 7
—u a; (A —u)
, - (u)dn.
= n/yb'j;'[ ( b j(p()
Putting A, —%, =4,¢, and 4, —g, =A', ¢, in the integral of H"; we obtain
H" = T jK (L, 1) [ (th, = 5,,b" = y)dt,dt,

From the theorem of the finite increments, we have

H"l S

142 1Yn>72

[K2 (1,15 £ (x, )it it

n

h,
Thus, as ——)O we obtain H", =0| — f(x J) IIKZ . On the
h' n/a” nh, /9

n

1 (1 1
other hand as A, #w,. and 4, #w», ., we have H", =0 K| —,—||.
Ay el R 2 (M:/yi (@ J)

Putting =v, we write

hih',

n

1 h
H"y =—— [K} (K} ( m ]@(ﬂq ~vh, )dv

Therefore

1
H". =0 .
) (ﬂ/ﬂj/y'”j

Thus the result follows.

5. SIMULATION
We consider the univariate case. et X be a random variable with measure:

dn= f(x)dx + a0, +a,0,
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For the simulation we take f the density of the stand Gaussian random vari-
able and we choose 4, =-2 and 4, =2, this choice is arbitrary.

For having a sample (x,x5,...,x ) Of the random variable X | we generate
a sample (#,,4,,...,1,4,) uniformly distributed over the interval (0,1) and a
sample ( 9y, V5, Vi000) Of the gaussian variable and for all 1<7 <1000 we test
if by <u, <b, we take x; =, and if b, <u, <b,, we take x; =4, otherwise we
take x; = y, with b, =05, b, =0.55 and b, =0.6. The choice of the values of
the parameters &,, b, and 4, influence only on the amplitudes «, and ,. Since

we take b, — b, = by — b, , the amplitudes have approximatively identical values.
We calculate the estimatort, E(X) , defined in the section 2.3, with
1

,—27[ exp

with same parameters for 20 samples, we remark that the graphics of }';(x) rep-

X

2
{ > }, h, =% and #=1000. Repeating this simulation

K(x)=

resent two jump points localized respectively in [ —2.3,—1.7] and [1.7,2.3]. Thus
we take [ay, f]=[—-2.3,-1.7] and [e,,B,]=[1.7,2.3].

Using these samples, we calculate, for fixed x, the empirical mean of

~ h PR X =X — —
() =—2% _ K ~ | denoted by 4'(x).For x =22, 4'(x)=0.12
a's(x) K(())ZZ:% [ ; ] y a'(x) a'(x)

n

and for all other points in the intervals [, 5] and [a,,f,] the value of a' is
less than 0.001. Since f is the density of the stand Gaussian variable, we verify

that, for x =12, E(x) = ;(x) + f(x).

The bandwidth of spectral windows are taken as: M'" = 8n'/¢ M =n"7.

The spectral windows are chosen as:

ﬁf+ﬁ if re[-1,-1/8]

63 63

1/8 if re[—1/8,1/8]
0=

——r+— if re[1/8,1]

63 63

0 otherwise

31

= if re[-1,-1/8]U[1/8,1]

WP ()=41/8 if te[—1/8,1/8]

0 otherwise




466 R. Sabre

The following graphics represent the estimate é;(x) defined in the section 2.3
and the density kernel of the variable X .

o4

1] f §

i i Ve |

[-E.- ] |
]

Figure 1 — Graphics of the estimate and kernel density of variable X: Asteriksed line is the estimate
proposed and continuous line is the kernel density of X.
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RIASSUNTO

Stima di densita nonparametrica della parte continna di una misura mista

Nel lavoro si considera una coppia di variabili aleatorie (X, Y") la cui misura di proba-
bilita € la somma di una misura assolutamente continua, una misura discreta e un numero
finito di misure assolutamente continue su diverse rette. Viene proposta una stima consi-
stente e asintoticamente corretta della densita della parte continua e se ne determina la
velocita di convergenza.

SUMMARY

Nonparametric density estimation of continnous part of a mixed measure

We consider a pair of random variables (X, Y") whose probability measure is the sum
of an absolutely continuous measure, a discrete measure and a finite number of absolutely
continuous measures on several lines (1). An asymptotically unbiased and consistent esti-
mate, at all points, of the density of the continuous part is given as well as its rate of con-
vergence. We also estimate the amplitude of the discrete measure and the densities on
several lines.



