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MEASURE OF DEPARTURE FROM MARGINAL POINT-SYMMETRY 
FOR TWO-WAY CONTINGENCY TABLES 

K. Yamamoto, K. Tahata, M. Suzuki, S. Tomizawa 

1. INTRODUCTION 

First, consider an r r  square contingency table. Let ijp  denote the probabil-

ity that an observation will fall in the i th row and j th column of the table 
( 1 1i r j r      … … ). Wall and Lienert (1976) considered the point-symmetry 
model defined by 

( 1 1 )ij ijp i r j r        … …  

where ij i j
     and the symbol “” denotes 1i r i    . 

Next, consider an r c  rectangular contingency table. Let ijp  denote the pro-

bability that an observation will fall in the i th row and j th column of the table 
( 1 1i r j c      … … ). Tomizawa (1985) extended the point-symmetry model for 
an r c  contingency table as follows: 

( 1 1 )ij ijp i r j c        … …  

where ij i j
    , 1i r i     and 1j c j     (see also Tomizawa, Yama-

moto and Tahata, 2007). In addition, Tomizawa (1985) considered the marginal 
point-symmetry defined by 

( 1 )i i
p p i r 
    …  

and 

( 1 )j j
p p j c     …  

where 
1

c
i itt

p p 
  and 

1

r
j sjs

p p 
 . 
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Consider the data in Tables 1 and 2. Table 1 taken directly from Agresti (1984, 
p. 206) describes the cross-classification of father’s and his son’s social classes in 
British. Table 2 taken directly from Hashimoto (1999, p. 151) describes the cross-
classification of father’s and his son’s social classes in Japan. 

TABLE 1 

The data are cross-classification of father’s and his son’s social classes in British (Agresti, 1984, p. 206) 

Son’s status Father’s status 
(1) (2) (3) (4) (5) 

Total 

(1)   50   45     8     18       8   129 
(2)   28 174   84   154     55   495 
(3)   11   78 110   223     96   518 
(4)   14 150 185   714   447 1510 
(5)     3   42   72   320   411   848 

Total 106 489 459 1429 1017 3500 

 

TABLE 2 

The data are cross-classification of father’s and his son’s social classes in Japan (Hashimoto, 1999, p. 151) 

Son’s status Father’s status 
(1) (2) (3) (4) (5) 

Total 

(1)   29   43   25   31     4   132 
(2)   23 159   89   38   14   323 
(3)   11   69 184   34   10   308 
(4)   42 147 148 184   17   538 
(5)   42 176 377 114 298 1007 

Total 147 594 823 401 343 2308 

 

For Table 1, we are interested in, for example, (i) whether the probability that 
both a father’s and his son’s social classes are “(1)” is equal to the probability that 
both a father’s and his son’s social classes are “(5)”, the probability that a father’s 
social class is “(1)” and his son’s social class is “(5)” is equal to the probability 
that a father’s social class is “(5)” and his son’s social class is “(1)”, and so on, (ii) 
whether the probability that a father’s social class is “(1)” is equal to the probabil-
ity that his social class is “(5)”, the probability that a son’s social class is “(2)” is 
equal to the probability that his social class is “(4)”, and so on.  

Namely, (i) means the point-symmetry of cell probabilities with respect to the 
center cell in the table, and (ii) means the point-symmetry of marginal probabili-
ties (i.e., the marginal point-symmetry) in the table.  

When the point-symmetry model does not hold, we are interested in measuring 
the degree of departure from point-symmetry. Tomizawa et al. (2007) proposed a 
measure to represent the degree of departure from point-symmetry for two-way 
contingency tables. However, when we want to see the degree of departure from 
marginal point-symmetry, we cannot use the measure given by Tomizawa et al. 
(2007), because the measure can only measure the degree of departure from 
point-symmetry. Therefore we are now interested in a measure to represent what 
degree the departure from marginal point-symmetry is.  

The purpose of this article is to propose a measure which represents the de-
gree of departure from marginal point-symmetry in an r c  contingency table.  
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Section 2 proposes such a measure. Section 3 gives an approximate confidence 
interval for the measure. Section 4 analyzes the occupational mobility data using 
the proposed measure. Section 5 describes the relationship between the proposed 
measure and bivariate normal distribution, in terms of the simulation studies. 

2. MEASURE OF DEPARTURE FROM MARGINAL POINT-SYMMETRY 

Consider an r c  contingency table. Define 

( even)
2

12
( odd)

2

r
r

r
r

r

           

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2

12
( odd)

2

c
c

c
c

c

           


 

For instance, when 4r  , 2
2

r    
, and when 5r  , 2

2

r    
. Let 

2 2

1 2
1 1

( ) ( )

r c

i ji j
i j

p p p p  

      

  
 

        

and let 

1 1

1
2 2

iMPS MPSi i i
i ii i

p q qp r
q q q q i

 
 

 
  

  

                 
…  

2 2

1
2 2

jj j jMPS MPS
j jj j

p q qp c
q q q q j

 

 

 

  
  

                 
…  

Assuming that { 0}i i
p p  
   and { 0}j j

p p    , we shall consider a meas-

ure to represent the degree of departure from marginal point-symmetry. For 
1   , define the measure by 

( ) ( )
( ) 1 1 2 2

1 2

 
    

 



 


 

where 
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( ) ( )
1 1

( 1)
({ } { })

2 1
MPS

i iI q q 


 
  


  


 

with 

2[ ]
( )
1

1

1
( ) 1 1

( 1)

r

i i
i MPS MPSi

i i i

qq
I q q

q q

 


 



 

 
  

                                  
  

and 

( ) ( )
2 2

( 1)
({ } { })

2 1
MPS

j jI q q 


 
  


  


 

with 

2[ ]
( )
2

1

1
( ) 1 1

( 1)

c

j j
j MPS MPSj

j j j

qq
I q q

q q

 



 




 

 
  

                                     
  

and the value at 0   is taken to be the continuous limit as 0  . Thus, 

(0) (0 )
1 1

1
({ } { })

log 2
MPS

i iI q q      

where 

2[ ]
(0 )
1

1

( ) log log
r

i i
i MPS MPSi

i i i

qq
I q q

q q




 

 
  

    
       

     
  

and 

(0) (0 )
2 2

1
({ } { })

log 2
MPS

j jI q q      
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               

  

therefore 

(0) (0 )
( 0 ) 1 1 2 2

1 2

   
 




 


 

We point out that the submeasure ( )
1
  represents the degree of departure from 

point-symmetry of row marginal distribution, the submeasure ( )
2
  represents the 

degree of departure from point-symmetry of column marginal distribution, and 
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then the measure ( ) , which represents the degree of departure from marginal 

point-symmetry, is expressed as the weighted sum of the ( )
1
  and ( )

2
 . 

We note that ( )
1 ({ } { })MPS

i iI q q
   is the power-divergence (Cressie and Read, 

1984) between two distributions { }i i
q q  
  and { }MPS MPS

i i
q q   , 1

2

r
i       

… , espe-

cially (0)
1 ({ } { })MPS

i iI q q   is the Kullback-Leibler (Kullback and Leibler, 1951) in-

formation between them. Similarly, ( )
2 ({ } { })MPS

j jI q q
   is the power-divergence 

between two distributions { }j j
q q    and { }MPS MPS

j j
q q  

 , 1
2

c
j       

… , especially 

(0 )
2 ({ } { })MPS

j jI q q   is the Kullback-Leibler information between them. [For more 

details of the power-divergence, see Cressie and Read (1984), and Read and 
Cressie (1988, p. 15).] Note that a real value   is chosen by the user.  

Let 

1
2

c ci i
i i

i ii i
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q q q q
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2

j jc c
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…  

Note that the marginal point-symmetry model can be expressed as { }c c
i i

q q    

and { }c c
j j

q q  
 . Then, ( )

1
  and ( )

2
  may be expressed as 

2[ ]
( ) ( )
1 1

1

2
1 ( ) ( )

2 1

r

c c
i i ii i

i

q q H q q


 


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

    
   
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2[ ]
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2 1
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where 

( ) 1 1
1

1
( ) [1 ( ) ( ) ]c c
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H q q  




 
       
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and the value at 0   is taken to be the continuous limit as 0  . Thus, 

2[ ]
( 0 ) ( 0 )
1 1

1

1
1 ( ) ( )

log 2

r

c c
i i ii i

i

q q H q q    


      

where 

(0)
1 ( ) log logc c c c
i i i i i

H q q q q    
      
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(0 )
2 ( ) log logc c c c
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H q q q q    

      

Note that ( )
1 ( )c c
i i i

H q q
 

  and ( )
2 ( )c c

j j j
H q q

   are the Patil and Taillie’s (1982) di-

versity indexes which include the Shannon entropy when 0   in a special case.  

We point out that when 0  , the submeasure (0)
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Namely, (0)
1  indicates the minimum Kullback-Leibler information between 

{ }i i
q q  
  and { }i i

   
  with the structure of marginal point-symmetry. We note 

that { ( )}i i
   

  minimize (0 )
1 ( )I   in (1) when MPS{ ( ) 2 }i i ii

q q q       . In a 
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similar way, the submeasure (0)
2  in the measure (0)  is expressed. Note that the 

readers may also be interested in (1) with (0)
1 ( )I   replaced by the power-

divergence ( )
1 ( )I   ; however, it is difficult to obtain the value of { }i   such that 

( )
1 ( )I    is minimum when 0  .  

The submeasures ( )
1
  and ( )

2
  must lie between 0 and 1. Therefore ( )  

must lie between 0 and 1. We note that for each   ( 1 ), (i) ( ) 0   (i.e., 
( ) ( )
1 2 0    ) if and only if the marginal point-symmetry model holds, and (ii) 
( ) 1   (i.e., ( ) ( )

1 2 1    ) if and only if the degree of departure from mar-

ginal point-symmetry is the largest in the sense that 0c
iq    (then 1c

i
q  

 ) or 

0c
i

q     (then 1c
iq   ) for 1

2

r
i       

… , and 0c
jq   (then 1c

j
q 

 ) or 0c
j

q 
  

(then 1c
jq  ) for 1

2

c
j       

… . We point out that this definition of maximum 

departure from marginal point-symmetry would be natural because the marginal 
point-symmetry { }i i

p p  
  and { }j j

p p    can be expressed as 

{ 1 2}c c
i i

q q      and { 1 2}c c
j j

q q  
   . We note that ( )  represents the degree 

of departure from marginal point-symmetry and the degree increases as the value 

of ( )  increases. 

3. APPROXIMATE CONFIDENCE INTERVAL FOR MEASURE 

Let ijn  denote the observed frequency in the i th row and j th column of the 

table ( 1 1i r j c      … … ). Assuming that a multinomial distribution applies to 
the r c  table, we shall consider an approximate standard error and large-sample 

confidence interval for the measure ( )  using the delta method, descriptions of 
which are given by, for example, Bishop, Fienberg and Holland (1975, Sec. 14.6). 

The sample version of ( ) , i.e., 
( )ˆ 

 , is given by ( )  with { }ijp  replaced by 

ˆ{ }ijp , where ˆ
ijij n np    and ijn n . Using the delta method, 

( ) ( )ˆ( )n     has asymptotically (as n  ) a normal distribution with mean 

zero and variance 
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where 

( ) ( ) ( ) ( ) ( )
1( ) 1 1 1( ) 2( ) 2 2 2( )ij i i j jw d d              

1( ) 2( )ij i jd d d    

with 

1( )

1
0 is odd and 

,2
1 (otherwise),

i

r
r i

d
      



 

2( )

1
0 is odd and 

,2
1 (otherwise),

j

c
c j

d
      



 

and for 1 0     , 

( ) ( )
1( ) 1

1

1
0 is odd and

2

1 2
1 {1 ( )

2 1

(( ) ( ) )} (otherwise)

c
i i

c c c
ii i

r
r i

q

q q q


  



 




  



 



      
      
    


 

( ) ( )
2( ) 2

2

1
0 is odd and

2

1 2
1 {1 ( )

2 1

(( ) ( ) )} (otherwise)

c
j j

c c c
jj j

c
c j

q

q q q


  



 




  



 



      
      
    

 

for 0  , 
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1 log (otherwise)

log 2
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2

1 1
1 log (otherwise)

log 2

j
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c
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

 
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 
 



       
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Note that 2 (0 ) 2 ( )

0
[ ] lim [ ]


 


  . 

Let ( )2ˆ [ ]   denote 2 ( )[ ]   with { }ijp  replaced by ˆ{ }ijp . Then, 

( )ˆ[ ] n    is an estimated standard error for ( )ˆ  , and ( )( )
2

ˆ ˆ[ ]pz n      

is an approximate 100(1 )p % confidence interval for ( ) , where 2pz   is the 

percentage point from the standard normal distribution that corresponds to two-
tail probability equal to p . 

4. EXAMPLES 

Consider the data in Tables 1 and 2 again.  

Since the confidence intervals for ( )  applied to the data in Tables 1 and 2 
do not include zero for all   (see Table 3), these would indicate that there is not 
a structure of marginal point-symmetry in each table. 

TABLE 3 

Estimate of measure ( ) , approximate standard error for ( )ˆ 
  and approximate 95% confidence interval 

for ( ) , applied to Tables 1 and 2 

Values of   Estimated measure Standard error Confidence interval 

(a) For Table 1 
–0.4 0.218 0.010 (0.199, 0.238) 

0 0.295 0.012 (0.271, 0.320) 
0.6 0.355 0.014 (0.328, 0.383) 
1.0 0.372 0.014 (0.344, 0.400) 
1.8 0.376 0.014 (0.348, 0.404) 

(b) For Table 2 
–0.4 0.144 0.009 (0.125, 0.162) 

0 0.193 0.012 (0.170, 0.216) 
0.6 0.231 0.013 (0.205, 0.257) 
1.0 0.242 0.013 (0.215, 0.268) 
1.8 0.243 0.013 (0.217, 0.270) 

 

We shall investigate the degree of departure from marginal point-symmetry in 
more details. For instance, when 1  , the estimated measure (1)̂  equals 0.372 
for Table 1, and 0.242 for Table 2 (see Table 3). Thus, (i) for Table 1, the degree 
of departure from marginal point-symmetry is estimated to be 37.2 percent of the 
maximum degree of departure from marginal point-symmetry, (ii) for Table 2, it 
is estimated to be 24.2 percent of the maximum degree of departure from mar-
ginal point-symmetry. 
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When the degrees of departure from marginal point-symmetry in Tables 1 and 

2 are compared using the confidence interval for ( ) , the degree of departure in 
Table 1 is greater than that in Table 2. 

5. SIMULATION STUDIES 

We shall consider random variables 1Z  and 2Z  having a joint bivariate normal 

distribution with means 1 1( )E Z   and 2 2( )E Z  , variances 2
1 1( )Var Z  , 

2
2 2( )Var Z  , and correlation 1 2( )Corr Z Z   . When it is reasonable to assume 

underlying bivariate normal distribution, we shall consider the relationship be-
tween the degree of departure from marginal point-symmetry and the value of 

measure ( ) . 
Suppose that there is an underlying bivariate normal distribution and suppose 

that a 4 4  table is formed using cutpoints for each variable at 0 6  , 0 , and 
0 6 . Then, in terms of simulation studies, we shall consider some 4 4  tables of 
sample size 10000, formed from an underlying bivariate normal distribution with 

the conditions (i) 2 1 0   , 0 6    and 1 0 0 2 0 4 0 6        ; 2 0 0 2 0 4 0 6        , 

(ii) 1 2 0 2    , 0 6    and 2
1 1 0 1 2 1 5       ; 2

2 1 0 1 2 1 5       , and (iii) 

1 0  , 2 0 2   , 2 2
1 2 1 0     and 0 0 3 0 6 0 9        .  

First, we shall consider the case of (i). Table 4 gives the cases of ( 1 , 2 ) =  
(0, 0), (0, 0.4), (0, 0.6), (0.2, 0.4), (0.2, 0.6), (0.4, 0.4) and (0.4, 0.6). Table 5 gives 
the corresponding values of (0 )̂  and (1)̂  applied to 4 4  tables of sample size 
10000, formed from underlying bivariate normal distribution with various 
( 1 , 2 ). 

We see from Table 4 that for a fixed 1  (and fixed 2
1 , 2

2  and  ), the num-

ber of observations falling in fourth column increases as the value of 2  in-
creases. This is because each 4 4  table is formed using cutpoints of each vari-
able at 0 6  , 0 , and 0 6 . Thus, for a fixed 1 , the degree of departure from 

marginal point-symmetry becomes greater as the value of 2  increases. Similarly, 

for a fixed 2 , it becomes greater as the value of 1  increases.  

Indeed, we see from Table 5 that for a fixed   the measure ( )ˆ   tends  

to increase in order of 1 2 1( ) ( 0)     , 1( 0 2)   , 1( 0 4)   , 1( 0 6)    and in or-

der of 1 2 2( ) (0 )     , 2(0 2 )  , 2(0 4 )  , 2(0 6 )  . Therefore the measure 
( )  may be appropriate for representing the degree of departure from marginal 

point-symmetry if it is reasonable to assume underlying bivariate normal distribu-
tion. 
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TABLE 4 

The 4 4 tables of sample size 10000, formed by using cutpoints for each variable at 0 6  , 0  and 0 6 , 

from an underlying bivariate normal distribution with the conditions 2 1 0   , 0 6    with some 1(  , 2 )  

(a) 1 2( )   = (0, 0) 

     Total 
 1515 692 359 152 2718 
 695 627 532 373 2227 
 360 611 642 657 2270 
 176 362 687 1560 2785 

Total 2746 2292 2220 2742 10000 
 

(b) 1 2( )   = (0, 0.4) 

     Total 
 1019 743 550 368 2680 
 345 561 693 708 2307 
 153 379 650 1114 2296 
 44 202 493 1978 2717 

Total 1561 1885 2386 4168 10000 
 

(c) 1 2( )   = (0, 0.6) 

     Total 
 712 742 649 541 2644 
 239 470 662 909 2280 
 102 296 535 1353 2286 
 29 110 402 2249 2790 

Total 1082 1618 2248 5052 10000 
 

(d) 1 2( )   = (0.2, 0.4) 

     Total 
 889 554 382 238 2063 
 432 537 534 608 2111 
 231 451 650 1040 2372 
 93 283 691 2387 3454 

Total 1645 1825 2257 4273 10000 
 

(e) 1 2( )   = (0.2, 0.6) 

     Total 
 692 570 489 339 2090 
 248 445 588 796 2077 
 136 358 621 1222 2337 
 50 204 515 2727 3496 

Total 1126 1577 2213 5084 10000 
 

(f) 1 2( )   = (0.4, 0.4) 

     Total 
 723 450 271 147 1591 
 466 533 488 407 1894 
 290 491 640 857 2278 
 143 432 863 2799 4237 

Total 1622 1906 2262 4210 10000 
 

(g) 1 2( )   = (0.4, 0.6) 

     Total 
 595 438 344 208 1585 
 315 462 499 582 1858 
 171 413 698 1067 2349 
 86 322 774 3026 4208 

Total 1167 1635 2315 4883 10000 
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TABLE 5 

The values of (0 )̂  (upper value) and (1)̂  (lower value) applied to 4 4  table, 

obtained from an underlying bivariate normal distribution with various 1(  , 2 ) 

2  
1  

0 0.2 0.4 0.6 
0 0.0001 0.0105 0.0465 0.1044 
 0.0001 0.0144 0.0623 0.1338 

0.2 0.0127 0.0245 0.0586 0.1158 
 0.0174 0.0337 0.0789 0.1499 

0.4 0.0445 0.0606 0.0902 0.1392 
 0.0596 0.0815 0.1208 0.1822 

0.6 0.0964 0.1116 0.1437 0.1997 
 0.1245 0.1449 0.1876 0.2571 

 

Next consider the case of (ii). For a fixed 2
1  (and fixed 1 , 2  and  ), even 

if the value of 2
2  increases, the degree of departure from marginal point-

symmetry differs little. Indeed, the values of ( )ˆ   applied to such 4 4  tables, 
take near same value in most cases, although the details are omitted.  

Finally, consider the case of (iii). For fixed 1 , 2 , 2
1  and 2

2 , it seems that 
the degree of departure from marginal point-symmetry does not change so much, 

even if the value of   increases. Indeed, the values of ( )ˆ   applied to such 
4 4  tables, differ little, although the details are omitted.  

In conclusion, if it is reasonable to assume underlying bivariate normal distri-
bution, especially the values of means 1  and 2  may influence the degree of 
departure from marginal point-symmetry. 

6. CONCLUDING REMARKS 

The measure ( )  would be useful for comparing the degrees of departure from 

marginal point-symmetry in several tables because the measure ( )  always ranges 
between 0 and 1 independent of the dimensions r  and c , and sample size n . 

The measure ( )  would be useful when we want to see with a single sum-
mary measure how degree the departure from marginal point-symmetry is toward 
the maximum departure from marginal point-symmetry. We defined the maxi-

mum departure from marginal point-symmetry in Section 2, as { 0c
iq    (then 

1c
i

q  
 ) or 0c

i
q  

  (then 1c
iq   )} and { 0c

jq   (then 1c
j

q   ) or 0c
j

q    (then 

1c
jq  )}. This seems natural as the definition of the maximum departure from 

marginal point-symmetry.  
The readers may be interested in which value of   is preferred for a given ta-

ble. However, in comparing tables, it seems different to discuss this. For example, 
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consider the artificial data in Tables 6a and 6b. We see from Table 6c that the va-
lue of (0 )̂  is greater for Table 6a than for Table 6b, but the value of (1)̂  is less 
for Table 6a than for Table 6b. So, for these cases, it may be impossible to decide 
(by using ( )ˆ  ) whether the degree of departure from marginal point-symmetry 
is greater for Table 6a or for Table 6b. But generally, for the comparison between 
two tables, it would be possible to draw a conclusion if ( )ˆ   for every   is al-
ways greater (or always less) for one table than for the other table. Thus, it may 
be dangerous if the analyst uses ( )ˆ   for only  one specified value of   for com-
paring the degrees of departure from marginal point-symmetry in several tables. 
It seems to be important and safe that the analyst calculates the value of ( )ˆ   for 
various  values of   and discusses the degree of departure from marginal point-
symmetry in terms of ( )ˆ   values. 

TABLE 6 

(a), (b) Artificial data ( n  is sample size) and (c) corresponding values of ( )ˆ   

(a) 1052n   
17 89 125 128 
14 83 139 138 
9 78 117 115 

 
(b) 1217n   

24 113 89 51 
16 102 198 170 
15 75 181 183 

 

(c) Values of ( )ˆ   

Values of   For Table 6a For Table 6b 
–0.4 0.1107* 0.1054 

0 0.1455* 0.1427 
0.6 0.1702 0.1715 
1.0 0.1767 0.1797 
1.8 0.1779 0.1813 

* indicates that ( )ˆ   is greater for Table 6a than for Table 6b. 
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SUMMARY 

Measure of departure from marginal point-symmetry for two-way contingency tables 

For two-way contingency tables, Tomizawa (1985) considered the point-symmetry and 
marginal point-symmetry models, and Tomizawa, Yamamoto and Tahata (2007) pro-
posed a measure to represent the degree of departure from point-symmetry. The present 
paper proposes a measure to represent the degree of departure from marginal point-
symmetry for two-way tables. The proposed measure is expressed by using Cressie-Read 
power-divergence or Patil-Taillie diversity index. This measure would be useful for com-
paring the degrees of departure from marginal point-symmetry in several tables. The rela-
tionship between the degree of departure from marginal point-symmetry and the measure 
is shown when it is reasonable to assume underlying bivariate normal distribution. Exam-
ples are shown. 
 




