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EFFECTS OF THE TWO-COMPONENT MEASUREMENT 
ERROR MODEL ON X  CONTROL CHARTS 

D. Cocchi, M. Scagliarini 

1. INTRODUCTION 

It is widely acknowledged within the industrial context that measurement er-
rors may significantly alter the performance of statistical process-control meth-
odologies, as has been shown by the works of several authors, including Kanzuka 
(1986), Mittag and Stemann (1998), Linna and Woodall (2001), Linna et al. (2001), 
Maravelakis et al. (2004) and Maravelakis (2007). 

In these studies, the usual statistical model relating the measured quantity to 
the true, albeit not observable, value is usually Gaussian and additive: 

Y X    (1) 

where Y is the measured quantity, X is the not observable value of the relevant 
quality characteristic, and  is the measurement error. Both X and  are assumed 
to be independent and normally distributed.  

However, situations arise where the measurement error is not normally distrib-
uted, as has been pointed out in Burdick et al. (2003), or where a different error 
model needs to be considered. For example, Montgomery and Runger (1993) re-
mark that the dependence of the measurements variance on the mean level of the 
product characteristic is a common phenomenon. Linna and Woodall (2001) and 
Maravelakis et al. (2004), in a statistical process control situation, examine a model 
where measurement error variance is a linearly increasing function of the process 
mean, while Wilson et al. (2004a), in assessing a manufacturing process’s perform-
ance, stress the motivations for assuming a proportional error structure. Hence 
the need for studies concerning the performances of the control charts under re-
alistic extensions of the most common error models. 

A proposal in this direction comes from the practice of analytical chemistry 
and environmental monitoring, where experimental evidence shows that situa-
tions occur where two types of measurement errors ought to be considered 
(Rocke and Lorenzato (1995) and Rocke et al. (2003)): a measurement error that is 
constant over a range of measures close to zero, while, at higher measures, the 
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measurement error is proportional to the amount of the chemical substance in 
question. 

In this paper we propose to extend the additive and Gaussian error model, 
which is traditionally used in statistical process control literature, in a more gen-
eral way so as to include the structure of the two-component error model. We 
study the effects of the proposed error model on the in-control and out-of con-
trol performances of the traditional 3-sigma Shewhart control chart for means. 
We also address the problem of designing the X  control chart in the presence of 
this error model. 

Since one of the effects of the proposed error model is the non-normality of 
the sample statistic, we examine several control chart design methods that take 
into account the asymmetry induced by measurement errors. We explore a 
method of constructing control charts for the process level using the weighted 
variance (WV) approach, a skewness correction (SC) method and a method based 
on the empirical reference distribution (ERD). These methods are compared by 
Monte Carlo simulation. Results show that the control charts designed with the 
SC and ERD methods are more robust with respect to the non normality caused 
by measurement errors. 

Extremely summarising we find that the proposed error model causes an 
asymmetric behaviour and a great reduction in the power function of the moni-
toring algorithm. We discuss and compare control charts for facing the asymme-
try. Our contribution is a step towards the proposal of a plausible physical model 
of measurement error, which includes the Gaussian additive model as a specific 
case, in the statistical process control framework.  

The present paper is organized as follows. Section 2 describes the two-
component measurement error model as proposed by Rocke and Lorenzato 
(1995), and then generalises model (1) using the two-component error model 
structure. Section 3 examines the effects of the proposed gauge imprecision 
model on the statistical properties of the Shewhart control chart for averages. 
Section 4 illustrates the different methods, which are compared in Section 5. Sec-
tion 6 offers some concluding remarks. An Appendix summarizes some addi-
tional characteristics of the method based on the empirical reference distribution. 

2. THE TWO-COMPONENT ERROR MODEL 

Researches started in the field of analytical chemistry have established that the 
measurement error of an analytical method is of two types (Caulcutt and Boddy 
(1983), Massart et al. (1988)): (i) an additive error that always exists but is only no-
ticeable for zero and near-zero concentrations; (ii) a proportional or multiplicative 
error that always exists but is noticeable at higher concentrations. This situation 
causes some difficulty in estimating the overall precision of an analytical method 
especially for data in the “gray area” where a transition occurs between near-zero 
and higher concentration levels. The two-component error model (Rocke and 
Lorenzato (1995)) overcomes these difficulties by incorporating both types of er-
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ror in a single model, with the advantage of describing the analytical precision of 
measurements over the entire usable range. 

The two-component error model, or Rocke and Lorenzato model, is: 

eY e       (2) 

where  is the true concentration, eY  is the response at concentration , and  

and  and are the calibration curve parameters. The model contains two inde-

pendent errors: 2(0, )N    represents the proportional error, which is always 

present but only noticeable at concentrations significantly above zero; 
2(0, )mN   represents the additive error, which is also always present, but is 

only really noticeable at near zero concentrations.  
In model (2)  is assumed non random and the unknown parameters are , , 

m and . In their original article, Rocke and Lorenzato (1995) discussed the use 
of the maximum likelihood estimation method for these parameters. Gibbons et 
al. (1997) suggested to estimate the model parameters using the weighted least 
squares (WLS) method, but Rocke et al. (2003) pointed out that the WLS method 
is often not very stable and can lead to nonconvergence and impossible estimates. 
More recently, within a Bayesian framework, Jones (2004) proposed a Markov 
Chain Monte Carlo method for estimating the parameters. 

The Rocke and Lorenzato model (2) has proved to be of importance also in 
bioavailability analysis (Rocke et al. 2003), environmental monitoring (Wilson et al. 
2004b), and in the analysis of gene expression data (Rocke and Durbin, 2001). 

From the above considerations the measurement error model (2) is very realis-
tic in connection with several typologies of measurement devices and in different 
empirical issues. It is suitable for being adopted within a statistical process-
control framework, when monitored data are measured using a measurement 
technology for which the two component error model is suitable. 

This last consideration is also supported by the fact that the additive Gaussian 
error model (1), traditionally considered in the statistical quality control literature, 
may prove inadequate in situations where measurement systems induce non stan-
dard variance structures. For instance, Wilson et al. (2004a) consider a manufac-
turing process where the quality characteristic is the iron concentration (in ppm) 
determined by an emission spectroscopy. According to these authors reasons ex-
ist for postulating a measurement error variance which is proportional to the true 
part value, due to the particular measurement technology used for gauging the 
quality characteristic.  

In order to extend model (1) by incorporating the error structure depicted in 
(2) we propose the error model 

eY X e      (3) 
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where 2( , )pX N   . This error model has been also proposed in a measure-

ment system capability framework (Cocchi and Scagliarini (2010)). 

The distribution of the observable response eY  involves three random vari-
ables: the normal variable , and the product of a normal variable, X, and a log-

normal variable e . It follows that one effect of the two-component error model 
may be a significant departure from normality. 

The expected value and the standard deviation of eY  can be written respec-
tively as  

2

( )eE Y e     (4) 

and 

2 2 2 2 2
2 2 2 2 2 1/2( [ ( ( 1)) ( ( 1))] )e p p mY

e e e e e                    (5) 

3. THE 
eY  CONTROL CHART 

In the two-component error case, assuming that all parameters are known, the 
usual Shewhart control chart (3-sigma limits) for the process mean is: 

2
eCL e     (6) 

3
ee e YUCL CL

n


   (7) 

3
ee e YUCL CL

n


   (8) 

where eY
  comes directly from (5). 

Since non-normality may significantly affect the performance of control charts, 
we are first going to examine this particular feature. 

We have created a simulated data set from a pseudo-population using an ex-
ample from the literature reported in Rocke and Lorenzato (1995), where model 
(2) is assumed with: =11.51, =1.524, m=5.698, =0.1032. The concentration 
 is non-random with possible values ranging from 5 picograms to 15 nanograms 
in 100ml. We introduce the randomness of concentration into this model by con-
sidering several values of the coefficient of variation (cv(X)) and several values of 
the mean (E(X)=) of the unobservable X. In this way, according to model (3), 
for a given error structure (m and ) we reproduce a set of different working 
conditions for the measurement device. We fixed the sample size n=5 and gener-
ated 10000 samples for each condition.  
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Table 1 shows the p-values of the Shapiro-Wilk normality test computed on 

the observed values of the sample mean eY . 

TABLE 1 

p-values of the S-W normality test computed on the sample means 

   cv(X)     
E(X) 0.01 0.05 0.1 0.2 0.3 0.4 0.5 

5 6.3E-01 6.4E-01 7.1E-01 9.7E-01 1.8E-01 4.7E-01 7.5E-01 
10 9.2E-01 4.5E-01 9.2E-01 3.1E-01 5.6E-01 1.3E-01 2.7E-01 
50 2.9E-01 1.3E-01 3.4E-04 2.9E-01 4.6E-01 5.3E-02 4.2E-01 
100 8.8E-05 9.3E-05 3.7E-04 1.7E-04 8.4E-02 1.8E-01 4.6E-01 
1000 2.9E-05 4.4E-04 2.9E-08 3.5E-02 4.2E-05 1.8E-01 4.2E-01 
10000 4.9E-06 1.0E-04 2.2E-07 3.1E-03 2.6E-01 6.2E-01 7.9E-01 
15000 6.1E-05 8.3E-04 5.1E-04 2.3E-01 1.8E-01 8.8E-01 2.5E-01 

 

Non-normality appears evident when E(X)100 and cv(X)0.2 (the shaded 
part of Table 1). In order to appreciate the effects of error model (2) on the con-
trol chart, we have focused on the in-control and out-of-control situations. 

In order to study the effects of error model (3) on the false alarm rates, the in-
control conditions were simulated for E(X)100 and cv(X)0.2 of the unobserv-
able X. With fixed sample size n=5, we generated 108 samples for each condition. 
Results are summarized in Figure 1 where the continuous line, denoted as “no 
errors”, corresponds to 0.00135, i.e. the probability, for the undisturbed process 
and in the error-free case, of a signal below the LCL (or above the UCL). Con-
tinuous lines are used for the false alarm rates above the UCL and dotted lines 
are used for the false alarm rates below the LCL. 

 
Figure 1 – False alarm rates from 108 replications (dotted lines for the values below the LCL, con-
tinuous lines for the values above the UCL). 
 
 



 D. Cocchi, M. Scagliarini 312 

Figure 1 shows a marked asymmetric behaviour: false alarm rates below the 
LCL are lower than the false alarm rate in the error-free case (0.00135), while the 
false alarm rates above the UCL are systematically greater than this value. 

When considering the out-of-control situation, a shift in the mean of the non-
observable X, from  to 1, corresponds to a standardized shift of magnitude 

1 





  (9) 

In the presence of shift (9) in X, the expected value of the response eY  is  

2

1( )eE Y e     (10) 

and the corresponding standardized shift in the monitored eY  is 

2 2

2 2
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1 0
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 
     
 
 

 (11) 

For non-zero  and m, the denominator in (11) is greater than 1, and there-

fore eY
  . As a result, measurement errors lead to a smaller shift in the ob-

served response eY , which means that the change is more difficult to detect. Ta-
ble 2 shows the values of eY

  corresponding to a shift 0.5   for those values 

of E(X) and cv(X) in question, where the reduction in the shift is evident for 
small values of E(X) and cv(X). 

TABLE 2 

Values of Ye corresponding to a standardized shift of magnitude ||=0.5 

 cv(X) 
E(X) 0.01 0.05 0.1 0.2 
100 0.045 0.207 0.336 0.436 
1000 0.048 0.217 0.346 0.442 

10000 0.048 0.217 0.347 0.442 

 

One of the most commonly-used measures for evaluating the statistical prop-

erties of control charts is the ARL (Average Run Length). For the eY -chart, the 
theoretical ARL for shifts of magnitude eY

  is: 
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1( ) ( ( 3 ) ( 3 ))e e eY Y Y
ARL n n           (12) 

The ARL values corresponding to the eY
  in Table 2 are reported in Table 3 

TABLE 3 

Theoretical values of ARL for the Ye in Table 2 

 cv(X) 
E(X) 0.01 0.05 0.1 0.2 
100 352.49 170.99 81.13 46.50 
1000 350.34 161.06 76.27 45.09 

10000 350.31 160.96 76.23 45.07 

 

Expression (12) is based on the normality assumption of the sample statistic 
used in the chart, although we noticed that measurement errors lead to departures 
from the Normal distribution. Thus, in order to assess the effects of the two-
component measurement error, we conducted a simulation study of the out-of-
control situations. For each combination of cv(X) and E(X) in Table 1, we fixed 
shifts of magnitude 0.5   in the variable X, and estimated the off-target ARLs 

of the eY -control-charts. Each condition was again replicated 108 times: results 
for negative and positive shifts are summarized in Table 4.  

TABLE 4 

Estimated ARLs (= -0.5 left values and = +0.5 right values within each parenthesis) 

 cv(X) 
E(X) 0.01 0.05 0.1 0.2 
100 (380.5 282.7) (265.4 116.6) (121.2 57.8) (59.3 37.0) 
1000 (392.3 279.9) (279.2 108.1) (117.2 54.6) (57.5 36.1) 
10000 (368.9 289.0) (271.7 106.8) (118.0 54.3) (58.0 35.9) 
15000 (384.8 271.0) (269.8 104.9) (118.3 53.7) (57.0 36.1) 

 

Table 4 confirms the asymmetric effect of measurement errors. The ARLs for 
positive shifts are smaller than the corresponding ARLs for negative shifts. As 
one would have expected, the values shown in the table tend to differ from the 
theoretical ARL values shown in Table 3, in particular as E(X) increases. 

4. THE DESIGN OF THE CONTROL CHARTS UNDER THE TWO-COMPONENT ERROR MODEL 

The results obtained so far show that error-model (3) leads to important modi-
fications in the performances of the Shewhart control chart, which in turn result 
in problems in the practical use of such monitoring algorithms. In particular, we 
noticed departure from normality, a marked asymmetric behaviour, and a general 
difficulty in assessing the performances of the control chart itself.  

The problem of designing and using control charts without assuming normality 
is something that frequently comes up in industrial practice. 



 D. Cocchi, M. Scagliarini 314 

When the distribution of the observable quality characteristic is known, exact 
methods can be used for analytically computing the control limits for the desired 

Type I risk. In our model (3) the observable quality characteristic eY  is modelled 

as the sum of a normal variable, eY , and the product of a normal variable, X, by 

a log-normal variable e . The analytical derivation of this distribution is not im-
mediate. Tools for computing the product of random variables have been pro-
posed, for instance by Roahtgi (1976) and Springer (1979), the last mostly relying 
on Mellin transforms. The analytic derivation, and the further implementation 
and computation of these results, are, when possible, rather complicated, as Glen 
et al. (2004) pointed out. Moreover, once obtained the distribution of the product, 

say pY , the further difficulty of obtaining the distribution eY  as the convolution 

of pY  and   has to be faced. 

In general, the charts constructed by the exact method are not in a form famil-
iar to practitioners and quality engineers who are used to conventional X  charts 
(Bai and Choi, 1995, Chan and Cui, 2003). Therefore, other approaches will be 
examined. 

4.1 The weighted variance method 

For skewed distributions Choobineh and Ballard (1987) suggest a weighted vari-
ance (WV) method based on the semivariance approximation of Choobineh and 
Branting (1986). Following this mainstream, Bai and Choi (1995) propose an inter-
esting heuristic WV method without distributional assumptions, which will be syn-
thetically illustrated. This method provides asymmetric control limits that keep into 
account the direction and degree of skewness, that is estimated by using different 
variances in computing upper and lower control limits for skewed populations.  

The WV method, like the Shewhart method, uses the standard deviation for 
setting the control limits. However, it differs from the Shewhart method since the 
standard deviation is multiplied by two different factors. One factor is used for 
the UCL, while the other is used for the LCL. Let PX be the probability that the 
random variable X is less or equal to its mean X . Then the UCL factor is 

2 XP , and the LCL factor is 2(1 )XP . The control limits of the X  chart 

based on the WV method are  

3 2

3 2(1 2 )

X
X X

X
X X

UCL P
n

LCL P
n







 

  
 (13) 

For using in practice the control chart (13) based on the WV method, both PX 
and the process parameters must be estimated. Let 1 2, , ...,i i inX X X , i=1,2,...,r, be 
r subgroups (samples) of size n from the (in-control) process. When the process 
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distribution and parameters are unknown Bai and Choi (1995) propose the WV 
X  Chart: 

'
2

'
2

ˆ3 2(1 )

ˆ3 2

WV X L

WV

WV X U

R
LCL X P X W R

d n

CL X

R
UCL X P X W R

d n

    



   

 (14) 

where 
1 1

(1 ( ))
r n

iji j
X nr X

 
   , 

1
(1 )

r
ii

R r R


  , and iR  is the range of the 

i-th subgroup that is used to estimate the standard deviation. Further, the weight 
ˆ
XP  estimates the probability that the random variable X is less than or equal the 

mean ( )E X : 

1 1

( )
ˆ

r n

ij
i j

X

X X

P
nr


 






 (15) 

with ( ) 1x   for x0 and ( ) 0x  for x < 0. The values of 2d   that appear  
in (14), for given n and PX, can be computed using the method described by  

Bai and Choi (1995) whereas constants 23 2(1 )L XW P d n   and 

23 2U XW P d n  for selected combinations of n and PX are listed in Table 1 

of Bai and Choi (1995).  
The practical use of the WV method, with respect to the Shewhart method, 

doesn’t imply an increase of the computational complexity since it requires only 
the estimation of the probability PX from the preliminary r samples from the in-
control process (i.e. Phase I data). 

4.2 The skewness correction method 

Also the skewness correction (SC) method (Chan and Cui, 2003 and Yazici and 
Kan, 2009)) correct the conventional Shewhart chart according to the skewness of 
the distribution. This approach is based on the Cornish-Fisher expansion reported 
by Johnson and Kotz (1970). For the standardized random variable X with mean 0, 
standard deviation 1 and skewness k3, the LCL, CL and UCL of a standardized 
control chart for individual observation based on the SC method are: 

4
33

2
3

3
1 0.2

k
LCL

k
 


, 0CL  ,

4
33

2
3

3
1 0.2

k
UCL

k
 


 

respectively. 
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For the general case of subgroups of size n and unknown parameters, Chan 
and Cui (2003) propose the SC X  Chart: 

*3
*2
23

*3
*2
23

ˆ4 (3 )
3 ˆ1 0.2

ˆ4 (3 )
3 ˆ1 0.2

SC L

SC

SC U

k n R
LCL X X A R

d nk n

CL X

k n R
LCL X X A R

d nk n

 
        



 
       

 (16) 

where 3k̂  is the estimated sample skewness 

3

3 2
1 1 1

1 1 1

1ˆ
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r n
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ijnr i j
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nr
X X 

  

 
 

    
 


 

 (17) 

Constants *
LA  and *

UA  are listed in Table 1 of Chan and Cui (2003). The SC 
method consists in a semi-parametric approach that requires the first three mo-
ments of the distribution, even if the distributional form has not to be explicited. 
Compared with the Shewhart approach, the SC method needs the estimation of 
the skewness parameter k3 which represents only a negligible increase in the 
complexity of the method. 

4.3 The empirical reference distribution method 

Chakraborti et al. (2001) presented an extensive overview of the literature on 
univariate distribution-free control charts, and subsequent scientific works, 
among which we quote Vermaat et al. (2003), Chakraborti et al. (2004) and by 
Chakraborti and Van de Wiel (2008), have confirmed the growing interest in this 
issue. 

One of the distribution-free control charts discussed in Chakraborti et al. (2001) 
was previously proposed by Willemain and Runger (1996). This proposal makes it 
possible to design both one-sided and two-sided control charts from a sufficiently 
large in-control (or, a reference) sample, by selecting the control limits as specific 
order statistics of the variables to be charted. As stated by the authors the availabil-
ity of a large preliminary data set from the undisturbed process (in-control) is a nec-
essary condition for the nonparametric design of control charts, since estimation of 
extremes percentiles corresponding to a large on-target average run length (ARL) 
would be impossible without a large number of observations. 

Suppose that Z is a sample statistic computed from a sample of size n. Let iz  
(i=1,2,...,m) be the independently observed values of Z computed from m sam-
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ples. Here Z is ( )e eY E Y  and the zi values are the observed sample means e
iy . 

We assume that m preliminary samples are taken from the undisturbed process. 
Let z(k) be the k-th order statistic in the sample, k=1, 2, ..., m, (for basic order 

statistics theory, see for example David and Nagaraja, 2004), and z(m) be the larg-
est value of the z(k). By convention  0z    and  1mz    . The m order statis-

tics divide the theoretical range of Z into m+1 equally probable intervals. 
If the control limits are defined as  ERD kLCL z  and  ERD sUCL z , with 

0 k s m   , then 

   Pr[ ]k sP z Z z    (18) 

is the probability that a value of the sample statistic Z falls within the control lim-
its ERDLCL  and ERDUCL . 

Probability P has a Beta distribution that depends only on m and on the num-
ber b=s-k of intervals within the control limits 

( , 1)P Beta b m b   (19) 

Assuming the independence of the plotted points, the number R of plotted 
points between alarms has a geometric distribution with parameter 1 P . For a 
given P, the in-control ARL is  

1( | ) (1 )ARL E R P P      (20) 

Since the z(k) are the observed values generated by the random variables  kZ , 

the ARL itself is a random variable with Inverted–Beta distribution 

1 1!
( ) ( 1)

( 1)!( )!
h mm

h ARL ARL ARL
b m b

  
 

 (21) 

with expected value 

( )
m

E ARL
m b




 (22) 

and standard deviation 

1/2

2. .( )
( ) ( 1 )

bm
s d ARL

m b m b

 
     

 (23) 

Equation (22) is important for practice since, given the number m of prelimi-
nary samples and the number b of intervals within the control limits, it quantifies 
the on-target ARL performances of a ERD based control chart. 
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It is also possible to compute the quantiles of the ARL distribution using the 
relationship 

Pr[ ] Pr[ 1 1/ ]ARL A P A     (24) 

The ERD method allows also to assess the performances of the control chart 
in the out-of control-situations by evaluating the expected ARL using a shift pro-
cedure. Details are summarised in the Appendix. 

5. COMPARISONS OF THE DIFFERENT METHODS 

We compare the performances of the three methods when the measurement 
error model (3) is considered in designing control charts for the mean level of the 

observable quality characteristic eY . We select the situation where cv(X)=0.01 
among the cases examined in Section 3 (the other cases can be treated similarly).  

To build WV and SC control charts we simulate a preliminary data set of r=50 
independent and “in-control” subgroups of size n=5 for the E(X) values of inter-
est. The sample estimates are reported in Table 5.  

Constants WL, WU *
LA , and *

UA  obtained by interpolating the values of Table 
1 in Bai and Choi (1995) and Table 1 in Chan and Cui (2003) respectively, are re-
ported in Table 6, together with the control limits of the WV and SC control 
charts. 

TABLE 5 

Sample estimates from r=50 simulated samples for cv(X)=0.01 

 E(X) 
 100 1000 10000 15000 

eY  164.918 1534.168 15432.606 22910.358 

eY
R  40.970 373.927 3688.634 5648.898 

ˆ
eY

P  0.524 0.492 0.492 0.528 

3k̂  0.441 0.284 0.161 0.194 

 

For building ERD based control charts with performances comparable with 
the 3 limits charts just obtained, we choose m=10000 and b=9973, thus from 
equation (22) we have ( ) 370.4E ARL   

In order to obtain a reasonable chart performance, we set k=14 and conse-
quently  14ERDLCL z  and  9987ERDUCL z , leaving 14 blocks below the LCL 

and 14 blocks above the UCL, allowing, in this way, a well-behaving ARL. 
We created the undisturbed preliminary data set by generating the m samples 

of size n=5 from the observable response eY . After obtaining the sample means 
e
iy , as described in Section 4, we then computed the control limits reported in 

Table 6. 
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TABLE 6 

WV and SC constants and WV, SC and ERD control limits for cv(X)=0.01 

 E(X) 
 100 1000 10000 15000 

LW  0.518 0.580 0.580 0.516 

LW  0.590 0.580 0.580 0.590 
*
UA  0.635 0.615 0.600 0.604 

*
LA  0.527 0.545 0.560 0.556 

WVLCL  143.696 1317.141 13291.723 19995.527 

WVUCL  189.099 1750.896 17570.538 26245.467 

SCLCL  143.331 1330.563 13367.369 19770.695 

SCUCL  190.940 1764.317 17646.184 26323.416 

ERDLCL  143.341 1336.275 13363.672 20027.123 

ERDUCL  189.062 1768.048 17589.563 26305.440 

 

5.1. Comparison of the in-control performances 

The in-control performances of the charts with the control limits reported in 
Table 6, are assessed by generating 108 samples (n=5) from the in-control proc-
ess, for every combination of E(X) and cv(X)=0.01. The observed false alarm 
rates, due to a signal above the upper control limits and below the lower control 
limits, are shown in Figures 2 and 3 respectively. In both figures, the “no-error” 
value equal to 0.00135 is denoted as a continuous line. 

 
Figure 2 – False alarm rates above the UCLs. 
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Figure 3 – False alarm rates below the LCLs. 
 

Charts behaviour, when compared with Figure 1, shows a strong improve-
ment: the false alarm rates now follow a random pattern around the theoretical 
value 0.00135, without evidence of asymmetry. Moreover, the false alarm rates of 
the SC and ERD charts are closer to the no-error value than the WV charts 
which show a less stable behaviour to the changes of E(X). 

5.2. Comparison of the out-of-control performances 

For each value of E(X), when cv(X)=0.01, we fixed shifts of magnitude 
0.5   in the variable X. The off-target ARLs were estimated by performing 

108 replications of the experiment. Results are reported in Figures 4 and 5. 

 
Figure 4 – Estimated ARLs for = -0.5. 
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Figure 5 – Estimated ARLs =+0.5. 
 

In these figures the benchmark “theoretical” lines, corresponding to the values 
computed using formula (12) and appearing in Table 3 (first column), are re-
ported. The estimated out-of-control ARLs do not show a systematic asymmetric 
behaviour, SC and ERD show comparable ARLs that seem to have more steady 
performances than the WV control charts. 

As a conclusion, when the data are contaminated by the proposed two-
component error model, the SC and ERD based X -control charts show similar 
performances being less sensitive to the presence of measurement errors. 

6. CONCLUDING REMARKS 

Studies of the effects of measurement errors on monitoring algorithms tradi-
tionally use the Gaussian additive error model. However, it has often been 
pointed out that, in connection with particular measurement devices, a more real-
istic error model ought to be considered.  

In this paper we have proposed an extension of the usual error model (1) to 
cover a more general situation, by introducing the structure of the two-
component error model (2). The two-component error model was proposed for 
uncertainty measurement in analytical chemistry and environmental monitoring. 
Model (2) jointly considers a constant error-component, which reveals its effects 
at low measurement levels, and a proportional error-component, which becomes 
significant at higher levels of measurement. The overall picture of measurement 
uncertainty given by the two-component error model is very realistic and re-
sponds to several among the improving requirements from the literature and the 
practice of statistical process control. 

For these reasons we propose the error model (3) and assess its effects on the 
Shewhart X  control chart. In this way, we unify two approaches, which to our 
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knowledge have up until now been proposed separately. We have stressed the 
point that the proposed error model can lead to a significant departure from the 
normal distribution, and have an important impact on control chart performance. 
This happens because, while the additive error basically inflates the variance of 

the observable response eY , the proportional error component  leads to a re-
markable asymmetry in the performance of the mean control chart.  

Results indicate that when the process is in-control, the false alarm rate above 
the UCL is greater than the theoretical false alarm probability, while the false 
alarm rate below the LCL is smaller. This is an important issue, since false alarms 
may cause a series of expensive, unnecessary actions or regulations. Moreover, 
asymmetry can complicate monitoring management. The effects of the two-
component error model are also evident in the out-of-control situation: the ARL 
for negative shifts is always greater than the corresponding ARL for positive 
shifts. 

In order to take errors into account when designing the control chart, we have 
compared by simulation the use of several control chart design methods. Our re-
sults indicate that the SC and ERD methods of constructing X  control chart 
improve the chart performance when the process is in-control, in the sense that 
the observed false alarm rates are symmetric and in agreement with theoretical 
false alarm probability. Also for the out-of-control cases performance of the SC 
and ERD charts do not show an asymmetric behaviour. As a conclusion we state 
that SC and ERD based X -control charts are less sensitive to the presence of 
measurement errors. 

However, the large number of observations from the so-called Phase I, neces-
sary to ascertain the control limits in the ERD method, may be a potential limita-
tion in practice. Therefore the solution based on the skewness correction (SC) 
method might appear the best choice at the price of assuming the existence of the 
first three moments of the distribution. In this case the design of the control 
chart is based on the estimation of the first three moments of the distribution. 
 
Department of Statistics DANIELA COCCHI 
University of Bologna MICHELE SCAGLIARINI 
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APPENDIX 

A.1 ARL COMPUTATION FOR THE ERD METHOD IN THE OUT-OF CONTROL CASE 

For the out-of-control situation, given the chosen control limits, the corre-
sponding expected off-target ARL can be evaluated using a shift procedure. It is 
based on the idea that a shift in the process level will modify the number of ob-
served order statistics falling within the control limits. Thus, the problem of as-
sessing off-target ARL is transformed into the assessment of on-target ARL with 
a smaller number of intervals within the control limits. 

In the two-sided chart, we have  ERD kLCL z  and  ERD k bUCL z  . If an 

assignable cause leads to an upward shift in the mean, then all order statistics will 
shift upwards in a way such that  'k b kz    takes the position formerly held by 

 k bz  . The shift decreases the number of intervals below the UCLERD, from b+k 

to b+k-k’, while it increases the number of intervals above the LCLERD. How-
ever, as Willemain and Runger (1996) pointed out, this interval-shifting is not 
symmetric since the decrease in the number of intervals in the upper part of the 
in-control region is only partially compensated by the increase in the number of 
intervals on the lower part by some fractional amount. 

Thus, for a given upward shift, b’=b+k-fk’ intervals (0<f<1) remain, where k’ 
is the decrease in the number of intervals within the control limits. If the ob-
served spacings between the order statistics are used as values of the shifts, it is 
possible to estimate the off-target E(ARL) at those particular values of shift, and 
thus the value k’ is an integer. 

A downward shift can be treated similarly: a negative shift reduces the number 
of intervals at the low end of the in-control region, and is partially compensated 
by an increase in the number of intervals on the high end by some fractional 
amount. 

The effectiveness of the aforesaid method of evaluating the expected off-target 
ARL depends on the specification of a value for the fractional amount f. The 
choice of f may be critical, in the sense that a modification in the E(ARL) values 
for a given shift may be sensitive to this choice. Since there is no general criterion 
for a satisfactory choice of f, we conducted a preliminary set of simulations using 
several values of f. We found that small values of f lead to unreasonable and un-
stable results while large values of f give better results. Thus we decided to set the 
f value at 7/8. 

Let us first consider the case of an upward shift. We denote with  jz  the j-th 

order statistics, and thus  

 1 ERD jUCL z    (A1) 

is the observed spacing between the UCLERD and the order statistic  jz . 
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Since in our case the  jz  values correspond to the ordered values of e
jy , the 

estimated standard deviation of the sample means e
jy  (j=1,2,...,m) is  

 
1/22

1

ˆ
( )

1
e

m
j

Y
i

z z

m




 
 
  
  (A2) 

where  
1

1

m

j
j

z m z



  . 

Therefore, the empirically estimated standardized shift in eY  is 

1ˆ
ˆ

e

e
Y

Y





  (A3) 

which corresponds to an upward shift that moves a  jz  into the position of 

UCLERD, while the empirically estimated standardized shift in eY , corresponding 

to a shift of size ˆ
eY

  in eY , is  

ˆ
ˆ e

e
Y

Y n


   (A4) 

We have to look for those values of ˆ
eY

  that provide the best approximation 

of the values of eY
  and estimate the off-target E(ARL) at those particular values 

of shift. 
Table A1 shows an extended version of the results for E(X)=100 and 

cv(X)=0.01. A summary of the results in all the other cases is given in Table A2. 
In Table A1 the column labelled as “ j ” shows the positions of the ordered sam-
ple means  jz . Column “ 1 ” contains the values of the observed spacings be-

tween the UCLERD and the order statistic  jz , according to equation (A1), while 

the next two columns show the values of ˆ
eY

  and ˆ
eY

  computed according to 

(A3) and (A4) respectively. For each value of 1  ( ˆ
eY

 ), we computed the number 

of intervals within the control limits b’=b+k-fk’, as described above. The values 
of E(ARL) and s.d.(ARL) conditional on shift 1  ( ˆ

eY
 ) are calculated by equa-

tions (22) and (23) respectively, with b’ in the place of b, i.e.: 

( ) ( ')E ARL m m b   and 2 1/2. .( ) ( ' (( ') ( 1 ')))s d ARL b m m b m b    . The col-
umns “2.5%” and “97.5%” show the percentiles of the distribution of the ARL 
computed using equation (23), thus providing a 95% confidence interval for the 
unknown ARL. 
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For E(X)=100 and cv(X)=0.01 the standardized shift in eY  is 0.045eY
   

(Table 2), which is best approximated by ˆ 0.052eY
  , with a corresponding 

E(ARL)=337.6. 
For a downward shift  1 jLCL z   , ˆ

eY
  and ˆ

eY
  are defined according to 

the usual equations (A3) and (A4). In this case, the best approximation to eY
  is 

obtained by ˆ 0.044eY
    with a corresponding E(ARL)=327.9. 

TABLE A1 

Off-target ARL computations for E(X)=100 and cv(X)=0.01 ( ˆ 7.51eY  ). 

j  jz  1  ˆ
eY

  ˆ
eY

  b+k-k’ b+k-fk’ E(ARL) s.d.(ARL) 2.5% 97.5% 

Upward shift 
9987 UCLERD=189.062 0.000 0.000 0.000 9973 9973.000 370.4 3.7 254.7 537.2 
9986 188.887 0.175 0.023 0.010 9972 9972.125 358.7 3.5 248.2 517.4 
9985 188.887 0.175 0.023 0.010 9971 9971.250 347.8 3.5 242.0 498.9 
9984 188.186 0.876 0.117 0.052 9970 9970.375 337.6 3.4 236.1 481.6 

Down ward shift 
19 144.380 -1.038 -0.139 -0.062 9968 9968.625 318.7 3.2 225.2 450.3 
18 144.078 -0.737 -0.098 -0.044 9969 9969.500 327.9 3.3 230.5 465.4 
17 143.870 -0.528 -0.070 -0.032 9970 9970.375 337.6 3.4 236.1 481.6 
16 143.784 -0.443 -0.059 -0.026 9971 9971.250 347.8 3.5 242.0 498.9 
15 143.516 -0.175 -0.023 -0.010 9972 9972.125 358.7 3.6 248.2 517.4 
14 LCLERD=143.341 0.000 0.000 0.000 9973 9973 370.4 3.7 254.7 537.2 

 

TABLE A2 

Off-target ARL computations for cv(X)=0.01 

 j  jz  ˆ
eY

  b+k-k’ b+k-fk’ E(ARL) s.d.(ARL) 2.5% 97.5% 

( ) 1000E X   ˆ 71.13eY
   

upward shift 9982 1760.645 0.044 9969 9968.5 327.9 3.3 230.5 465.4 
downward shift 20 1343.494 -0.045 9967 9967.75 310.1 3.3 220.1 436.0 

( ) 10000E X   ˆ 698.52eY
   

upward shift 9982 17503.48 0.055 9968 9968.625 318.7 3.2 225.2 450.3 
downward shift 19 13435.53 -0.046 9968 9968.625 318.7 3.2 225.2 450.3 

( ) 15000E X  ˆ 1063.46eY
   

upward shift 9980 26192.59 0.047 9966 9966.875 301.9 3.0 215.2 422.6 
downward shift 23 20152.75 -0.053 9964 9965.125 286.7 2.9 206.2 398.1 
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SUMMARY 

Effects of the two-component measurement error model on X  control charts 

The statistical properties of Shewhart control charts are known to be highly sensitive 
to measurement errors. The statistical model relating the measured value to the true, al-
beit not observable, value of a product characteristic, is usually Gaussian and additive. In 
this paper we propose to extend the said model to a more general formulation by intro-
ducing the two-component error model structure. We study the effects of the proposed 
error-model on the performance of the mean control charts, since gauge imprecision may 
seriously alter the statistical properties of the control charts. In order to take measurement 
errors into account in the design of the control charts we explore the use of different 
methods based on a weighted variance concept, a skewness correction method and an 
empirical reference distribution approach respectively. The different approaches are dis-
cussed and compared by Monte Carlo simulation. Results indicate that the last two meth-
ods produce the best results. 
 
 
 
 
 
 
 
 
 
 




