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IN MULTICENTRIC STUDIES: A HIERARCHICAL BAYESIAN APPROACH 

G. Roli, P. Monari 

1. INTRODUCTION AND BACKGROUND 

When a case-control study aims to investigate the exposures which can be the 
cause of the occurrence of a disease, epidemiologists often deal with some com-
plications that need to be somehow controlled during the analysis. In such cases, 
the use of the models conventionally employed becomes improper, yielding ap-
parent associations between some exposures and the disease and unstable corre-
sponding estimates. 

We consider two kinds of such complications. The first one concerns the 
structure of the data and occurs whenever subjects are nested into higher level 
units involving their own variability and a dependence among the related observa-
tions. The commonest examples in epidemiology lie in patients admitted to dif-
ferent hospitals or wards, as well as subjects living in various neighbourhoods, 
towns or countries (Leyland and Goldstein, 2001). More generally, the nested 
structure of data is a common phenomenon, especially in behavioural and social 
research, where the evaluation of the relationship between individuals and society 
is of crucial importance. In all these cases, the dependence of data is a focal inter-
est of the research. Conversely, the hierarchy of data can be generated by the 
sampling design, such as in the multi-stage sampling, which is frequently em-
ployed in the traditional surveys to reduce the costs of data collection. As a result, 
the dependence is treated as a nuisance which requires further adjustments during 
the analysis. Whatever the dependence arises from, it is “neither accidental nor 
ignorable” (Goldstein, 1999). Indeed, the risks of drawing wrong conclusions are 
high if the clustering of the data is disregarded (Snijders and Bosker, 1999). 

The joint analysis of multiple exposures gives rise to the second complication. 
Indeed, many epidemiologic studies involve a set of potential effects to be com-
pared and, as a result, face problems of multiple inference (Thomas et al., 1985). 
When a conventional analysis is carried out, these problems are revealed by fail-
ures in the convergence of the estimation process or by implausible large and un-
stable estimates, especially when the samples are small and sparse (Greenland, 
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1992 and 1993). The main reason is that these effects are often correlated. There-
fore, we need to take into account for a covariance structure among them to re-
duce the random errors in the estimates. 

Both these complications have been tackled separately in various applications 
and simulations by using hierarchical modelling (see, e.g., Greenland, 1992; Witte 
et al., 1994; Diez-Roux, 2000 and 2004). Over the last 50 years, hierarchical mod-
elling has appeared in various forms to address many multiparameter problems, 
involving two or more levels of analysis and specifying various relationships 
among study variables and parameters. In epidemiological research, some note-
worthy applications include disease mapping (see, e.g., Bernardinelli et al., 1995), 
spatial and spatio-temporal analysis (Lawson, 2001), study of health-care pro-
grams and institutions (Burgess et al., 2000). Moreover, the large increase in com-
puting power over recent decades has strongly supported the spreading of this 
approach as a practical and powerful analysis tool (Greenland, 2000; Raudenbush 
and Bryk, 2002; Graham, 2008). 

When the structure of the data is nested, hierarchical modelling allows to han-
dle simultaneously multiple levels of information and dependencies (Hox, 1995; 
Snijders and Bosker, 1999; Leyland and Goldstein, 2001; Raudenbush and Bryk, 
2002). In this setting, we often refer to multilevel regression models. These can 
appropriately address different research aims: (i) improved estimation of the indi-
vidual effects under investigation (i.e., all the available information at both levels 
are efficiently used in order to exploit both the group features and the relations 
existing in the overall sample); (ii) evaluation of the cross-level effects (e.g., how 
variables measured at one level affect relations occurring at another); and (iii) de-
composition of the variance-covariance components at each level. Although it 
was firstly introduced and used in educational and social fields, during the past 
decade the multilevel approach has been increasingly employed also in epidemi-
ologic analysis as a powerful strategy to explain the correlation between analytical 
units (see, for example, Leyland and Goldstein, 2001; Diez-Roux, 2004; Cubbin 
and Winkleby, 2005). 

As far as the multiple exposure issue is concerned, numerous authors have 
shown that empirical and semi-Bayes estimates from hierarchical models can im-
prove standard regression estimation, allowing for correlated associations and 
showing to be less sensitive to sampling error and model misspecification (Mor-
ris, 1983; Greenland, 1992 and 1993; Greenland, 1997). Indeed, relying on the 
presence of some additional information suitable to mediate the final effects of 
the exposures, they can be arranged in a second-stage regression to model simi-
larities among the parameters of interest (Witte et al., 1994; Rothman et al., 2008). 

Although developed separately and for different purposes, hierarchical model-
ling for correlated effects and nested data have important communalities, which 
can be strengthened especially when a Bayesian perspective is adopted. The use 
of Bayesian methods for epidemiological research is a relevant topic discussed by 
several authors (Greenland, 2006 and 2007; MacLehose et al., 2007; Graham, 
2008). They all support the use of prior assumptions as they are more reasonable 
than those implicitly made by frequentist models and address the problems of 
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sparse data, multiple comparisons, subgroup analysis and study bias. The main 
feature is that prior expectations on the parameters are embedded in a probability 
model with its own uncertainty to form a hierarchy of models and parameters. As 
a result, the corresponding posterior estimates are compromises between summa-
ries of the sample data and such prior expectations. 

In this framework, the assignment of prior judgements is of primary impor-
tance. In general, a reasonable Bayesian analysis needs a prior that reflects results 
from previous studies or review. A fully-Bayesian (FB) approach forces all the pa-
rameters in the model to be random and corresponding probability distributions 
to be assigned (Gelman et al., 2003). When these prior distributions are in the 
form of prior data, we refer to empirical prior, arising from frequentist shrinkage-
estimation or empirical-Bayes (EB) methods (Maritz and Lwin, 1989; Carlin and 
Louis, 1998). Moreover, the increasing availability of data that can be easily linked 
each other by computer programs has strongly supported the use of the EB 
methods. Actually, both the hierarchical models described above for nested data 
and correlated effects involve the EB approach, as they employ additional infor-
mation on the crucial parameters of interest arranged in a hierarchy of probability 
models. 

Instead of assigning a full prior distribution, another method consists in  
fixing in advance a specific value for one or more parameters using background 
information. This strategy, called semi-Bayes (SB) approach, is commonly em-
ployed to avoid the drawback of absurd estimates of some (hyper-) parameters 
(Greenland, 1992 and 2000). Such criteria for the assignment of the priors  
can be jointly adopted to specify the probability distributions of different parame-
ters. Indeed, the Bayes empirical-Bayes (BEB) methods exploit the available prior 
data for some (hyper-) parameters and some kinds of proper distributions for  
the others (Deeley and Lindley, 1981). In the latter case, the specification can  
involve different levels of knowledge, as well as reasonable assumptions, to  
develop an informative prior. Otherwise, noninformative distributions can be 
specified. 

In this paper, we aim at extending the hierarchical approach in a multilevel set-
ting for the analysis of multiple exposures and highly correlated effects. We at-
tempt to improve the ordinary estimates of such effects by using some descrip-
tive information to develop a second-stage regression model mediating the effects 
of the exposure variables, separately by group membership and into a single 
analysis. These additional data are second-stage covariates which can arise from 
specific features of the clusters, as well as information about the regressors. We 
adopt a BEB perspective and exploit the previous knowledge on the other (hy-
per-) parameters to specify prior distributions, which are suitable with respect to 
the problem at hand. The main purpose is to provide a flexible and powerful 
framework for the analysis of complex case-control data and to encourage the use 
of the Bayesian methods in epidemiology.  

The method we propose is conceived basing on a real study carried out at 
European level to investigate the association of dietary exposures with the occur-
rence of colon-rectum cancer on individual data. Thus, a multilevel setting is in-
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volved, as individuals are enrolled from different countries and centres of 
Europe, and we are interested in partitioning the different effects of dietary expo-
sures across these centres. Moreover, additional information on the nutrient 
compositions of each dietary item are arranged to model the correlation among 
the exposures. Then, comparing our results with those obtained by several con-
ventional regressions allows us to measure the gains in the final estimates of the 
crucial parameters. 

The paper develops as follows. We firstly introduce the study and data used to 
develop the hierarchical regression method we propose. The model based on the 
real data and corresponding assumptions under the Bayesian framework are de-
scribed in section 3. In section 4, we compare the hierarchical Bayesian regression 
method with the conventional regression results with respect to the study applica-
tion. The last section summarizes our findings and concludes. 

2. DATA: THE EPIC STUDY 

We consider data drawn from the European Prospective Investigation into 
Cancer and Nutrition (EPIC) study. EPIC is an ongoing multi-centre study de-
signed to investigate the relationship between nutrition and cancer, with the po-
tential for studying other diseases as well. Its participants have been enrolled from 
several centres in 10 European countries and followed for cancer incidence and 
cause-specific mortality for several decades. During the enrolment, which took 
place between 1992 and 2000, information was collected through a non-dietary 
questionnaire on lifestyle variables and through a dietary questionnaire (EPIC 
Large scale Intake Assessment) addressing usual diet (see Riboli and Kaaks, 1997; 
Riboli et al., 2002). The EPIC study is coordinated by the Nutrition and Hor-
mones Group of the International Agency for Research on Cancer (IARC) in 
Lyon, France. 

In this work, we consider a sample of 24,376 individuals nested in the 27 
European centres of recruitment. Subjects who developed a colon-rectum cancer 
after the enrolment and until the last observed year (i.e., 2005) are included in the 
analysis. Then, 5% of controls are randomly selected by centre membership. 
Some descriptive statistics about the sample data are reported in Table 1. 

The main aim of the analysis is to evaluate the effect of multiple dietary expo-
sures on the occurrence of colon-rectum cancer cases, separately by centre mem-
bership. Indeed, empirical evidence shows significant differences among these 
groups with respect to the occurrence of the disease (Pearson chi-squared= 
542:7; p-value= 0:000). 

The dietary information collected during the enrolment refers to the internal 
EPIC-SOFT food classification system and the corresponding individual food 
intakes are expressed in grams-per-day (gm/d). A list of 30 food groups are se-
lected to be analysed according to the suggestions of nutritionists and epidemi-
ologists working on the study (Table 2). 
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TABLE 1 

Descriptive statistics 

Centre Women 
% 

Age 
Mean (SD) 

BMI 
Mean (SD) 

Cases Controls Total 

North-East of France 100 56.4 (6.7) 23.5 (3.5) 83 1525 1608 
North-West of France 100 54.5 (7.1) 22.9 (3.3) 35 538 573 
South of France 100 56.1 (5.9) 23.1 (3.4) 47 853 900 
South coast of France 100 55.3 (5.4) 23.2 (3.0) 20 457 477 
Florence 61.9 54.8 (6.1) 25.8 (3.5) 54 637 691 
Varese 76.4 55.3 (7.4) 25.9 (4.3) 47 559 606 
Ragusa 41.4 53.8 (5.8) 27.4 (3.9) 13 296 309 
Turin  21.7 58.1 (3.8) 26.6 (3.7) 27 482 509 
Naples  100 57.5 (7.8) 27.2 (4.8) 12 247 259 
Asturias  51.3 54.1 (7.7) 28.3 (3.9) 22 413 435 
Granada  58.6 54.7 (7.6) 30.6 (4.5) 18 378 396 
Murcia  63.2 52.0 (8.9) 28.7 (4.6) 17 410 427 
Navarra  39.3 55.4 (5.7) 29.4 (3.6) 28 388 416 
San Sebastian  33.8 53.6 (7.4) 27.9 (3.7) 36 406 442 
Cambridge  44.9 65.0 (7.8) 26.3 (3.8) 154 1112 1266 
Oxford Health conscious  67.8 63.7 (13.0) 24.0 (3.7) 95 2297 2392 
Oxford General population  61.5 56.7 (7.2) 26.0 (4.3) 28 335 363 
Bilthoven  34.4 53.6 (6.4) 26.2 (3.7) 33 1079 1112 
Utrecht  100 60.4 (6.0) 25.7 (4.0) 135 783 918 
Heidelberg  28 56.9 (5.7) 27.1 (4.0) 82 1185 1267 
Potsdam  42.2 57.0 (6.8) 27.2 (4.1) 90 1282 1372 
Malmo  51.6 61.2 (6.6) 25.8 (3.9) 194 1206 1400 
Umea  43.5 56.6 (5.1) 25.7 (3.9) 83 1212 1295 
Aarhus  46.4 58.3 (4.4) 26.0 (3.9) 125 824 949 
Copenhagen  44.4 58.5 (4.2) 26.2 (4.1) 286 1906 2192 
South & East of Norway  100 51.8 (3.8) 24.6 (4.0) 29 970 999 
North & West of Norway  100 50.6 (3.5) 25.3 (3.6) 15 790 805 
Total 58.5 58.4 (6.3) 25.9 (3.9) 1808 22568 24376 
 
 

TABLE 2 

Dietary items and corresponding average intakes and standard deviations (gm/d) 

Dietary Items Mean SD 
Potatoes and Other Tubers 108.097 80.743 
Leafy Vegetables 23.324 36.617 
Fruiting Vegetables  55.57 49.021 
Root Vegetables  27.35 32.656 
Cabbages  25.992 37.925 
Grain and Pod Vegetables  8.879 13.569 
Stalk Vegetables, Sprouts  8.974 12.102 
Mixed Salad, Mixed Vegetables  13.769 29.568 
Legumes  11.463 21.77 
Fruits  218.786 171.468 
Nuts and Seeds  3.189 8.04 
Mixed Fruits  3.881 12.097 
Milk + Milk beverages  226.287 230.397 
Yogurt  67.816 92.272 
Fromage blanc, petit suisse + Cheeses  44.068 41.252 
Pasta, rice, other grain  51.657 61.304 
Crispbread, Rusks  8.593 15.972 
Breakfast Cereals  22.014 55.757 
Beef  19.651 20.464 
Pork  18.989 19.819 
Poultry  24.664 27.979 
Processed meat  33.931 31.253 
Fish  29.514 28.825 
Eggs and Egg Product  18.833 18.136 
Vegetable Oils  7.224 11.452 
Margarines  15.506 17.607 
Deep Frying Fat  0.04 0.553 
Chocolate + Confectionery + Syrup  13.902 20.901 
Coffee  452.99 400.388 
Sauces  22.872 22.101 
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Additional dietary information on the nutrient compositions are further avail-
able. In detail, these concern the amounts of constituents for one gram of each 
food. These data are arranged in matrices where the generic k-th row refers to the 
amounts of food constituents for the k-th dietary exposure. Such matrices are 
usually named tables of nutrient composition and may vary between countries 
and centres. As a result, they can be generally regarded as centre-specific informa-
tion which can contribute to explain the variability in the dietary effects among 
the centres. According to the dietary items involved into the analysis, we select a 
list including the most considerable nutrients (Table 3). 

TABLE 3 

Nutrients and corresponding unit of measurement 

Nutrients Unit of measurement 
Total proteins  g 
Saturated fatty acids  g 
Monosaturated fatty acids  g 
Polyunsaturated fatty acids  g 
Starch  g 
Sugar  g 
Fibre  g 
Calcium  mg 
Iron  mg 
Vitamin D  g 
Vitamin E  mg 
Beta-carotene  g 
Retinol (performed vitamin A)  g 

3. METHODS: THE HIERARCHICAL MODEL FOR CORRELATED EXPOSURES AND NESTED DATA 

Let’s consider the multicentric case-control study introduced above, where the 
presence/absence of colon-rectum cancer is denoted by the disease indicator yij 
(yij = 1 for cases, yij = 0 for control units) for the i-th subject in centre j and the 
food intakes are summarized by the symbol xijk for each dietary exposure k.  

A conventional analysis would use the method of Maximum Likelihood (ML) 
to estimate the effects jk of the dietary exposures in centre j according to the fol-
lowing logistic regression 

logit
1 1

[ ( | , ]
K P

ij ij ij j jk ijk jp ijp
k p

E y x w  
 

   x w  (1) 

where a set of potential confounders (i.e., age at recruitment, gender, body mass 
index (BMI), smoking status (smoker-never-former-unknown), physical activity at 
work (sedentary occupation-standing occupation-manual work-heavy manual 
work-non worker-unknown), alcohol intake) denoted by wijp are embedded in the 
model specification in order to control for their effects jp (Rothman et al., 2008). 

When the data structure is hierarchical with subjects (level 1) nested in clus-
ters/centres (level 2), the basic independence assumption across units is violated. 
If we ignore this within-cluster dependence, the conventional analysis yields in-
correct standard errors and inefficient estimates (Diez-Roux, 2000). Therefore, 
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unless some different statistical models are introduced, we should be forced to 
carry out several ordinary logistic regressions, one for each centre of enrolment j. 

A proper method to manage correlations among the responses is represented 
by the hierarchical modelling for nested data or, more simply, multilevel methods 
(Hox, 1995; Snijders and Bosker, 1999; Leyland and Goldstein, 2001; Rauden-
bush and Bryk, 2002). This allows to unify the analysis across the centres, parti-
tion the variability at both levels and choose the parameters to be random among 
the groups. Under this perspective, the logistic regression (1) represents a level-1 
model which is part of a unique analysis. In our application, we further assume 
that the intercepts αj and the dietary coefficients βjk may vary across the centres. 
Conversely, the effects of confounders can be reasonably assumed to be the same 
in all the groups, i.e. 

logit
1 1

[ ( | , ]
K P

ij ij ij j jk ijk p ijp
k p

E y x w  
 

   x w  (2) 

According to multilevel approach, at level 2 the random intercepts are mod-
elled to control for the multilevel structure of the data (i.e., the within-centre de-
pendence). Here, no additional covariates for the centres are available. Therefore, 
we consider an empty model for the intercepts which splits the random parame-
ter into a common effect 0 and a residual term uj, yielding the differences among 
the centres:  

0j ju    (3) 

where the uj are assumed to be independent and normally distributed with null 
means and common variances  2. 

As far as the random slopes, which represent the key objective of the analysis, 
are concerned, we need to control for interactions and collinearity among the 
large number of dietary items which are involved. Conversely, inference results 
can be invalidated (Morris, 1983; Greenland, 1992 and 1993; Greenland, 1997). 
Moreover, the sub-samples generated by the nested data structure can be too 
sparse and small to yield accurate estimates. A level-2 regression for slopes in the 
multilevel sense can only partially model the associations among the exposures. A 
more appropriate solution should include some information mediating the expo-
sures in order to explain (part of) their associations. Therefore, the data on con-
stituents for each food and centre (denoted by zjkq for q-th nutrient) are used to 
develop a level-2 regression model for the dietary coefficients:  

0
1

Q

jk q jkq jk
q

z   


    (4) 

where we assume that the effects of the food exposures on the colon-rectum 
cancer are partially mediated by the effects of nutrients q (with q=1, ..., Q). In 
this application, we can suitably suppose that the values of the level-2 residual 
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variances related to model (4) will be small for all the food effects. Indeed, once 
the centre-specific information on nutrients are considered, we believe that the 
variability of dietary effects among the centres would be entirely explained. As a 
result, the residuals jk can be assumed to hold the simple hypothesis of inde-
pendence and normal distribution with null means and constant variances, de-
noted by  2, and to be further independent on uj. 

3.1. The Bayesian perspective 

The hierarchy of models is completed by adopting a Bayesian perspective, 
where the other parameters are further considered as random with their own 
prior distribution to be specified. This is more precisely a BEB approach, as in 
equation (4) the prior distribution of the dietary effects is assigned by regressing 
on observed data (i.e. nutrient compositions).  

The Bayesian approach would ensure more credible results with respect to those 
obtained by the frequentist methods, especially regarding the estimation of level-2 
variance  

2. Indeed, the frequentist EB approach (Witte et al., 1998 and 2000) often 
yield null estimates for  

2 leading to an extreme shrinkage estimation of the dietary 
effects toward the estimated prior means. This seems more likely to reflect a mar-
ginal likelihood for  

2 with peak at zero, rather than true under dispersion 
(Greenland, 1992). Moreover, a credible result would achieve a more reasonable 
positive value for  

2. Indeed, it represents the uncertainty about the residuals jk and 
therefore also about the estimation of jk after incorporating the level-2 informa-
tion. In particular, if  

2 tends to ∞ the hierarchical model and the conventional lo-
gistic regression come to the same results with respect to jk. On the contrary, if  

2 
= 0, then the residuals jk result to be null, meaning that we implicitly assume the 
absence of any effects of dietary items beyond those of nutrients. 

Other works suggest the SB approach as a good and easy strategy to tackle the 
problem of null estimation of the level-2 variance by setting suitable values for 2 
(Greenland, 1992; Witte et al., 1998). Despite SB estimates appear to be better 
than EB ones when the sample sizes and the ratio of subjects to parameters are 
small, a great caution to overspecify these values is required, especially when ei-
ther the sample size or number of parameters are large (Greenland, 1992). 

Here, by adopting a Bayesian approach we are allowed to assign a fully reason-
able distribution to the hyper parameter  

2 by letting the data can contribute to its 
final estimation. We base on plausible ranges of variation for log normal random 
dietary effects. More specifically, in model (4) the log ORs (i.e. jk) are implicitly 

supposed to be normally distributed with means jk = 0
1

Q

q jkq
q

z 


  and vari-

ance  
2. Therefore, a priori, 90% of values of each jk are believed to lie in inter-

val jk ± 1.645 and, as a consequence, jk95%-jk5% = 2 × 1.645 ×  = 3.29. We 
believe a 2-fold variation between the ORs for the upper and lower 5% of units is 
reasonable, that is jk95%-jk5% = log 2. Hence, our prior guess on the standard de-
viation  is log 2/3.29  0.21, corresponding to a precision term  -2 equal to 22.53. 
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To reflect our uncertainty in this prior guess, we believe that 4-fold variation be-
tween the upper and the lower 5% of units is very unlikely (say, less than a 1% 
chance). Thus, lower 1% quantile of our prior distribution for the precision  -2 
can be supposed to be 5.63. Assuming both the hypothesis are consistent with 
the problem at hand, these are sufficient to specify an informative proper distri-
bution for the hyperparameter  -2, that is a Gamma probability distribution of pa-
rameters 5 and 0.22 for shape and rate, respectively, i.e. 

2   Gamma(5; 0.22) (4) 

For the other (hyper) parameters we assign proper and vague prior distribu-
tions (Gelman et al., 2003).  

The Bayesian analysis would ensure that inference about every parameter fully 
takes into account for the uncertainty about all other parameters. As a result, it 
provides the estimation of the joint posterior distribution for all the unknown pa-
rameters. The need for numerical integration is avoided by taking repeated sam-
ples from the posterior distributions using the MCMC methods and Gibbs sam-
pling. These procedures are implemented by using the software WinBUGS, ver-
sion 1.4 (Spiegelhalter et al., 2003). A total of 30,000 iterations were run with a 
burn-in of 20,000. 

4. RESULTS 

In order to measure the improvement in the estimates of dietary effects, we 
compare the results from the hierarchical Bayesian model we propose with those 
obtained by carrying out several conventional analysis (1), separately by centre of 
enrolment j. 

We select some results, which are the most representative across the large 
number of estimates. Thus, in Tables 4 to 9, the ORs and their 95% Credibility 
(or simply Confidence for the ordinary regressions) Intervals (CI) are calculated 
according to food-specific values of unit increase which are the sample standard 
deviations reported in Table 2. 

The results from the conventional disease model are notably affected by prob-
lems of sparse data which preclude the full estimation of each dietary effect on 
the occurrence of colon-rectum cancer. In some cases, the ML estimation fails to 
converge because the predictors are highly correlated. Even when the conver-
gence is achieved, a great number of estimates result with large and unstable ab-
solute values, suggesting implausible strong associations according to the relevant 
diet and colon-rectum cancer literature. Moreover, when the results are compared 
across different areas, there are discordant values. As an example, let’s consider 
the extremely large and unstable estimation of the cabbages effect in Turin 
(OR=5.503 and CI=0.089–340.060 for 37.9 grams of unit increase). This estimate 
appears to be strongly different from the most part of the corresponding results 
in other areas, which conversely identify the intakes of cabbages as a protective 
factor for colon-rectum cancer. 
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TABLE 4 

Estimated ORs (95% CI) by centre: milk and milk beverages 

Centre Ordinary logistic regression Hierarchical Bayesian model 
North-East of France 0.892 (0.624-1.276) 0.923 (0.809-1.051) 
North-West of France – 0.948 (0.822-1.099) 
South of France – 0.904 (0.787-1.039) 
South coast of France 0.079 (0.009-0.700) 0.896 (0.772-1.039) 
Florence 0.883 (0.487-1.600) 0.925 (0.807-1.064) 
Varese – 0.944 (0.822-1.087) 
Ragusa – 0.945 (0.820-1.096) 
Turin  0.466 (0.154-1.410) 0.917 (0.790-1.060) 
Naples  – 0.942 (0.813-1.093) 
Asturias  0.889 (0.401-1.968) 0.914 (0.792-1.053) 
Granada  – 0.926 (0.802-1.073) 
Murcia  – 0.914 (0.787-1.062) 
Navarra  – 0.900 (0.779-1.033) 
San Sebastian  1.120 (0.624-2.010) 0.923 (0.800-1.064) 
Cambridge  0.989 (0.778-1.256) 0.953 (0.848-1.070) 
Oxford Health conscious  0.851 (0.655-1.106) 0.921 (0.817-1.042) 
Oxford General population  0.505 (0.258-0.989) 0.892 (0.770-1.024) 
Bilthoven  0.616 (0.375-1.013) 0.895 (0.784-1.022) 
Utrecht  1.070 (0.893-1.281) 0.989 (0.887-1.097) 
Heidelberg  1.064 (0.808-1.400) 0.969 (0.853-1.099) 
Potsdam  – 0.901 (0.787-1.027) 
Malmo  0.999 (0.853-1.171) 0.962 (0.870-1.063) 
Umea  1.187 (0.876-1.610) 0.982 (0.861-1.120) 
Aarhus  1.026 (0.866-1.217) 0.969 (0.871-1.074) 
Copenhagen  0.930 (0.838-1.031) 0.924 (0.857-0.997) 
South & East of Norway  – 0.948 (0.822-1.097) 
North & West of Norway  2.275 (0.620-8.340) 0.964 (0.833-1.119) 
 
 
 

TABLE 5 

Estimated ORs (95% CI) by centre: fruits 

Centre Ordinary logistic regression Hierarchical Bayesian model 
North-East of France 1.436 (1.084-1.902) 1.074 (0.948-1.218) 
North-West of France – 0.990 (0.863-1.133) 
South of France – 1.024 (0.905-1.158) 
South coast of France 1.434 (0.856-2.402) 1.008 (0.879-1.158) 
Florence 0.523 (0.328-0.830) 0.883 (0.777-1.000) 
Varese – 0.960 (0.845-1.091) 
Ragusa – 0.936 (0.820-1.066) 
Turin  1.664 (1.030-2.690) 1.008 (0.878-1.158) 
Naples  – 0.973 (0.846-1.117) 
Asturias  0.622 (0.375-1.031) 0.942 (0.818-1.076) 
Granada  – 0.977 (0.848-1.124) 
Murcia  – 0.971 (0.846-1.114) 
Navarra  – 1.018 (0.894-1.165) 
San Sebastian  0.673 (0.460-0.980) 0.903 (0.794-1.024) 
Cambridge  1.054 (0.854-1.301) 1.019 (0.911-1.138) 
Oxford Health conscious  0.742 (0.576-0.956) 0.909 (0.812-1.015) 
Oxford General population  1.219 (0.688-2.160) 1.006 (0.875-1.158) 
Bilthoven  0.751 (0.374-1.509) 0.958 (0.828-1.108) 
Utrecht  1.180 (0.947-1.470) 1.033 (0.915-1.167) 
Heidelberg  1.139 (0.681-1.904) 0.992 (0.862-1.142) 
Potsdam  – 0.987 (0.863-1.135) 
Malmo  0.833 (0.649-1.067) 0.948 (0.844-1.067) 
Umea  0.820 (0.560-1.200) 0.964 (0.843-1.101) 
Aarhus  0.660 (0.492-0.885) 0.883 (0.779-0.995) 
Copenhagen  1.015 (0.867-1.189) 0.995 (0.902-1.098) 
South & East of Norway  – 1.015 (0.877-1.176) 
North & West of Norway  2.224 (0.600-8.240) 0.981 (0.847-1.142) 
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TABLE 6 

Estimated ORs (95% CI) by centre: processed meat 

Centre Ordinary logistic regression Hierarchical Bayesian model 
North-East of France 0.985 (0.684-1.419) 1.035 (0.912-1.175) 
North-West of France – 1.019 (0.886-1.174) 
South of France – 1.053 (0.918-1.203) 
South coast of France 1.901 (0.777-4.654) 1.076 (0.934-1.241) 
Florence 0.635 (0.336-1.200) 0.986 (0.859-1.130) 
Varese – 0.978 (0.853-1.118) 
Ragusa – 1.031 (0.895-1.192) 
Turin  1.566 (0.503-4.870) 1.013 (0.875-1.174) 
Naples  – 1.008 (0.873-1.167) 
Asturias  1.111 (0.579-2.130) 1.014 (0.881-1.162) 
Granada  – 0.999 (0.871-1.147) 
Murcia  – 1.013 (0.888-1.149) 
Navarra  – 1.030 (0.904-1.177) 
San Sebastian  1.440 (1.062-1.950) 1.075 (0.947-1.222) 
Cambridge  1.123 (0.857-1.472) 1.030 (0.915-1.162) 
Oxford Health conscious  1.040 (0.733-1.476) 1.017 (0.899-1.152) 
Oxford General population  0.720 (0.315-1.645) 1.005 (0.873-1.159) 
Bilthoven  0.916 (0.608-1.379) 1.092 (0.942-1.266) 
Utrecht  1.249 (0.933-1.670) 1.142 (0.990-1.311) 
Heidelberg  1.023 (0.853-1.225) 1.036 (0.941-1.136) 
Potsdam  – 1.033 (0.944-1.126) 
Malmo  1.137 (0.989-1.306) 1.110 (1.011-1.213) 
Umea  1.266 (0.921-1.740) 1.067 (0.934-1.218) 
Aarhus  0.967 (0.697-1.341) 1.029 (0.903-1.175) 
Copenhagen  1.044 (0.869-1.254) 1.068 (0.957-1.190) 
South & East of Norway  – 1.024 (0.885-1.181) 
North & West of Norway  0.573 (0.115-2.860) 1.038 (0.900-1.199) 
 
 
 

TABLE 7 

Estimated ORs (95% CI) by centre: fish 

Centre Ordinary logistic regression Hierarchical Bayesian model 
North-East of France 0.809 (0.579-1.130) 0.927 (0.818-1.051) 
North-West of France – 0.976 (0.853-1.115) 
South of France – 1.029 (0.900-1.175) 
South coast of France 0.310 (0.094-1.020) 0.957 (0.829-1.102) 
Florence 0.904 (0.503-1.630) 0.943 (0.820-1.080) 
Varese – 0.941 (0.819-1.081) 
Ragusa – 0.969 (0.840-1.120) 
Turin  0.911 (0.359-2.320) 0.959 (0.833-1.105) 
Naples  – 0.941 (0.810-1.085) 
Asturias  0.988 (0.607-1.610) 0.961 (0.845-1.095) 
Granada  – 0.943 (0.828-1.074) 
Murcia  – 0.984 (0.863-1.120) 
Navarra  – 0.934 (0.826-1.056) 
San Sebastian  0.834 (0.613-1.130) 0.928 (0.826-1.039) 
Cambridge  1.145 (0.926-1.416) 1.023 (0.914-1.140) 
Oxford Health conscious  0.879 (0.671-1.151) 0.926 (0.824-1.038) 
Oxford General population  0.826 (0.396-1.725) 0.940 (0.817-1.077) 
Bilthoven  0.442 (0.024-8.181) 0.920 (0.791-1.072) 
Utrecht  0.939 (0.359-2.455) 0.900 (0.775-1.040) 
Heidelberg  0.694 (0.419-1.149) 0.893 (0.769-1.036) 
Potsdam  – 0.888 (0.762-1.030) 
Malmo  1.019 (0.871-1.192) 0.980 (0.888-1.078) 
Umea  0.770 (0.363-1.630) 0.890 (0.751-1.050) 
Aarhus  1.088 (0.817-1.449) 0.976 (0.857-1.107) 
Copenhagen  0.848 (0.693-1.037) 0.889 (0.799-0.989) 
South & East of Norway  – 0.999 (0.887-1.123) 
North & West of Norway  0.863 (0.464-1.610) 0.961 (0.855-1.083) 
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TABLE 8 

Estimated ORs (95% CI) by centre: legumes 

Centre Ordinary logistic regression Hierarchical Bayesian model 
North-East of France 0.958 (0.732-1.254) 0.967 (0.858-1.085) 
North-West of France – 0.945 (0.829-1.076) 
South of France – 1.002 (0.882-1.140) 
South coast of France 2.424 (0.955-6.152) 1.003 (0.873-1.151) 
Florence 0.422 (0.142-1.250) 0.947 (0.816-1.099) 
Varese – 0.980 (0.843-1.138) 
Ragusa – 0.975 (0.840-1.134) 
Turin  0.324 (0.034-3.050) 0.977 (0.847-1.125) 
Naples  – 0.978 (0.861-1.111) 
Asturias  0.889 (0.645-1.225) 0.968 (0.869-1.077) 
Granada  – 0.943 (0.826-1.075) 
Murcia  – 0.971 (0.855-1.101) 
Navarra  – 0.983 (0.885-1.091) 
San Sebastian  0.938 (0.756-1.160) 0.974 (0.888-1.061) 
Cambridge  1.105 (0.846-1.443) 1.029 (0.913-1.157) 
Oxford Health conscious  1.273 (1.039-1.559) 1.075 (0.964-1.194) 
Oxford General population  0.944 (0.436-2.041) 0.970 (0.846-1.115) 
Bilthoven  1.181 (0.369-3.784) 0.992 (0.858-1.148) 
Utrecht  0.770 (0.470-1.262) 0.945 (0.824-1.081) 
Heidelberg  0.779 (0.400-1.519) 0.964 (0.841-1.110) 
Potsdam  – 0.994 (0.865-1.144) 
Malmo  0.944 (0.719-1.239) 0.986 (0.876-1.108) 
Umea  0.645 (0.181-2.300) 0.977 (0.849-1.124) 
Aarhus  0.609 (0.024-15.686) 0.962 (0.810-1.138) 
Copenhagen  3.169 (0.589-17.057) 0.992 (0.843-1.173) 
South & East of Norway  – 1.008 (0.876-1.159) 
North & West of Norway  – 0.998 (0.863-1.151) 
 
 
 

TABLE 9 

Estimated ORs (95% CI) by centre: cabbages 

Centre Ordinary logistic regression Hierarchical Bayesian model 
North-East of France 0.667 (0.338-1.315) 0.950 (0.833-1.087) 
North-West of France – 0.985 (0.855-1.135) 
South of France – 0.983 (0.856-1.129) 
South coast of France 0.574 (0.056-5.911) 0.985 (0.858-1.138) 
Florence 1.508 (0.133-17.060) 0.960 (0.826-1.112) 
Varese – 0.962 (0.825-1.116) 
Ragusa – 0.975 (0.841-1.135) 
Turin  5.503 (0.089-340.060) 0.969 (0.836-1.128) 
Naples  – 0.972 (0.826-1.137) 
Asturias  0.751 (0.290-1.943) 0.968 (0.845-1.104) 
Granada  – 0.987 (0.854-1.139) 
Murcia  – 0.989 (0.858-1.139) 
Navarra  – 1.035 (0.897-1.192) 
San Sebastian  1.261 (0.538-2.950) 0.985 (0.860-1.132) 
Cambridge  0.887 (0.763-1.032) 0.927 (0.849-1.011) 
Oxford Health conscious  0.853 (0.718-1.013) 0.943 (0.860-1.031) 
Oxford General population  0.925 (0.548-1.561) 0.967 (0.853-1.090) 
Bilthoven  0.604 (0.197-1.858) 0.967 (0.838-1.113) 
Utrecht  0.887 (0.566-1.393) 0.967 (0.845-1.106) 
Heidelberg  1.833 (0.840-3.999) 0.998 (0.867-1.147) 
Potsdam  – 0.956 (0.836-1.093) 
Malmo  1.069 (0.805-1.420) 1.013 (0.897-1.147) 
Umea  0.936 (0.419-2.090) 0.977 (0.853-1.124) 
Aarhus  1.041 (0.513-2.114) 0.990 (0.863-1.137) 
Copenhagen  0.784 (0.481-1.277) 0.955 (0.837-1.084) 
South & East of Norway  – 1.027 (0.903-1.162) 
North & West of Norway  0.684 (0.161 2.910) 0.967 (0.844-1.108) 
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When the hierarchical Bayesian model is fitted, formerly extreme and unstable 
estimates become more reasonable and less biased, even when the results on the 
same exposure are compared across different centres. For example, the excessive 
risk factor for additional 31.2 grams per day of processed meat in the south coast 
of France from the ordinary model (OR =1.901 and CI=0.777–4.654) becomes 
more realistic and stable (OR=1.076 and CI=0.934–1.241); and the estimate of 
the effect of milk and milk beverages in the north & west of Norway becomes 
consistent with the results in the other centres (OR from 2.275 to 0.964). On the 
other hand, stable conventional estimates remain much more the same (see, e.g., 
the estimates for legumes in San Sebastian or milk and milk beverages in Malmo). 
In these cases, great gains in term of standard errors are often reported. For in-
stance, the effect of eating fish in Copenhagen shows similar estimates for both 
methods, but the improvement in the corresponding standard errors returns re-
sults which are significant. 

The improvement on dietary estimation is mainly due to the shared food in-
formation on nutrients also across different centres. As a result, dietary estimates 
are pulled toward each other when they have similar compositions. Therefore, we 
expect this shrinkage especially occurs for the same exposures evaluated in differ-
ent centres as their levels of nutrients are more likely to be similar. Indeed, previ-
ous evidence (Roli, 2006) showed that the substantive improvements in the esti-
mation of dietary effects are gained when a single multilevel analysis is carried 
out, while the inclusion of nutrient information alone for separate conventional 
regressions does not yield as good results. 

The shrinkage of the estimates can be evaluated in practice by plotting the re-
sults from the conventional regressions and from the hierarchical Bayesian 
method, simultaneously (Figure 1). Indeed, for the former we can observe a great 
variability with peaks of extremely high and extremely low numbers. Conversely, 
the estimates from our model are closer to each other (i.e., to the prior means 
based on the nutrients) and are controlled for variations due to random occur-
rences in small samples. 

 
Figure 1 – Estimated ORs. 
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5. DISCUSSION AND CONCLUSIONS 

We showed the advantages related to the use of hierarchical models under a 
BEB framework through the results from real data on a multicentric study aiming 
at evaluating multiple dietary effects on colon-rectum cancer. This method allows 
to exploit all the prior knowledge about the problem at hand, as well as making 
suitable assumptions which are arranged to form (hyper) prior probability distri-
butions and can facilitate the task of estimation. As a result, the ordinary ML es-
timates of multiple dietary effects on colon-rectum cancer are improved, for each 
centre separately, in terms of more plausible estimates of dietary effects and lower 
mean-squared errors than traditional data summaries, thanks to a two-fold 
shrinkage action due to the similar nutrient compositions of dietary items be-
tween and within the centres. 

If one is interested in the evaluation of effects of the level-2 covariates, a single 
level-1 conventional regression on nutrient intakes can be carried out. But in this 
case the unmeasured constituents and their interactions that might be responsible 
for some dietary item effects would be ignored. Conversely, the hierarchical 
model can offer a more realistic and generic representation of data allowing for 
food effects beyond the nutrient contribution, as well as food interactions which 
are important to be investigated. Indeed, understanding dietary effects is crucial 
for development of public health recommendations. Moreover, the hierarchical 
approach provides the estimation of nutrients’ effects, that may be alike useful 
from a nutritional point of view (e.g., for the formulation of a balanced diet).  

The estimation of parameters of interest is supported by the computational 
powerful of recent softwares, such as WinBUGS (Spiegelhalter et al., 2003), an 
interactive Windows version of the BUGS program for Bayesian analysis of com-
plex statistical models implementing MCMC techniques and Gibbs sampling. 
However, the sample size limits the performance of BEB hierarchical model and 
the number of level-2 covariates to be embedded into the analysis. Therefore, 
only potentially relevant covariates, about which useful descriptive information 
are available, are recommended to be included in the level-2 model. 

The hierarchical Bayesian model we propose can be further applied in many 
other contexts. For instance, in occupational studies, where more levels of infor-
mation can be merged; or to perform polytomous logistic regressions of different 
causes of death on a set of exposures; or in disease mapping and spatial analysis, 
where the variations due to random occurrences need to be controlled by exploit-
ing the spatial proximity and the consequent interaction of the geographical areas. 
Moreover, the hierarchical framework in multiple regression analysis can provide 
an alternative to conventional variable selection techniques (Gelman and Hill, 
2007), allowing to retain all the variables in the analysis in order to be further 
evaluated whenever additional information would be available. 
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SUMMARY 

Improving the estimation of multiple correlated dietary effects on colon-rectum cancer in multicentric stud-
ies: a hierarchical Bayesian approach 

The paper deals with the analysis of the effects of multiple exposures on the occur-
rence of a disease in observational case-control studies. We consider the case of multilevel 
data, with subjects nested in spatial clusters. As a result, we often face problems of small 
and sparse data, along with correlations among the exposures and the observations, which 
both invalidate the results from the ordinary analyses. A hierarchical Bayesian model is 
here proposed to manage the within-cluster dependence and the correlation among the 
exposures. We assign prior distributions on the crucial parameters by exploiting additional 
information at different levels and by making suitable assumptions according to the prob-
lem at hand. The model is conceived to be applied to a real multi-centric study aiming at 
investigating the association of dietary exposures with colon-rectum cancer occurrence. 
Compared with results obtained with conventional regressions, the hierarchical Bayesian 
model is shown to yield great gains in terms of more consistent and less biased estimates. 
Thanks to its flexibility, this approach represents a powerful statistical tool to be adopted 
in a wide range of applications. Moreover, the specification of more realistic priors may 
facilitate and extend the use of Bayesian solutions in the epidemiological field. 




