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RECORD VALUES FROM A FAMILY OF J-SHAPED DISTRIBUTIONS 

Ahmad A. Zghoul 

1. INTRODUCTION 

A class of distributions called a family of J-shaped distributions was introduced 
by (Topp and Leone, 1955). The distribution function form of a J-shaped distri-
bution with scale parameter   and shape parameter   is 

0                       ; <0

( ) 2 ;0                                           

1                       ; 

x

x x
F x x

x




 





       

  
 

 

and hence the density has the form 
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with 0 and 0   . 
The appropriateness of the distribution for modeling life data was emphasized 

by (Nadarajah and Kotz, 2003). They highlighted the fact that its hazard rate fun-
ction is bathtub shaped. Further they derived general formulas for the moments 
and the central moments of the distribution and provided the maximum likeli-
hood estimator of the shape parameter   when the scale   is known. The dis-
tribution of ordered statistics along with their moments and product moments 
were studied by (Zghoul, 2010). 

The bathtub or U-shaped hazard rate functions have many applications in life 
time modeling. For example, in human populations the death rate is high due to 
birth defects or infant diseases at infant age, and then it remains constant up to 
the age of thirties where it increases again. This pattern is common in manufac-
tured items. Most parametric models having U-shaped hazard rate function usu-
ally involve three or more parameters which in turns raise substantial problems in 
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statistical inference unless large samples are available. An advantage of the J-
shaped family of distributions, which has a U-shaped hazard rate function, is that 
it has only two parameters; namely the scale parameter   and the shape parame-
ter  . 

We assume through this work, without loss of generality, that  =1, in which 
case the distribution and the density functions are, respectively, reduced to 
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and 

1( ) 2 (1 )( (2 )) ;0 1;0 1f x x x x x        . (2) 

In section 2 of this paper we study the distribution of record values from  
this J-shaped family of distributions. Then, in section 3, moments, product mo-
ments, and recurrence relations are obtained. Also, bounds based on Jensens’ 
inequality for the mean of record values are provided. In section 4, the maximum 
likelihood estimator for the shape parameter θ  based on lower record values is 
derived and its properties are studied. A real life application is investigated in sec-
tion 5. Finally, the conclusions and suggestions for further studies is given in sec-
tion 6. 

2. DISTRIBUTION OF RECORD VALUES 

Let 1 2, , ...X X be a sequence of independent and identically distributed random 

variables. Let (0) 0,  (1) 1L L   and ( 1)( ) min{ : }; 2,3,...j L nL n j X X n   , 

then ( ) , 1n L nR X n   is the sequence of upper record values. If the inequality 

sign is reversed then ( )n L nR X   is the sequence of lower record values. 

The theory of record values, record times, and inter-record times were first in-
troduced by (Chandler, 1952). Since then many research papers have been pub-
lished in the subject. Detailed review of records and related bibliography can be 
found in (Nevzorov, 1987), (Nagaraja, 1988), (Ahsanullah, 1995), (Balakrishnan 
and Nagaraja, 1998), (Nevzorov and Balakrishnan, 1998), (Arnold et al., 1998), to 
mention some. 

Let 1 2, , ...R R  be a sequence of upper record values from the distribution (1), 
then the density of the nth record value is given by 
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where ( ) (2 )u r r r   and hence ( ) 2(1 )u r r   . 
The joint probability distribution function (pdf) of the set of upper records 

1 2, , ..., nR R R  is 
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3. MOMENTS AND PRODUCT MOMENTS OF RECORD VALUES 

In this section the moments and product moments of record values are de-
rived. Recurrence relations for the moments are given. Moreover, we derive a lo-
wer bound and an upper bound for the mean of upper records. 
 
Theorem 1: For k=1,2,…, and n=1,2,…, the kth moment of the nth lower record 
value is given by: 
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A power series expansion for (1 1 )kx   given by (Gradstein and Ryzhik, 
1980), page 21, is: 
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for any real number k and 1x  . 

Which, alternatively can be written as: 
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Since (1 1 ) (1 1 )k k kx x x     , we have 
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Therefore the r.h.s. of (4) expands to: 
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Set log( )u s   to get: 
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In particular, 
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Let 1 2, , ...R R  be a sequence of lower records from the distribution in (1), and 

let 1 2( ), ( ), ...k k    be the corresponding sequence of the kth moments of 

1 2, , ...R R  , then we prove the following recurrence relation. 
 
Theorem 2: For k=1,2,…, and n=1,2,…, the kth moments of the nth upper record 
value is given by: 
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where ( , )d j k  are as defined in (5). 
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Expanding as in (5) and following steps similar to those in the proof of Theo-
rem 1, the theorem is proved. 
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Theorem 3: For n=1,2,… and k=0,1,2,… 
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From (1) and (2) it is readily seen that x (2–x) f (x) = 2θ (1–x) F(x), so (6) be-
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Integrating by parts treating 1(1 )kx x   for integration and the rest of the in-
tegrand for differentiation, the r.h.s. of (7) turns out to be 
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Arranging terms in the above equation, the theorem is proved. 
 
The following theorem gives upper and lower bounds for the mean of Rn. 
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To derive the upper bound, we have 
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Upon computing lower bounds for the first few records we found that they get 
tighter as either n or   increases.  

To derive the product moments of record values we first derive their joint dis-
tribution. The joint pdf of the mth and nth record values is given by: 
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Based on the expansion in (5) the joint moments of m nR R  are given in the fol-
lowing theorem. 
 
Theorem 5: For k=1,2,…, l=1,2,…, and for m=1,2,…and n=1,2,…, the joint mo-
ments of m nR R  are 
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where ic  are as defined in (5). 

Proof: analogous to the proof of Theorem 1. 
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4. ESTIMATION BASED ON LOWER RECORD VALUES 

The joint pdf of the set of lower records 1 2, , ..., nR R R    is 
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Thus the log likelihood function is given by: 
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From which the maximum likelihood estimator (MLE) of   is found to be 
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To show that ̂  is an unbiased and consistent estimator for  , we have  
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where the substitution log ( )ny u r    is used. 
If similar integration is carried out, one obtains 
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which implies that 1ˆ (log ( ))nn u r    is a consistent estimator for  .  
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This is the density of lower record values from the power distribution. 
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It is clear from (9) that ( )nu R  is sufficient and complete statistic for  . Therefore 

1ˆ (log ( ))nn u r    is UMVUE for  . (10) 

5. AN APPLICATION 

Lawless (1982) page 256 fitted a set of data, representing the numbers of cycles 
to failure for a group of 60 electrical appliances, to a mixture of two Weibull dis-
tributions. We reproduce the data (ordered failure times) here: 

14 34 59 61 69 80 123 142 165 210 
381 464 479 556 574 839 917 969 991 1064 
1088 1091 1174 1270 1275 1355 1397 1477 1578 1649 
1702 1893 1932 2001 2161 2292 2326 2337 2628 2785 
2811 2886 2993 3122 3248 3715 3790 3857 3912 4100 
4106 4116 4315 4510 4584 5267 5299 5583 6065 9701 

The last observation is about 4 standard deviations larger than the mean so it 
may be considered as an outlier. We will ignore this data point in our analysis and 
the data is rescaled by dividing each observation by 7000. The maximum likeli-
hood estimator (based on the whole sample) of   is computed to be 0.77.  
 

0.2 0.4 0.6 0.8
Data

0.2
0.4
0.6
0.8

1.0
1.2
1.4

Quantile
Exponential Distribution P�P

  0.2 0.4 0.6 0.8
Data

0.2

0.4

0.6

0.8

1.0

1.2

Quantile
Weibull Distribution P�P

 
                                     (a)                                                                             (b) 
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Figure 1(a)-(c) – Probability plots for failure data assuming exponential, Weibull, and J-shaped distri-
butions. 

Exponential Distribution P-P Weibull Distribution P-P 

J-shaped Distribution P-P 
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The probability plots assuming that the data is exponential, Weibull, and J-
shaped distribution, respectively are displayed in Figure 1 (a)-(c). These plots are 
nothing but the inverse of the empirical distribution function under each of the 
above assumed distributions. Clearly, the J-shaped distribution under study has 
the best fit compared to the exponential and the Weibull distributions.  

The density, distribution, and the survival functions of the fitted J-shaped dis-
tribution are displayed in Figure 2. We notice that the hazard function is almost 
bathtub-shapes. 
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Figure 2 – The density, distribution, and survival functions of the fitted J-shaped distribution for the 
failure data. 
 

Having fitted a J-shaped distribution with  =0.77 to the data given above, all 
theoretical results can be applied to this model. In particular we may obtain the 
value of the MLE for   based on a sequence of lower records obtained upon 
randomizing the above data. For example, one randomization produces the se-
quence 1702, 1091, 165, 142, 34, 14. Based on this sequence, applying (10), the 
MLE for   is approximately 0.72. We note that this estimator is somewhat close 
to the MLE based on the whole sample obtained to be 0.77. 

6. CONCLUSIONS AND FURTHER STUDIES 

We have studied in this article the distributional properties of record values 
from a J-shaped family of distributions. Based on lower records, we derived re-
currence relations and bounds for moments and product moments of record val-
ues. Moreover, the maximum likelihood estimator of the shape parameter   was 
obtained and shown to be consistent, sufficient, complete and UMVUE estima-
tor. Further a real life data has been fitted to this family of distributions.  

In addition to further investigation of the pertinence of these distributions in 
survival and reliability analysis, one may study the prediction of future record values 
from this family of distributions. Also, studies to obtain the MLE estimator of the 
scale parameter, based on both complete and record samples, can be conducted. 
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SUMMARY 

Record values from a family of J-shaped distributions 

A family of J-shaped distributions has applications in life testing modeling. In this pa-
per we study record values from this family of distributions. Based on lower records, re-
currence relations and bounds as well as expressions for moments and product moments 
of record values are obtained, the maximum likelihood estimator of the shape parameter 
is derived and shown to be consistent, sufficient, complete and UMVU estimator. In ad-
dition, an application in reliability is given. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 




