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MODIFIED INTERVENED POISSON DISTRIBUTION 

C. Satheesh Kumar, D.S. Shibu 

1. INTRODUCTION 

Cohen (1960) introduced positive Poisson distribution to describe a chance 
mechanism whose observational apparatus becomes active only when atleast one 
event occurs. (Singh, 1978) obtained a numerical example to illustrate the statisti-
cal application of the positive Poisson distribution in such situations. Later a mo-
dified version of positive Poisson distribution is introduced by (Shanmugam, 
1985) which is termed as the intervened Poisson distribution ( IPD ). An advan-
tage of the IPD  is that it provides information on how effective various preven-
tive actions taken by health service agents, where positive Poisson fails. The IPD  
is applicable in several areas such as reliability analysis, queuing problems, epide-
miological studies, etc. For example, see (Shanmugam, 1985, 1992) and (Huang 
and Fung, 1989). During the observational period, the failed units are either re-
placed by new units or rebuilt. This kind of replacement changes the reliability of 
a system as only some of its components have longer life. (Scollnik, 2006) intro-
duced a generalized version of the IPD  namely intervened generalized Poisson 
distribution ( IGPD ). 

In this paper, we propose a modified version of intervened Poisson distribu-
tion which extends the IPD  and an advantage of this distribution over the IPD  
is that it stretches the probability in all directions so that clustering of probabili-
ties at initial values of operating mechanism is overlooked. 

In section 2, we present the derivation of the IPD  and the IGPD  and in sec-
tion 3, we present the derivation of a new modified version of the IPD , which 
we call the modified intervened Poisson distribution (or in short MIPD ) and 
study some of its important properties. Further estimation of parameters of 
MIPD  by method of factorial moments, method of mixed moments and method 
of maximum likelihood are discussed in section 4 and illustrated using certain real 
life data sets. It is to be noted that neither uniformly best estimators for unknown 
parameters nor uniformly best statistics exist for the MIPD . Further results con-
cerning the statistical inference in case of the MIPD  will be published as a se-
quel. 
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2. THE IPD  AND THE IGPD  

In this section, we present the derivation of the IPD  and the IGPD . 
Let 1U  be the number of cholera cases in a household. The event 1 0U   is 

not observable since observational apparatus (That is, diagnosis) is activated only 
when 1 0U  . The random variable 1U  being of a rare event, it is appropriate to 
consider a zero truncated Poisson distribution for the positive integer valued ran-
dom variable with probability mass function (pmf)  
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with 0   for those values of 1u  on the positive integers, and zero elsewhere. 
In this example of cholera incidence, health service agencies and others resort 

to various preventive measures. These have the effect of changing   from one 
incidence to another. We may assume that such effect results in changing   to 
 . Let 2U  be the number of cases that occurred after preventive treatments 

were applied. The random variable 2U  is Poisson with mean   and it is statisti-

cally independent of 1U . Assume that our observational apparatus has a record of 

only the random variable 1 2U U U  , the total number of rare events occurred 
al-together is an IPD with parameters   and  , which we denoted here after as 

( , )IPD   .The pmf of U  is given 
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with 0   and 0  , for those values of u  on the positive integers and zero 
elsewhere. The mean and variance of the ( , )IPD    are 
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Additional properties of the IPD  are given in (Shanmugam, 1985). 
A random variable W  is said to follow the generalized Poisson distribution 

(GPD ) of Consul (1989) with parameters   and  , if its pmf is given by 
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with 0   and 0 1  , for those values of w  on the non-negative integers, 
and zero elsewhere. 

(Scollnik, 2006) obtained IGPD  as in the following. Let 1V  follows zero-

truncated GPD  with parameters  ,   and 2V  follows GPD  with parameters 

  and  . Assume that 1V  and 2V  are statistically independent. Then the ran-

dom variable 1 2V V V   is an IGPD with parameters  ,   and   and its 
pmf is  
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with 0  , 0   and 0 1  . 

3. A MODIFIED VERSION OF IPD AND ITS PROPERTIES 

In this section we define a modified version of intervened Poisson distribution 
( MIPD ) and derive some of its important properties. 

Let Y  be a positive integer valued random variable following the IPD  with 
parameters   and 1 , and let Z  be a non-negative integer valued random vari-

able having Poisson distribution with mean 2 , in which 0   and 0j   for 

each 1, 2.j   Assume that Y  and Z  are statistically independent. Then the  
distribution of 2X Y Z   is called modified intervened Poisson distribution 
with parameters 1,   and 2  which we written as 1 2( , , )MIPD    . Clearly 

( , , 0)MIPD    is ( , )IPD   . Thus the 1 2( , , )MIPD     is an extended class of 
discrete distributions which include both positive Poisson distribution and the 

( , )IPD    as its special case. Also, this type of an extension opens up the possi-
bility of a second intervention. Now we have the following results. 
 
Result 3.1 The probability mass function ( )xf P X x   of 1 2( , , )MIPD     is 

the following for 1, 2,...x   in which 0, 0j    for each 1, 2j  . 
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where 
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Proof: The Probability mass function xf  of X  is given by 

( )xf P X x   
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where x  and k  are as given in (8) and (9). 
 
Result 3.2 Probability generating function (pgf) of X  following 1 2( , , )MIPD     
with pmf (7) is the following. 
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Proof: The pgf of X  with pmf (7) is  
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Simplifying (11) by applying the definition of exponential series, we get (10). 
 
Result 3.3 The mean and variance of the 1 2( , , )MIPD     are the following. 
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Proof is simple and hence omitted. 
 
Result 3.4 The r-th factorial moment [ ]r  of 1 2( , , )MIPD     with pgf (10) is the 

following, for 1, 2,...r   
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Proof. The factorial moment generating function (fgmf) ( )F t  of 1 2( , , )MIPD     
with pgf (3.4) is 
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On equating coefficient of 
!

rt

r
 on right side expressions of (15) and (16), we get 

(14). 
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the r  th factorial moment of ( , )IPD   . 
 
Result 3.5 A simple recurrence relation for the probabilities of 1 2( , , )MIPD     is 

the following for 1, 2,..x   with 0 0f  . 
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Proof. From (10), we have the following pgf of 1 2( , , )MIPD     
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On differentiating (18) with respect to s, we have 
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On equating coefficient of xs  on both sides of (19) we get (17). 
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Proof: From the expression (15), the fmgf ( )F t  of the 1 2( , , )MIPD     is 
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4. ESTIMATION 

In this section we discuss the estimation of the parameters  , 1  and 2  of 

the 1 2( , , )MIPD     by method of factorial moments, method of mixed mo-

ments and method of maximum likelihood. The parameters  , 1  and 2  of the 

1 2( , , )MIPD     have been estimated by the method of factorial moments as in 

the following. The first three factorial moments [1]  [2]  and [3]  of the MIPD  

are equated to the corresponding sample factorial moments [1]m , [2]m  and [3]m . 

Thus, we have the following system of equations: 
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Now factorial moment estimates of the parameters  , 1  and 2  are obtained 
by solving the non-linear system of equations (23), (24) and (25) numerically by 
using mathematical softwares such as MATHCAD, MATHEMATICA, MATH-
LAB etc. 

In method of mixed moments, the parameters  , 1  and 2  of the 

1 2( , , )MIPD     are estimated by using the first two sample factorial moments 
and the first observed frequency of the distribution. Thus the estimates are ob-
tained by solving the equations (23), (24) along with the following equation 
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where 1p  is the observed frequency corresponding to the first observed value, 
N , the observed total frequency and k  is as given in (9). 

In method of maximum likelihood, the parameters  , 1  and 2  of the 

1 2( , , )MIPD     are estimated by maximizing the following log likelihood func-
tion with respect to the parameters. 
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where xp  is the observed frequency of x events and z  is the highest value of x  

observed. Thus the maximum likelihood estimates of the parameters  , 1  and 

2  are obtained by solving the following system of normal equations. 
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x  and k  are as given respectively in (6) and (7). 
We present the fitting of positive Poisson distribution ( PPD ), intervened 

Poisson distribution ( IPD ), intervened generalized Poisson distribution ( IGPD ) 
and the modified intervened Poisson distribution ( MIPD ) to the following two 
data sets by the method of factorial moments, the method of mixed moments 
and the method of maximum likelihood in Tables 1 and 2. 

TABLE 1 

Comparison of fit of MIPD using various methods of estimation for the first data set 

 Expected frequency by method of 
 Factorial moments Mixed moments Maximum likelihood 

x Obsrvd. 
freqency PPD IPD IGPD MIPD PPD IPD IGPD MIPD PPD IPD IGPD MIPD 

1 213 210 200 204 228 213 213 213 213 210 191 206 217 
2 128 122 134 137 115 120 125 120 127 122 140 134 120 
3 37 52 50 43 38 51 48 48 41 52 48 43 43 
4 18 12 12 12 15 12 11 15 13 12 17 13 16 
5 3 3 3 3 3 3 3 3 4 3 3 3 3 
6 1 1 1 1 1 1 1 2 2 1 1 1 1 
7 0 0 0 0 0 0 0 0 0 0 0 0 0 

Total 400 400 400 400 400 400 400 400 400 400 400 400 400 
Estimates of  
parameters 

ˆ 1.16  ˆ 0.56

ˆ 0.47
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ˆ 0.61

ˆ 0.48
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ˆ 0.48
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Chi-square 
value 7.66 7.49 4.83 3.08 7.37 7.03 3.65 2.98 7.66 6.14 3.27 1.69 

P value 0.1 0.112 0.306 0.544 0.129 0.129 0.455 0.56 0.105 0.189 0.51 0.79 

 

TABLE 2 

Comparison of fit of MIPD using various methods of estimation for the second data set 

 Expected frequency by method of 
 Factorial moments Mixed moments Maximum likelihood 

x Obsrvd. 
freqency PPD IPD IGPD MIPD PPD IPD IGPD MIPD PPD IPD IGPD MIPD 

1 1062 1029 1033 1038 1060 1062 1062 1062 1062 1029 1083 1034 1062 
2 263 293 284 276 272 282 240 242 266 288 240 286 258 
3 120 138 143 135 126 106 142 129 114 143 107 128 118 
4 50 40 40 42 44 58 38 50 43 40 62 43 42 
5 22 20 20 29 15 16 35 30 25 20 30 28 30 
6 7 12 12 12 10 10 17 21 20 12 10 11 21 
7 6 1 1 1 5 0 0 0 3 1 1 2 2 
8 2 1 1 1 2 0 0 0 1 1 1 2 1 
9 0 0 0 0 0 0 0 0 0 0 0 0 0 
10 1 0 0 0 0 0 0 0 0 0 0 0 0 

10+ 1 0 0 0 0 0 0 0 0 0 0 0 0 
Total 1534 1534 1534 1534 1534 1534 1534 1534 1534 1534 1534 1534 1534 
Estimates of  
parameters 

ˆ 1.02  ˆ 0.28

ˆ 0.85






 

ˆ 0.14

ˆ 0.28

ˆ 0.003












 
1

2

ˆ 0.61

ˆ 0.48

ˆ 0.02











ˆ 0.65  ˆ 0.60

ˆ 0.38







ˆ 0.12

ˆ 0.30

ˆ 0.005











1

2

ˆ 0.301

ˆ 0.42

ˆ 0.40











ˆ 1.02  ˆ 0.33

ˆ 0.15






 

ˆ 0.15

ˆ 0.32

ˆ 0.005












 
1

2

ˆ 0.28

ˆ 0.40

ˆ 0.42











 

Chi-square 
value 9.82 9.41 6.69 4.67 19.17 16.37 5.35 3.89 9.8 9.68 5.8 3.63 

P value 0.08 0.09 0.25 0.46 0.005 0.006 0.375 0.565 0.08 0.085 0.326 0.69 
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The first data set given in Table 1 indicates the distribution of number of arti-
cles on theoretical Statistics and Probability for years1940-49 and initial letter N-
R of the author’s name. For reference, see (Kendall, 1961). The second data set 
given in Table 2 represents the distribution of 1534 biologists according to the 
number of research papers to their credit in the review of applied entomology, 
volume 24, 1936. For details see (Williams, 1944). 

Based on chi-square values and P values in the tables, it can be concluded that 

1 2( , , )MIPD     gives the best fit compared to the existing models such as posi-
tive Poisson distribution, intervened Poisson distribution and intervened general-
ized Poisson distribution. 

ACKNOWLEDGMENTS 

The authors would like to express their sincere thanks to the Editor and the anony-
mous Referee for carefully reading the paper and for valuable comments. 
 
Department of Statistics C. SATHEESH KUMAR 
University of Kerala 

Department of Statistics D.S. SHIBU 
University College, Trivandrum 

REFERENCES 

A.C. COHEN (1960), Estimating parameters in a conditional Poisson distribution, “Biometrics”, 16, 
pp. 203-211. 

P.C. CONSUL (1989), Generalized Poisson distribution: properties and applications, Marcel Dekker, 
New York.  

M. HUANG, K.Y. FUNG (1989), Intervened truncated Poisson distribution, “Sankhya” series 51, pp. 
302-310. 

M.G. KENDAL (1961), Natural law in science, “Journal of Royal Statistical Society”, series A 
124, pp. 1-18.  

D.P.M. SCOLLNIK (1995), Bayesian analysis of an intervened Poisson distribution, “Commu-nications 
in Statistics-Theory & Methods”, 24, pp. 735-754. 

D.P.M. SCOLLNIK (1998), On the analysis of the truncated generalized Poisson distribution using a 
Bayesian method, “Australian Bulletin”, 28, pp. 135-152. 

D.P.M. SCOLLNIK (2006), On the intervened generalized Poisson distribution, “Communication in 
Statistics-Theory & Methods”, 35, pp. 953-963. 

R. SHANMUGAM (1985), An intervened Poisson distribution and its medical application, “Biometrics”, 
41, pp. 1025-1029. 

R. SHANMUGAM (1992), An inferential procedure for the Poisson intervention parameter, “Biomet-
rics”, 48, pp. 559-565. 

J. SINGH (1978), A characterization of positive Poisson distribution and its application, “SIAM Jour-
nal of Applied Mathematics”, 34, pp. 545-48. 

C.B. WILLIAMS (1944), Number of publications written by biologists, “Annals of Eugenics”, 12, pp. 
143-146. 



Modified intervened Poisson distribution 499 

SUMMARY 

Modified intervened Poisson distribution 

In this paper, we develop modified intervened Poisson distribution (MIPD) and con-
sider some of its properties. Some real life data sets are given here to illustrate MIPD is 
the best fit among intervened generalized Poisson distribution (IGPD), intervened Pois-
son distribution (IPD) and Positive Poisson distribution (PPD). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 




