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MARSHALL-OLKIN GENERALIZED ASYMMETRIC LAPLACE 
DISTRIBUTIONS AND PROCESSES 

E. Krishna, K.K. Jose 

1. INTRODUCTION 

Asymmetric Laplace distribution has received much attention in recent years. 
It can be used in modeling currency exchange rates, interest rates, stock price 
changes etc. With steeper peaks and heavier tails than normal distribution, 
Asymmetric Laplace laws reflect properties of empirical financial data sets much 
better than normal model. More recently several properties, generalizations and 
applications have been reported demonstrating that it is a natural and sometimes 
superior alternative to the conventional Gaussian distribution (Kotz et al., 2001);. 
The skew Laplace distribution has also gained an important role in Statistical 
analysis related to new emerging fields like Micro array modelling. (Bhowmick et 
al., 2006); recently applied a Laplace and Asymmetric Laplace distribution for 
identification of differential expression in micro array experiments. In (Purdom 
and Holmes, 2005); an Asymmetric Laplace distribution is used to fit the gene 
expression distribution and its performance is compared to the Gaussian distribu-
tion. A general family of Asymmetric Probability density functions has been in-
troduced by (Arellano et al., 2004). (Julìa and Vives-Rego, 2005); used Skew-
Laplace distribution to model the bacterial sizes in axenic cultures. (Jayakumar 
and Kuttikrishnan, 2006); introduced and studied the properties of Marshall-
Olkin Asymmetric Laplace distribution (Sim, 1994); discussed various issues such 
as diagnostic checking, inference etc with respect to non-normal time series mod-
eling. 

The Laplace random variable can be regarded as the difference of i.i.d. expo-
nential random variables. Now we shall extend this to develop a generalized 
Laplace random variable which can be regarded as the difference of two gamma 
random variables. Let 1X  and 2X  be two independent random variables such 

that X1~ Gamma 1 1( , )   and X2 ~ Gamma 2 2( , )  . Then 1 2=L X X  fol-

lows a generalized Asymmetric Laplace distribution with parameters 1 2 1 2, , ,    . 

When 1 2 1 2= = , = =       we get symmetric generalized Laplace distribution 
introduced by (Mathai, 1993). 
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The characteristic function of the generalized Asymmetric Laplace distribution is 
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In section 2, we introduce the Marshall-Olkin generalised Asymmetric Laplace 
distribution 1 2 1 2( , , , , )MOGAL       and discuss certain properties. In section 
3, the approximated form of the new distribution is derived and its self-
decomposabilty property is established. In section 4, we introduce two first order 
autoregressive (AR(1)) models with 1 2 1 2( , , , , )MOGAL       as marginal distri-
bution.Sample path properties are explored for the new model. In section 5, 

AR(1) model II is extended to thk  order.In section 6 the parameters are esti-
mated by the method of m.l.e.’s and the distribution is fitted for a real data.  

2. MARSHALL OLKIN GENERALIZED ASYMMETRIC LAPLACE DISTRIBUTION 

Now we introduce a new parameter   using Marshall-Olkin method (for de-
tails see Marshall-Olkin 1997); to obtain a Marshall-Olkin generalized Asymmet-
ric Laplace distribution denoted by MOGAL 1 2 1 2( , , , , )     . Its characteristic 
function is given by  
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Mean and variance of the MOGAL 1 2 1 2( , , , , )      distribution are respec-
tively, 

1 2 1 2
1

1 2

2 2 2
1 2 1 2 1 1 2 1 2 1 2 2 2 1

2 2
1 2

=

( ) [ ( 1) 2 ( 1) ]
= .

( )

   


 

              


 




     
 



Marshall-Olkin Generalized Asymmetric Laplace distributions and processes 455 

Definition - 1 A random variable Y is said to be geometrically infinitely divisible 
if for every (0,1)p  there exists a sequence of i.i.d random variables 
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1 2, , ....p pX X  such that 
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Y X , and 1[ ( )= ]= (1 )kP N p k p p  , 

=1, 2,...k  where Y, ( )N p , ( ) ,( = 1, 2,....)p
jX j  are independent. 

Theorem - 1 Suppose 1 2, ,X X   are mutually independently and identically distrib-

uted as MOGAL 1 2 1 2( , , , , )      distribution and N , independent of 1 2, , ...X X , 
be a geometric random variable with probability of success 0 < < 1p  then the geo-

metric compound 1 2 NX X X    follows the MOGAL 1 2 1 2( , , , , )p     . 

Proof. The geometric compound 1 2 NX X X    has its characteristic function  
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3. APPROXIMATED ASYMMETRIC LAPLACE DISTRIBUTION 

For 1 2= =    (3) reduces to 
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Now the p.d.f. of MOGAL ( , , , )     is (see Jayakumar and Kuttikrishnan, 
2006). 

2

exp 0

( )=
1

exp < 0

x if x

f x

x if x

 
 

 

 

  
     


  

   
 

 (4) 

where 

2 2

2
= ,  > 0

4

 
 

     
 

The graphs of the p.d.f for various parameter values are given in figure 1 and 
figure 2. 

 
Figure 1 – Approximated Asymmetric Laplace densities, = 1  and  =0,1,1.5,3,4 and  = 
0.8,1.8,2,5,8 which corresponds to  = 1,0.69,0.60,0.53,0.51. 
 

 
Figure 2 – Approximated Asymmetric Laplace densities, = 1  and  = 0,-1,-1.5,-3,-4 and  = 
0.8,1.8,2,5,8 which corresponds to  = 1,1.44,1.66,1.88,1.93. 
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For positive values of   asymmetry is to the right of mode but for negative 
values of   the asymmetry is to the left. 

 
Definition 2 A distribution F with characteristic function ( )t  is called self-

decomposable if and only if for every (0,1)  , there exists a characteristic func-

tion ( )t  such that ( )= ( ) ( )t t t     
 
Theorem 2 Let X~ MOGAL ( , , , )     and let 1X  and 2X  are exponential random 

variables with parameter 
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(see Kozubowski and Podgòrski, 2000) 
 
Proof Let 1 1 2 2=U B X B X . Then 
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On simplification and using the fact that 
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Definition 3 We define the geometric generalised Asymmetric Laplace distribu-
tion ( , , )GGAL     as one with characteristic function 
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It is called so since ( )t  in (2) can be written as,  
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Theorem 3 Geometric generalised Asymmetric Laplace distribution 

1 2( / , , )GGAL      is the limit of geometric sum of 1 2( / , , , )MOGAL n     
random variables where the geometric random variables have the probability of 
success 1/n . 

 

Proof. The characteristic function of 1 2( / , , , )MOGAL n     is 
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Then the characteristic function of the geometric compound of independent 
and identical MOGAL 1 2( / , , , )n     random variables with geometric random 
variable N having probability of success =1/p n  is  
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4. AR(1) PROCESS WITH MOGAL 1 2 1 2( , , , , )      MARGINAL DISTRIBUTION 

The past several decades witnessed the emergence of a number of autoregres-
sive models constructed for the generation of non-Gaussian processes in discrete 
time because many naturally occurring time series are non-Gaussian. Since (Gaver 
and Lewis 1980); firstly built the fundamental frame work, the autoregressive 
model with non-Gaussian marginal distribution has received a tremendous atten-
tion in the recent two decades. The work by (Anderson and Arnold 1993); (Jaya-
kumar and Pillai 1993); and (Seetha Lekshmi and Jose 2004a, 2004b, 2006); in this 
area can be referred.  

4.1 AR(1) model I 

Consider the model  

1= ,| |<1n n nX aX a   (6) 

where 1 2, , ...   are i.i.d. random variables and n  is independent of 

1 2 1, , ..., nX X X  . 

Theorem. 4 The AR(1) model { }nX  in (6) is strictly stationary with MOGAL 

1 1 2 1 2( , , , , )X      marginal distribution if and only if { }n  has the characteristic 
function 
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and 0X  follows MOGAL 1 2 1 2( , , , , )     . 
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The converse can be proved as follows. If 0X  follows MOGAL 

1 2 1 2( , , , , )      and { }n  has characteristic function (7) it can be verified by in-

duction that nX  follows MOGAL 1 2 1 2( , , , , )     . 

Assuming that 1nX   is MOGAL we have, 
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Hence the process is strictly stationary. 
 
Remark. Suppose 0X  follows any arbitrary distribution. Then we have, 
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Hence the process in (6) is asymptotically stationary with MOGAL marginal 
distribution. 
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4.2 Distribution of kT  and Joint Characteristic function 

Now we address two important aspects of the autoregressive model in (6) with 
MOGAL 1 2 1 2( , , , , )      marginal distribution. For any positive integer k , the 
sum Tk =Xn+ Xn-1+...+Xn+k-1 can be written as, 
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Its characteristic function is obtained as 
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The distribution of kT  can be obtained by inverting the above expression. The 

joint characteristic function of 1( , )n nX X   is  
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This reveals that the autoregressive process (6) with MOGAL 1 2 1 2( , , , , )      
marginal distribution is not time reversable.  

4.3 AR(1) Model II 

Consider a first order autoregressive process with structure  

1

, . .
=

, . . 1 , 0 1, 1,
n

n
n n

w p p
X

X w p p p n






     

 (8) 

where { }n  is a sequence of i.i.d random variables independent of { }nX .  

Theorem 5 Let { }nX  be an (1)AR  process having structure given by (8) and 

{ }n  is a sequence of i.i.d random variables with Asymmetric Laplace distribution 

independent of { }nX . Then { }nX  is stationary Markovian with MOGAL 

1 2 1 2( , , , , )      marginal distribution and conversely. 
 
Proof First we shall prove the sufficiency part. Using the structure stated above 
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which is MOGAL 1 2 1 2( , , , , )p     . C onversely we have, 
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which is the characteristic function of Asymmetric Laplace distribution. 
Now a simulation study of the sample path of the process is conducted. The 

corresponding sample path and histogram are given in figure 3 for various pa-
rameters combinations. 

Figure 3 
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This shows that distribution gives rise to high peaks and can be used to model 
heavy-tailed data exhibiting high peaks.  

5. GENERALISATION TO AR(K) MODEL  

Now we generalize the Type II first-order MOGAL autoregressive process 

given by(8) to a thk  order MOGAL autoregressive model as follows. 
The higher order autoregressive model constructed by Lawrance (1982) is  
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where 0 < <1 ( =1, 2,..., )ip i k  such that 1 2 ... =1kp p p    and n  is independ-

ent of 1 2, , ...n nX X  . In terms of characteristic function (9) can be rewritten as, 
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This shows that model (9) can be defined as in the case of model II given by (8).  

6. ESTIMATION OF PARAMETERS AND DIAGNOSTIC CHECKING 

In this section we address the problems of statistical inference as well as diag-
nostic checking of the new model,see Sim(1994). First we estimate the parameters 
of the approximated distribution given by (4) and then apply it to model a finan-

cial data. Now we make a re-parameterisation by taking 2 =
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in (4). Then the p.d.f. becomes  
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Fixing  , the maximum likelihood estimates of   and   are obtained. Then 
the estimate of   is obtained by maximising the log likelihood function. 

The log likelihood is given by 
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By equating the partial derivatives to zero and solving for   and   we get 
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By iteration ̂  can be obtained.  

6.1 Application to a financial data 

As part of diagnostic checking, we apply the above results with respect to the 
data on weekly price of Gold/gm from 2006 February to 2010 March collected 
from District Statistical Office, Alappuzha, Kerala, India. Estimates of the pa-
rameters are respectively obtained as 

ˆˆ ˆ= 0.5898, = 0.4904, =1.2580    

The histogram corresponding to actual data and the fitted frequency curve are 
superimposed and presented in figure 4.  

 
Figure 4 



 E. Krishna, K.K. Jose 466 

From the above figure it can be observed that they are very close to each other 
showing that the newly developed distribution is appropriate to model the above 
data. 
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SUMMARY 

Marshall-Olkin Generalized Asymmetric Laplace distributions and processes 

The Marshall-Olkin Generalised Asymmetric Laplace distribution is introduced and 
studied. An approximation is made and various properties including self decomposability, 
geometric infinite divisibility, limit properties etc.are established. Two autoregressive 
processes namely model I and model II are developed and studied. The sample path 
properties are explored for various parameter combinations. The distribution of sums, 
joint distribution of contiguous observations of the process, etc are obtained. The model 
is extended to thk  order also.Parameters are estimated by the method of maximum likeli-
hood and a real data on gold prices is fitted to the new model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 




