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THE ROBUSTNESS OF THE F-TEST TO SPATIAL 
AUTOCORRELATION AMONG REGRESSION DISTURBANCES (*)1

Walter Krämer 

1. INTRODUCTION AND SUMMARY 

The null distribution of the F-test under nonspherical errors has concerned 
applied statisticians and econometricians for many decades. Let 

(1) (1) (2) (2)y X u X X u  (1) 

be the model under test, where y and u are T×1, X is T×K and nonstochastic of 
rank K<T, is K×1, and the disturbance vector u is multivariate normal with 
mean zero and (possibly) nonscalar covariance matrix V. The design matrix is 
partioned into X(1)(T × q) and X(2) (T × (K – q)) and the null hypothesis to be 
tested is H0: (1) = b(1).

The standard F-test rejects for large values of 
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where û =y–X ˆ , ˆ =(X X-)-1X y, u =y–X(1)b(1)–X(2) (2)ˆ , (2)ˆ =(X(2)X(2))-1 

X(2) (y –X(1)b(1)). It has a central F-distribution with q and T–K degrees of free-
dom, given H0 and V = 2I, and the problem to be studied here is the robustness 
of this null distribution to deviations from V = 2I.

So far, this problem has been addressed mainly for given specific forms of V,
with various bounds for the size of the test being derived as the design matrix X
is allowed to vary across all T×K-matrices of rank K (Vinod, 1976 and Kiviet, 
1980). Below we take a different approach, following Krämer (1989) and Krämer 
et al. (1990), by fixing X and letting V vary across a certain range of disturbance 

(*) Research supported by Deutsche Forschungsgemeinschaft (DFG) under SFB 475. I am 
grateful to Anurag Banerjee for providing the GAUSS-routine for the computation of exact rejec-
tion probabilities (available in the internet under http: //www.american.deu/academics.depts/cas/ 
econ/gaussres/Gausidx.htm) 
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covariance matrices. In particular, we allow the disturbance vector u to be gener-
ated by the spatial autoregressive scheme 

u Wu , (3) 

where  is a T×1 normal random vector with mean zero and scalar covariance 
matrix 2 I and W is some known T×T-matrix of nonnegative spatial weights 
with wii=0 (i=1,…,T). Such patterns of dependence are often entertained when 
the objects under study are positioned in some “space”, whether geographical or 
sociological (in some social network, say) and account for spillovers from one 
unit to its neighbors, whichever way “neighborhood” may be defined. They date 
back to Whittle (1954) and have become quite popular in econometrics recently. 
See Anselin and Florax (1995), Lafratta (1997) or Anselin (2001) for a convenient 
survey of this literature. 

The coefficient  in (3) measures the degree of correlation, which can be both 
positive and negative. Below we focus on the empirically more relevant case of 
positive disturbance correlation, where 

max

1
0

and where max is the Frobenius-root of W (i.e. the unique positive real eigenvalue 
such that max i  for arbitrary eigenvalues i). The disturbances are then given by 

1( )u I W , (4) 

so 2 1: Cov( ) [( )( )' ]V u I W I W  and 2V I  whenever = 0.

Below we consider the null distribution of the F-test for 0. This is shown to 
be extremely non-robust, with the size of the test tending to either zero or unity 
as 1/ max. The same limits are also obtained for the power of the test. Which 
of these limits obtains is easily seen from X and W, which are both observed and 
known. Therefore, our result provides an easy guide to the interpretation of both 
a significant and insignificant F-test when there is possible spatial correlation 
among the regression disturbances: if H0 is rejected, and X and W are such that 
the size of the test tends to unity, an error of the first kind has to be suspected. 
And if H0 is not rejected, and X and W are such that the size and the power of 
the test tends to zero, one has to beware of an error of the second kind. 

2. THE NULL DISTRIBUTION OF THE F-TEST AS AUTOCORRELATION INCREASES

We first rewrite the test statistic (2) as 
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where M=I–X(X X )-1X  and M(2)=I–X(2)(X(2) X(2))-1X(2) . Let ,q T KF  be the (1- )

quantile of the central F-distribution with q and T–K degrees of freedom, respec-
tively, where  is the nominal size of the test. Then 
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where the 2
i  are iid 2

(1) and the i are the eigenvalues of V 1/2(M(2)–dM )V 1/2,

and therefore also of V(M(2)–dM ). 

The limiting rejection probability as max1/  depends upon the limiting 

behavior of 2
max(1 ) V . Let 
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be the spectral decomposition of W, with the eigenvalues i in increasing order. 
Then 
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is the spectral decomposition of V, and 

max

2
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a matrix of rank 1. Therefore, all limiting eigenvalues of (1– max)2V(M(2)–dM ) 

are zero except one, which is given by  

( 2 ) (2)
T T T T( '( )) '( )tr d dM M M M . (10) 
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If T (M (2)–dM ) T is positive, the rejection probability tends to one. If 
T (M.(2)–dM ) T is negative, the rejection probability tends to zero. 
As T (M (2)–dM ) T is known, it is easy to determine in practice which of 

these cases obtains. For illustration, figure 1 shows both an example where the 
rejection probability tends to one, and an example where the rejection probability 
tends to zero. The weight matrix is 25 × 25 and is derived from a regular 5 × 5 
lattice using the queen criterion, which assigns a weight of one to all cells imme-
diately surrounding a given cell, and zero otherwise. The case where the rejection 
probability tends to zero corresponds to a 25 × 2 X-matrix with a first column of 
ones, and a second column given by (1, 2, 3, …25)', where we test wether the co-
efficient of the second regressor is zero. The case where the rejection probability 
tends to one corresponds to an X-matrix where the second column was gener-
ated as nid(0, 1) variables. 

Figure 1 – Rejection probability of the F-Test. 

The figure shows that convergence to zero of the rejection probability need not 
be monotone and that an X-matrix which induces a limiting rejection probability 
of zero might, for certain regions of the parameter space, engender higher rejec-
tion probabilities than X-matrices where the rejection probability eventually tends 
to one. 

Whether a limit of the rejection probability of zero or one obtains depends on 
the interplay of the design matrix X, the weight matrix W, and the nominal size of 
the test. For T=25, a nominal size of 5%, a weight matrix defined by the queen 
criterion, and an X matrix given by a first column of ones, and a second column 
of nid(0, 1) variables (whose significance is to be tested), a Monte Carlo experi-
ment was performed with 1000 independent runs. We obtained a limiting rejec-
tion probability of one in about 10% of all cases. Ceteris paribus the incidence of 
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this irregular behavior diminishes as sample size increases, but it is possible to 
find examples where the rejection probability tends to one also for larger samples 
and for different types of spatial weights. 

3. SPATIAL AUTOCORRELATION AND THE POWER OF THE TEST

Let g : X(1) (1)–X(1)b(1). Under the alternative, g 0, and the expression (5) be-

comes 

(2) (2) (2)[ '( ) 2 ' ' ]/
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with rejection occurring if and only if 
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Since the last two terms in expression (12) are easily seen to tend to zero as 
1/ max , the power of the test has the same limiting behavior as the size. 
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RIASSUNTO

Il test F in presenza di autocorrelazione spaziale tra gli errori 

Si dimostra che il test F in un modello di regressione lineare caratterizzato da autocor-
relazione spaziale tra gli errori non è robusto sotto l’ipotesi nulla. In particolare, l’am- 
piezza del test tende a zero o all’unità quando il coefficiente di autocorrelazione spaziale si 
avvicina agli estremi dello spazio dei parametri. 

SUMMARY

The robustness of the F-test to spatial autocorrelation among regression disturbances 

It is shown that the null distribution of the F-test in a linear regression is rather non-
robust to spatial autocorrelation among the regression disturbances. In particular, the true 
size of the test tends to either zero or unity when the spatial autocorrelation coefficient 
approaches the boundary of the parameter space. 


