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THE PERMUTATION TESTING APPROACH: A REVIEW 

F. Pesarin, L. Salmaso 

1. INTRODUCTION TO PERMUTATION TESTING 

Research and applications related to permutation tests have increased in the 
recent years (David, 2008). Several books have recently been dedicated to these 
methods (Basso et al. 2009; Edgington and Onghena, 2007; Good, 2005; Mielke 
and Berry, 2007; Pesarin and Salmaso, 2010). One direction of research goes 
through the asymptotic properties of permutation statistics (e.g. Janssen, 2005). 
Considerable attention is given to the development of these techniques in the 
multiplicity field, and in general for high dimensional problems (Finos and Sal-
maso, 2006; Klingenberg et al., 2009). In Fitzmaurice at al. (2007) it is suggested 
that permutation tests be used in applications of generalized linear mixed models 
on multilevel data. Developments exist in many other research fields, including 
clinical trials (Agresti and Klingenberg, 2005; Tang et al., 2009), functional data 
analysis (Cox and Lee, 2008), spatial statistics (Downer, 2002), principal compo-
nent analysis (Dray, 2008), shape analysis (Brombin and Salmaso, 2009), gene ex-
pression data (Xu and Li, 2003; Jung, 2005), stochastic ordering problems (Finos 
et al., 2007; Basso and Salmaso, 2009), and survival analysis (Abd-Elfattah and 
Butler, 2007). 

This paper intends to support the permutation approach to a variety of uni-
variate and multivariate problems of hypothesis testing in a typical nonparametric 
framework. A large number of testing problems may also be usefully and effec-
tively solved by traditional parametric (likelihood-based) or rank-based nonpara-
metric methods, although in relatively mild conditions their permutation counter-
parts are generally asymptotically as good as the best ones (Hoeffding, 1952). Es-
sentially, permutation tests are of an exact nonparametric nature in a conditional 
context, where conditioning is on the pooled observed data which is generally a 
set of sufficient statistics in the null hypothesis for all underlying nuisance enti-
ties, including the distribution P  as a whole. Instead, the reference null distribu-
tion of most parametric tests is only known asymptotically and sometimes the 
rate of convergence, when dependent on nuisance entities, is unknown. Thus, for 
most sample sizes of practical interest, the possible lack of efficiency of permuta-
tion solutions may be compensated by the lack of approximation of parametric 
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asymptotic counterparts. Even when responses are multivariate normally distrib-
uted and there are too many nuisance parameters to estimate and remove, as each 
estimate implies a reduction in the degrees of freedom in the overall analysis, it is 
possible for the permutation solution to be more efficient than its parametric 

counterpart (e.g. Hotelling’s 2T  in Section 7). In addition, assumptions regarding 
the validity of most parametric methods, such as homoscedasticity, normality, 
regular exponential family, random sampling from a given population, etc., rarely 
occur in real contexts, so consequent inferences, when not improper, are neces-
sarily approximated and their approximations are often difficult to assess. 

There are authors, with whom we partially agree, who by only analyzing some 
unidimensional problems support the idea that nonparametric methods should 
generally be preferred over their parametric counterparts because when both are 
applicable the relative lack of efficiency of nonparametric methods is small, and 
when assumptions for their use are not satisfied, nonparametrics are generally 
much better (Lehmann, 2009; Moder et al., 2009). In practice parametric methods 
reflect a modelling approach and generally require the introduction of a set of 
quite stringent assumptions, which are often difficult to justify. Sometimes these 
assumptions are merely set on an ad hoc basis. For instance, too often, and with-
out any justification, researchers assume multivariate normality, random sampling 
from a given population, homoscedasticity of responses also in the alternative, 
random effects independent of units, etc. In this way although it is possible to 
write a likelihood function, to estimate a variance-covariance matrix and to calcu-
late the limiting distribution of the likelihood ratio, consequent inferences have, 
however, no real credibility. Indeed consequent solutions seem to be mostly re-
lated to availability of methods than with well discussed necessities derived from 
a rational analysis of reality. They appear in accordance with the idea of modify-
ing a problem so that known methods become applicable than with modifying 
methods to deal properly with the real problem as it is rationally perceived. This 
behavior often agrees with referees of most journals who are relatively more cau-
tious with solutions obtained using innovative methods rather than with tradi-
tional methods (Ludbrook and Duddley, 1998). On the contrary, nonparametric 
approach try to keep assumptions at a lower workable level, avoiding those which 
are difficult to justify or interpret, and preferably without excessive loss of infer-
ential efficiency. Thus, they are based on more realistic foundations, are intrinsi-
cally robust and consequent inferences credible. In addition, permutation com-
parisons of means or of other suitable functionals do not require homoscedastic-
ity of the data in the alternative, provided that random effects are either non-
negative or non-positive. 

There are, however, many complex multivariate problems (quite common in 
biostatistics, clinical trials, engineering, the environment, epidemiology, experi-
mental data, industrial statistics, pharmacology, psychology, social sciences, etc.) 
that are difficult to solve outside the conditional framework and in particular out-
side the method of nonparametric combination (NPC) of dependent permutation 
tests. Solutions to several complex multivariate problems are discussed in Basso et 
al. (2009), Pesarin (2001), and Pesarin and Salmaso (2009 and 2010). Moreover, 
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within parametric approaches it is sometimes difficult, if not impossible, to obtain 
proper solutions. A few examples are: 

1. Problems with paired observations when scale coefficients depend on units 
or on unobserved covariates. 

2. Two-sample designs when treatment is effective only on some of the treated 
units, as may occur, for instance, with drugs having genetic or environ-
mental interaction. 

3. Multivariate tests when the number of observed variables is larger than the 
sample size. 

4. Exact testing for multivariate paired observations when some data are miss-
ing, even not at random. 

5. Unconditional testing procedures when units are randomly assigned to 
treatments but are obtained by selection-bias sampling from the target 
population. 

6. Problems with well-specified likelihood models in which ancillary statistics 
are confounded with other nuisance entities. 

7. Two-sample testing when data are curves or surfaces, i.e. testing with a 
countable number of variables. 

8. Testing problems when the precision of measurement instrument depends 
on the value to be measured.  

As regards problem 1, the well-known Student’s t -paired test requires that dif-
ferences 2 1( = ,i i iX Y Y =1, , )i n  are i.i.d. normally distributed, where the 

ijY , 1, 2,j   are the two responses of i th unit. Wilcoxon’s signed rank test re-

quires that differences are i.i.d. continuous. The permutation counterpart requires 
them to be independent of units and symmetrically distributed around 0  within 
each unit in the null hypothesis. In particular it is not required that units share the 
same distribution (Pesarin, 2001; Pesarin and Salmaso, 2010). In such a case: (i) 
when the iX , although normal, are not homoscedastic, it is impossible to obtain 
estimates of standard deviation on each unit with more than zero degrees of free-
dom; (ii) signed ranks are not equally distributed in the null hypothesis; (iii) exact 
and effective permutation solutions do exist based on statistics such as 

= i ii
T X S   the p -value of which is = #( )/2n

ii
T X   , where i.i.d. iS  

assumes values 1  and 1  with equal probability. 
In problem 2, since either random or fixed effects behave as if they depend on 

some unobserved attitudes of the units, traditional parametric approaches are not 
appropriate. Instead, rank based and permutation solutions have no such draw-
back. Hints for obtaining suitable permutation solutions, including the case where 
treatment is positive on some units and negative on others, are provided in Sec-
tion 5.3 (Bertoluzzo et al., 2011; Pesarin and Salmaso, 2010).  

In problem 3, unless there is a known underlying simple dependence structure 
(e.g. as with autoregressive models in repeated measurements), it is impossible to 
find estimates of the covariance matrix with more than zero degrees of freedom. 
Instead, the NPC method (Section 7) allows for proper solutions which, in addi-
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tion, are often asymptotically efficient. Furthermore, in cases where the minimal 
sufficient statistic in the null hypothesis is the pooled set of observed data, al-
though the likelihood model would depend on a finite set of parameters only one 
of which is of interest, univariate statistics capable of summarizing the necessary 
information do not exist, so no parametric method can claim to be uniformly bet-
ter than others. Indeed, conditioning on the pooled data set, i.e. its permutation 
counterpart, improves the power behavior of any test statistic (Cox and Hinkley, 
1974; Lehmann and Romano, 2005). However, in order to reduce the loss of in-
formation associated with using one overall statistic, it is possible to find solu-
tions within the so-called multi-aspect methodology based on the NPC of several 
dependent permutation test statistics (Section 5), each capable of summarizing 
information on a specific aspect of interest, so that it takes account of several 
complementary view-points and improves interpretability of results. In this 
framework, when for instance even only one of two unbiased partial tests is con-
sistent, their NPC is consistent. 

In problem 4, general exact parametric solutions are impossible unless missing 
data are missing completely at random and data vectors with at least one missing 
datum are deleted. In Pesarin (2001) and in Pesarin and Salmaso (2010) an exact 
permutation solution is discussed, even when some of the paired data are missing 
not completely at random. 

In 5, any selection-biased mechanism usually produces quite severe modifica-
tions to the target population distribution, hence unless the selection mechanism 
is well defined, the consequent modified distribution is known and related pa-
rameter estimates are available, no proper parametric inference on the target 
population is possible. Instead, within the permutation approach we may extend 
conditional inferences to unconditional counterparts (Section 3). 

In 6, conditioning on the pooled data, as a set of sufficient statistics in the null 
hypothesis, seems unavoidable. Indeed, at least for finite sample sizes, the act of 
simply conditioning on such ancillary statistics does not make sense (Cox and 
Hinkley, 1974). 

In problem 7, as far as can be drawn from the literature (e.g. Bosq, 2005; Fer-
raty and Vieu, 2006; Ramsey and Silverman, 1997, 2002), only some nonparamet-
ric regression estimates and predictive problems are solved when data are curves; 
instead, within the NPC strategy, several testing problems with at most a count-
able number of variables (e.g. the coefficients of suitable curve expansions) can 
be solved (Section 6). 

In 8, when the precision of a measurement tool depends on the value to be 
measured (e.g. as in astronomy, biochemistry, chemometrics, electronics, etc.) as 
far as we know no parametric solution can be set up, unless the precision meas-
urements are properly modelled and their parameters well estimated so that ob-
served data are transformed and/or stratified in such a way that they become 
homoschedastic. Within the permutation goodness-of-fit and the NPC it is pos-
sible to find appropriate solutions to some of related testing problems (Pesarin 
and Salmaso, 2010). 

Although authoritative, we partially agree also with opinions such as: “When 
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one considers the whole problem of experimental inference, that is of tests of 
significance, estimation of treatment differences and estimation of the errors of 
estimated differences, there seems little point in the present state of knowledge in 
using a method of inference other than randomization analysis.” (Kempthorne, 
1955). We agree with the part that emphasizes the importance for statisticians to 
refer to conditional procedures of inference and in particular to randomization 
(same as permutation) methods. Indeed, there is a wide range of testing problems 
which are correctly and effectively solved within a permutation framework. We 
partially disagree, however, because there are very important families of inferen-
tial problems, in the frame of unconditional parametric estimation and testing, 
nonparametric prediction, and more generally within the statistical decision ap-
proach, which cannot be dealt with and/or solved within the permutation ap-
proach. A few example are:  

1. Separate testing on more than one parameter when the exchangeability of 
data is satisfied only in the global null hypothesis, when all partial null sub-
hypotheses are assumed jointly true (e.g. testing separately on locations 
and/or scale coefficients). 

2. Estimation and prediction in one-sample cases when several covariates are 
taken into consideration. 

3. Traditional Bayesian problems. 
4. Estimation and prediction with structured stochastic processes. 
5. All problems for which the permutation principle does not apply (e.g. all 

testing methods for which exchangeability of data with respect to samples in 
the null hypothesis cannot be assumed as with the well-known Behrens-
Fisher problem). 

6. All problems which need at least a semiparametric modeling (e.g. confidence 
intervals for random effects).  

Moreover, all procedures of exploratory data analysis generally lie outside the 
permutation approach. 

Besides, we partially agree with Fisher’s comment (1936) on the permutation 
approach: “... the statistician does not carry out this very simple and very tedious 
process if carried out by hand (our note), but his conclusions have no justification 
beyond the fact that they agree with those which could have arrived at by this 
elementary method”. In other words, Fisher seems to consider traditional para-
metric testing as having the role of approximating the permutation distribution. 
From the one hand, with today fast computers and quite efficient software there 
is no reason for statisticians not to carry out the permutation process, which may 
appear tedious only from a merely by hands computational view point. From the 
other hand, not all inferential problems lie within the permutation approach. 
Thus, although we think that permutation methods should be in the tool-kit of 
every statistician interested in applications and/or methodology and/or theory, 
we believe that traditional parametric approach also must be in his tool-kit. Actu-
ally, in order to apply permutation methods properly, a set of initial conditions 
must be assumed, and if those conditions are not satisfied, their use may become 
erroneous. Indeed, when for experimental or observational studies exchangeabil-
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ity can be assumed in 0H , reference null distributions of permutation tests always 
exist because, at least in principle, they are obtained by considering and enumerat-
ing all permutations of the data. 

2. MAIN PROPERTIES OF PERMUTATION TESTS 

In this section we briefly outline the main terminology, definitions and general 
theory of permutation tests for some one-dimensional problems. Emphasis is 
given to two-sample one-sided designs in which large values of test statistics T  
are assumed evidence against 0H . Extensions to one-sample, multi-sample and 
two-sided designs are generally straightforward. Permutation tests lie within the 
conditional method of inference, where the conditioning is made on the observed 
data as a set of sufficient statistics under the null hypothesis for the underlying 
population distribution (Cox and Hinkley, 1974; Lehmann and Romano, 2005; 
Pesarin, 2001; Pesarin and Salmaso, 2010; Randles and Wolfe, 1979). 

The pooled data set is denoted by 1 11 1 1
={ =( , , ),nX XX X  2 =X  

21 2 2
( , , )}nX X =X1) X2 n where: jX  is the data set of the j th sample sup-

posed to be i.i.d. from distribution jP  , =1, 2;j    is a nonparametric family 

of distributions; is the symbol used for pooling two data files; and 1 2=n n n  is 
the pooled sample size. The related conditional reference space is denoted by x. 
To denote data sets in the permutation context it is convenient to use the unit-by-
unit representation: 1 2= ( , )={ ( ), =1, ,X i i nX X X  ; 1 2, }n n , where it is in-

tended that the first 1n  data in the list belong to the first sample and the rest to 

the second. In practice, with 1= ( , , )nu u  u   denoting a permutation of unit la-

bels = (1, , )nu  , ={ ( )= ( ), =1, ,iX i X u i n  X  ; 1 2, }n n  is the related permu-

tation of X . And so, 1 1={ = ( ),i iX X u  X  1=1, , }i n  and 2 2={ = ( ),i iX X u  X  

1= 1, , }i n n   are the two permuted samples respectively. 
Permutation tests can also be derived from the notion that the null distribution 

of any statistic of interest is invariant with respect to a finite group of transforma-
tions (Hoeffding, 1952; Romano, 1990). These two approaches are essentially 
equivalent since they provide the same solutions. However, we prefer the condi-
tional approach because it is easier to understand, more constructive and more 
simple to use. 

The hypotheses under testing are 0 1 2 1 2:{ = = } { = },
d d

H X X X P P  and 

1 1 2:{( )> } { >0}
d d

H X X    respectively, where the random treatment effect   
is such that Pr{ 0}=1  . In what follows we consider the response model to be 

=ji j jiX Z   , where without loss of generality we assume that 1 =   and 
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2 = 0 . And so the data set in the alternative is 1 1( )={ , =1, , ;iZ i n   X   

2 2, =1, , }iZ i n   . It is worth noting that random effects   are not assumed 
to be independent of errors Z  and that they may induce non-homoscedasticities 
in the alternative. Also note that the additive model for the data set can equiva-
lently be written as 1 2( )= ( , ). X Z Z  In fact, without loss of generality, we 
can put = 0  because it is a nuisance quantity common to all units and thus is 

not essential for comparing 1X  to 2X ; indeed, test statistic ( )T Z  is permu-
tationally equivalent to ( )T Z  since they always lead to the same conditional in-
ference (Pesarin and Salmaso, 2010). 

Essentially the conditional reference space x is the set of points of sample 

space n  which are equivalent to X  in terms of information carried by the asso-
ciated underlying likelihood. Thus, with clear meaning of the symbols, it contains 

all points n such that the likelihood ratio ( ) ( )( ) ( )n n
P Pf f X / X , where ( )n

Pf  is the 
density of P  with respect to a suitable dominating measure, is independent of P , 
and so it corresponds to the orbit of equivalent points associated with X . Given 

that, under the null hypothesis, the density ( )( )= ( )n
P ji P jif f XX  is by assump-

tion exchangeable in its arguments, because ( ) ( )( )= ( )n n
P Pf f X X  for every permu-

tation X  of X , then x contains all permutations of X . That is 
*{[ ( ), 1, , ]}
i

X u i n  *x u
  . Therefore, since every element X*x is a set of 

sufficient statistics for P  in 0H , x is a sufficient space. Conditional reference 
spaces x are also called permutation sample spaces. 

It is known that exchangeability does not imply independence of data. A very 
typical situation occurs when rank transformation is considered. Actually, the 

ranks of ijX  within X , i.e. 
2

=1 =1
( )= ( )

nr
ji rs jir s

R X X X   , where   is the in-

dicator function, due to the relation ( )=jiji
R X constant, are exchangeable but 

not independent variables. Indeed, all rank tests are nothing other than permuta-
tion tests based on ranks. One more situation occurs with numeric data when 
considering the empirical deviates =ji jiY X X , where = /jiji

X X n . As a 

consequence the jiY , due to the relation = 0jiji
Y , are exchangeable but not 

independent since X  is a permutation invariant quantity: =X X  , X*x.. 
In the paired data design, since the difference of any two individual observa-

tions in the null hypothesis is symmetrically distributed around 0 , the set of dif-
ferences ={ , =1, , }iX i nX  , where 1 2=i i iX Y Y  the Y s being the paired re-

sponses, is sufficient for P . And so *
[ 1, 1]

{[ , 1, , ]}n i iX S i n   *x S
   contains 

all points obtained by assigning the signs   or   to differences in all possible 
ways. 
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P.1. Sufficiency of x for P  under 0H  implies that the null conditional probability of every 
measurable event A , given x, is independent of P ; that is, with clear meaning of the sym-
bols, * *Pr{ ; | } Pr{ | }X A P X A    x x . 

Thus, the permutation distribution induced by any test statistic 1: nT   , 
namely * *( | ( ) Pr{ | }T TF t F t T t    x x , is P -invariant. Hence, any related 
conditional inference is distribution-free and nonparametric. Moreover, since  

for finite sample sizes the number ( ) *( )nM I X


 
x

x  of points in x is  

finite, a relevant consequence of both independence of P  and finiteness of ( )nM  

is that permutations X  are equally likely in 0H , i.e. 
* ( )Pr( | ) Pr( | ) 1/ nM     x xX x X x  if x x  and 0  elsewhere. And so: 

 

P.2. In 0H  the observed data set X , as well as any of its permutations X  is uniformly 
distributed over x conditionally. 

 
P.3. (Uniform similarity of randomized permutation tests). Let us assume that the 

exchangeability condition on data X  is satisfied in 0H , then the conditional rejection probabil-
ity ( ( )| )RE  xX  of randomized test  

0

0

0

1    

 "   

0 "   

K

if T T

T T

T T







 

 
 
 

 (1) 

is X - P -invariant for all nX  and all P  where = ( )oT T X  is the observed  

value value of T , T  is the  -size permutation critical value, and. 
0 0[ Pr{ | }]/Pr{ | }T T T T       x x  (Lehmann and Scheffé, 1950, 1955; 

Pesarin and Salmaso, 2009 and 2010; Scheffé, 1943). 
For non randomized permutation tests such a property is valid in the almost sure 

form for continuous variables and at least asymptotically for discrete variables. 
Determining the critical values T  of a test statistic T , given the observed 

data set X , in practice presents obvious difficulties. Therefore, it is common to 
make reference to the associated p -value. This is defined as 

* 0( ) Pr{ | }T T T    xX , the determination of which can be obtained by 
complete enumeration of x or estimated, to the desired degree of accuracy, by a 
Conditional Monte Carlo algorithm based on a random sampling from x. For 
quite simple problems it can be evaluated by efficient computing routines such as 
those described in Mehta and Patel (1980, 1983); moreover, according to Mielke 
and Berry (2007) it can be approximately evaluated by using a suitable approxi-
mating distribution, e.g. as within Pearson’s system of distributions, sharing the 
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same few moments of the exact permutation distribution, when the latter are 
known in closed form in terms of data X . 

The p -value   is a non-increasing function of 0T  and is one-to-one related 

with the attainable  -value of a test, in the sense that ( )>T X  implies 
0T T , and vice versa. Hence, the non-randomized version can be stated as 

1 ( )

0 " ( )
T

T

if  


 


  

X

X
, (2) 

for which in 0H  it is { ( | )} Pr{ ( ) | }TE        x xX X  for every attainable 
 . Thus, attainable  -values play the role of critical values, and in this sense 

( )T X  itself is a test statistic. 
 
P.4. (Uniform null distribution of p -values). Based on P.1, if X  is a continuous 

variable and T  is a continuous non-degenerate function, then p -value ( )T X  in 0H  is uni-
formly distributed over its attainable support. 

 
P.5. (Exactness of permutation tests). A permutation test statistic T  is said to be an 

exact test if its null distribution essentially depends on exchangeable deviates Z  only.  
 
P.6. (Uniform unbiasedness of test statistic T ) Permutation tests for random shift 

alternatives ( 0)
d

   based on divergence of symmetric statistics of non-degenerate measurable 

non-decreasing transformations of the data, i.e. 1 1 2 2( )= [ ( )] [ ( )]T S S    X X , where 

( )jS  , = 1, 2,j  are symmetric functions of their entry arguments ( ) , are conditionally unbi-

ased for every attainable  , every population distribution P , and uniformly for all data sets 
nX . In particular: ( ) (0 )Pr{ ( ( )) | } Pr{ ( (0)) | }T T          x xX X . 

Without further assumptions related to the symmetry of induced permutation 
distributions, uniform unbiasedness cannot be extended to two-sided alternatives 
(Pesarin and Salmaso, 2010). 

Note that a direct consequence of P.1 is that problems with the so-called zero-
inflated data, which behave as a sample from a mixture of a degenerate variable 
concentrated to zero and a non-negative variable, i.e. = (1 )X XD p p F  , have 
an exact testing solution without any need of estimating the discrete component 
p  (see section 5.1 for some details). 

3. EXTENDING PERMUTATION INFERENCE 

The non-randomized permutation test   associated to a given test statistic T  
based on divergence of symmetric functions of the data, possesses both condi-
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tional unbiasedness and similarity properties, the former (P.6) satisfied by all popula-

tion distributions P  and all data sets nX , the latter (P.3) satisfied for continuous, 
non-degenerate variables and almost all data sets. These two properties are jointly 
sufficient to weakly extend conditional inferences to unconditional or population 
ones, i.e. for the extension of conclusions related to the specific set of actually 
observed units (e.g. drug is effective on observed units) to conclusions related to the 
population from which units have been drawn (e.g. drug is effective). Such an exten-
sion is done with weak control of inferential errors (Pesarin, 2002). With clear 
meaning of symbols let us observe: 
 (i) for each attainable   and all sample sizes n , the similarity property implies 

that the power of the test under 0H  satisfies the relation 

( )(0, , , , ) Pr{ ( (0)) | } ( )
n

n
T PW T P n f d



        xX X X , (3) 

because Pr{ ( (0)) | }    xX  for almost all samples nX  and all con-
tinuous non-degenerate distributions P , independently of how data are se-
lected; 

 (ii) the conditional unbiasedness for each attainable   and all sample sizes n  

implies that the unconditional power function for each >0
d

  satisfies 

( )(0, , , , ) Pr{ ( (0)) | } ( )
n

n
T PW T P n f d



        xX X X , (4) 

for all distributions P , independently of how data are selected and provided 

that ( )( )> 0n
Pf X , because ( )Pr{ ( ( )) | }     xX . 

As a consequence, if for instance the inferential conclusion related to the actual 
data set X  is in favour of 1H  so we say that “data X  are evidence of treatment 
effectiveness on actually observed units”, due to (i) and (ii) we are allowed to say 
that this conclusion is also valid unconditionally for all populations P  such 

that ( )( )> 0n
Pf X . Thus, the extended inference becomes “treatment is likely to be 

effective”. The condition ( )( )> 0n
Pf X  implies that inferential extensions must be 

carefully interpreted. To illustrate this aspect simply, let us consider an example 
of an experiment in which only males of a given population of animals are ob-
served. Hence, based on the result actually obtained, the inferential extension 
from the observed units to the selected sub-population is immediate. Indeed, on 
the one hand, rejecting the null hypothesis with the actual data set means that data 
are evidence for a non-null effect of treatment, irrespective of how data are collected, pro-
vided that they are exchangeable in the null hypothesis. On the other hand, if fe-
males of that population, due to the selection procedure, have a probability of 
zero of being observed, then in general we can say nothing reliable regarding 
them, because it may be impossible to guarantee that the test statistic which has 
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been used for male data satisfies conditional unbiasedness and/or similarity prop-
erties for female data as well (e.g. effect may be positive on male units and nega-
tive on female). In general, the extension (i.e. the extrapolation) of any inference 
to populations which cannot be observed can only be formally done with refer-
ence to assumptions that lie outside the control of experimenters while working 
on actual data. For instance, extensions to humans of inferences obtained from 
experiments on animals require specific hypothetical assumptions that are outside 
those connected with the distributional properties of actual data. 

We observe that for parametric tests, when there are nuisance entities to re-
move, the extension of inferences from conditional to unconditional can gener-
ally only be done if the data are obtained through well-designed sampling proce-
dures applied to the entire target population. When selection-bias data X  are ob-
served and the selection mechanism is not well designed, due to the impossibility 
of writing a credible likelihood function, there is no point in staying outside the 
conditioning on the associated sufficient orbit x. and the related distribution in-
duced by the chosen statistic T . On the one hand this implies adopting the per-
mutation testing principle; on the other, no parametric approach can be invoked 
to obtain credible inference extensions. 

4. THE NPC METHOD 

Here we introduce the NPC method for a finite number of dependent permu-
tation tests as a general tool for multivariate testing problems when quite mild 
conditions hold. In Section 6 we mention an extension of NPC up to a countable 
number of dependent permutation tests. Of course, when, as in some V -
dimensional problems ( 2V  ) for continuous and/or categorical variables, one 

single overall test statistic 1: nVT R   is available ( V  is the sample space of 

observable data), e.g. of the chi-square or Hotelling’s 2T  type, etc., then in terms 
of computational complexity related permutation solutions become equivalent to 
univariate procedures. A similar simplicity also occurs (Mielke and Berry, 2007) 

when there are suitable data transformations 1: V R    of the V -dimensional 

data into univariate derived data 1= ( , , )VY X X  ; a typical example is when 
the area under the curve in repeated measurements is considered. We are mostly 
interested in more complex problems for which single overall tests are not di-
rectly available, or not easy to find, or too difficult to justify. 

Often in testing for complex hypotheses, when many variables are involved or 
many different aspects are of interest for the analysis, to some extent it is natural, 
convenient and often easier for interpretation of results by firstly processing data 
using a finite set of 1K   different partial tests ( K can be <, = or >V ). Such par-
tial tests, after adjustment for multiplicity (Basso et al., 2009; Westfall and Young, 
1993), can be useful for marginal or separate inferences. But if they are jointly 
considered, they provide information on a general overall (global) hypothesis, 
which is typically the objective of most multivariate testing problems. 
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To motivate necessity and usefulness of NPC methods, let us consider, for in-
stance, a two-sample problem with two dependent variables: one ordered cate-
gorical and the other quantitative. Assume also that treatment may influence both 
variables by `positive increments’ and so the alternatives of interest are restricted 
to positive increments, i.e. both are one-sided. For such a problem it is hard to 
define a Euclidean distance between 0H  and 1H . Due to its complexity, it is 
usually solved by two separate partial tests and analysis tends to dwell separately 
on each sub-problem. However, for the general testing problem, both are jointly 
informative regarding the possible presence of non-null effects. Thus, the neces-
sity to take account at least nonparametrically of all available information through 
their combination in one combined test naturally arises. 

If partial tests were independent, combination would be easy (e.g. Folks, 1984, 
and references therein). But in the great majority of situations it is impossible to in-
voke any independence among partial tests both because they are functions of the 
same data set X  and V  variables are generally not independent. Moreover, the un-
derlying conditional dependence relations among partial tests are rarely known, ex-
cept perhaps for some quite simple situations as with the multivariate normal case. 
And even when they are known, they are often too difficult to cope with. Therefore, 
especially in their regard, this combination must be done nonparametrically. 

Let us introduce notation and main assumptions regarding the data structure, 
set of partial tests, and hypotheses being tested in NPC contexts by continuing to 
refer to a two-sample design: 
 (i) With obvious notation, let us denote a V -dimensional data set by  

={ jX X , =1, 2}={ jij X , =1, , ji n , =1, 2}={ hjij X , =1, , ji n , =1,2j , 

=1, , }h V . To represent the data set and V -dimensional response we use 
the same symbol X . The context generally suffices to avoid misunderstand-
ings. The response X  takes its values on the V -dimensional sample space 

V , for which a (possibly non specified) nonparametric family   of non-
degenerate distributions is assumed to exist. 

 (ii) The null hypothesis is 0 1 2 1 2:{ = }={ = }
d

H P P X X  implying that the data 
vectors in X  are exchangeable with respect to 2 samples. Related to the spe-
cific problem at hand, suppose that a list of side-assumptions holds, so that 

0H  may be equivalently broken down into a finite set of sub-hypotheses 0kH , 
=1, ,k K , each appropriate for a partial aspect of interest. In this way the 

global null hypothesis 0H  is true if all the 0kH  are jointly true, i.e. 

 0 0=1
:

K
kk

H H . 

 (iii) With the same side-assumptions as in (ii), the alternative hypothesis states 
that at least one of the null sub-hypotheses 0kH  is not true. Hence, the global 

alternative is  1 1=1
:

K
kk

H H . 
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 (iv) =T T(X)  represents a K -dimensional vector of test statistics, in which 

the k th component = ( )k kT T X , = 1, ,k K , is the non-degenerate k th par-

tial test assumed to be appropriate for testing sub-hypothesis 0kH  against 

1kH . 
 
Without loss of generality, in the NPC context all partial tests are assumed to 

be marginally unbiased, consistent and significant for large values. For uniformity 
of analysis, we only refer to combining functions applied to p -values associated 

with partial tests. Thus, the NPC in one second-order test 1= ( , , )''
KT     is 

achieved by a continuous, non-increasing, univariate, measurable and non-

degenerate real function 1: (0,1)K  . Continuity of   is required because it 
has to be defined irrespective of the cardinality of x. Measurability of   is re-
quired because it must induce a probability distribution on which inferential con-
clusions are necessarily based. In order to be suitable for test combination (Pesa-
rin, 2001; Pesarin and Salmaso, 2010), all combining functions   must satisfy at 
least the following reasonable properties: 

 
 PC.1. A combining function   must be non-increasing in each argument: 

(.., , ..) (.., , ..)'
k k     if < '

k k  , {1, , }k K  . Also, it is assumed that   is 
symmetric, i.e. invariant with respect to rearrangements of the entry argu-
ments: 11

( , , )= ( , , )u u KK
        where 1( , , )Ku u  is any rearrangement 

of (1, , )K . 
 PC.2. Every combining function   must attain its supremum value  , possi-

bly non finite, even when at least one argument attains zero: (.., , ..)k    if 

0k  , {1, , }k K  . 

 PC.3. > 0 , the critical value ''T  of every   is finite and strictly smaller 

than : <''T  . 

 
These properties are quite reasonable, intuitive, and generally easy to justify. 

(PC.1) agrees with the notion that large values are significant; it is also related to 

unbiasedness of combined tests and implies that if (.., , ..)'
k   is rejected, then 

(.., , ..)k   must also be rejected because it better agrees with the alternative. 
(PC.2) and (PC.3) are related to consistency. Three properties define a class   of 
combining functions, which contains the well-known functions of Fisher, Lancas-
ter, Liptak, Tippett, etc. It also contains the class   of admissible combining 

functions characterized by convex acceptance regions (Birnbaum, 1954, 1955). 
Admissibility of a test, although weak, is quite an important property as it says 
that no other test with uniformly better power than it exists. Class   in particular 
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contains all combining functions which take account nonparametrically of the 
underlying dependence relations among p -values k , 1, ,k K   (Pesarin and 
Salmaso, 2010). 

4.1. Some useful combining functions 

This section presents four examples of most used admissible combining func-
tions. 

 

 (a). Fisher’s combining function is based on the statistic = 2 log( )''
F kk

T   . 

It is well known that if the K  partial test statistics are independent and con-

tinuous, then in the null hypothesis ''
FT  follows a central 2  distribution with 

2K  degrees of freedom. ''
FT  is the most popular combining function and cor-

responds to the so-called multiplicative rule. 
 

 (b). Liptak’s function is based on the statistic 1= (1 )''
L kk

T   , where   

is the standard normal CDF (Liptak, 1958). A version of the Liptak function 

considers logistic transformations of p -values: = log[(1 )/ ]''
P k kk

T   . 

More generally, if G  is the CDF of a continuous variable, the generalized Lip-

tak function is: 1= (1 )''
G kk

T G   . Of course, within the independent case, 

the use of ''
GT  is made easier if G  is provided with the reproductive property 

with respect to the sum of summands. 
 

 (c). Tippett’s function is given by 1= (1 )max
''

k KT kT    , significant for large 

values (the equivalent form = min( )''
T kT   is significant for small values). For 

dependent partial tests it allows for bounds on the rejection probability accord-
ing to the Bonferroni inequality. Special cases of Tippett’s combining functions 
are the “max- t  test” and the “max-chi-square” (Chung and Fraser, 1958; Hi-
rotsu, 1986, 1998a). Tippett’s combining function can also be used to test for 

composite null hypotheses  0 1
: ( 0 )

d

kk K
H     against composite alterna-

tives  1 1
: ( 0)

d

kk K
H    . 

 
 (d). An interesting and quite useful sub-family is the set   of direct combining 

functions. When all partial test statistics are homogeneous, so that they share the 
same asymptotic permutation distribution (e.g. they are all standard normal dis-
tributed, or chi-square with the same degrees of freedom, and so on) and if 
their common asymptotic support is at least unbounded on the right, then the 



The permutation testing approach: a review 495 

direct combining function is =''
D kk

T T . For numeric variables such partial 

tests are typically expressed in standardized form. 

Algorithms and software for obtaining the reference distribution of ''T  are in 

Pesarin (2001) and Pesarin and Salmaso (2010). From a large set of simulation 

studies, in general the power function of ''T  is ruled by the most powerful partial 

test. 

5. MULTI-ASPECT TESTING 

To introduce this notion, let us consider a two-sample problem on positive 
univariate variables where in the alternative two CDFs are assumed not to cross, 

i.e. 1 2( ) ( ),F x F x  1x  . Let the side-assumptions for the problem be that 
treatment may act on the first two moments of first sample responses. Without 
loss of generality, let us also assume that the response model behaves as 

1 1 1=i i iX Z   , 2 2=i iX Z  , =1, , ji n , =1, 2j , where exchangeable 

random errors jiZ  are such that > 0jiZ   in probability, 1 0
d

i   are non-

negative random effects which may depend on 1iZ  , and that in addition the 

second-order condition 2 2
1 1 1( ) ( )i i iZ Z      , 1= 1, ,i n  is satisfied. Sup-

pose the hypotheses are 0 1 2:{ = }
d

H X X  against 1 1 2:{ > }
d

H X X , and that, focus-
ing on the assumed side conditions, we are essentially interested in the first two 
moments, so that they become equivalent to 0 11 12 21 22:{( = ) ( = )}H      and 

1 11 12 21 22:{( > ) ( > )}H     , where = ( )r
rj jX   is the r th moment, =1,2,r  

of the j th variable. 
To deal with this typical multi-aspect testing problem we may firstly apply one 

partial permutation test to each concurrent aspect, i.e. 1 1= ii
T X   and 

2
2 1= ii

T X  , followed by their NPC. By analysis of two permutation structures, 

it is easy to show that in 0H  the joint distribution of two partial tests depends 
only on exchangeable errors, so that partial and combined permutation tests are 
all exact. Furthermore, two partial tests are marginally unbiased because both 
marginal distributions are ordered with respect to treatment effect. To see this, 

consider one permutation in which    data are randomly exchanged between two 
samples, so that, with obvious notation, we jointly have 

1 1 1 1 1( )= ( ) ( )= (0)i i ii i
T Z Z T             

2 2
2 1 1 1 2( )= ( ) ( ) = (0)i i ii i

T Z Z T            , (5) 
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because in both statistics there are    data coming from 2X  where 1 = 0i   and 

1n    from 1X  where 1 0i   . Thus, their NPC gives a proper solution. Exten-
sions to V -dimensional situations are straightforward within the NPC. 

One important application is related to the exact solutions of the univariate 
Behrens-Fisher problems in experimental situations in which units are randomized 
to treatments. Note that when units are randomized to treatments, treatment effect 
may produce heteroscedasticity in 1H  but not under 0H  (Pesarin, 2001; Pesarin 

and Salmaso, 2010), so that exchangeability is satisfied in 0H . One more important 
application may occur when, for instance, it is unknown whether variable X  has a 

finite first moment, so that a test on divergence of sample means, i.e. 1 1= ii
T X  , 

which in turn can be powerful in many situations, might be non-consistent (Pesa- 
rin and Salmaso, 2011). In such a case we can also apply a test based on diver- 

gence of sample medians, i.e. * * *
2 1 2T  X X , or one based on divergence of  

sample EDFs ˆ ( )=jF t ( )/ji ji
X t n    1t  , =1, 2j , e.g. an Anderson-

Darling type test =ADT  1/2
2 1

ˆ ˆ[ ( ) ( )]/{ ( )[1 ( )]}i i i ii
F X F X F X F X   , where 

( ) = ( )/jiji
F t X t n  , 1t  , and 0 is assigned to summands with the form 

0/0. Thus, due to property (PC.2) their NPC is consistent. 

5.1 Testing for zero-inflated data 

In the problem with zero-inflated data (Lachenbrook, 1976; Zhang et al., 2010), 
observations X  are thought to follow a mixed model like: 

0 0

( ) " 0

(1 ) ( ) " 0

if x

P x p x

p F x x


 
  

, (6) 

where 0p   is the probability of observing zeros and ( )F x  is the continuous or 
discrete distribution for positive values. In this setting the most simple two-
sample data sets are: 

0 Pr(0)
, 1,..., , 1, 2,

( ) Pr( 0) 1
j

j ji j
ji ji ji ji j

p
X i n j

Z X p  

             
X  (7) 

where 1 0
d

i   and 2 0
p

i   are random effects, jiZ  are positive random errors and 

  is a nuisance positive scale coefficient which may depend on effects  . Since 
0jp   data present some zero values, 0 = #( = 0)j jif X  and 0j jn f  positive 
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values. As usual, the hypotheses under testing are 0 1 2: =
d

H X X  against for in-

stance 1 1 2: >
d

H X X . 
If, in accordance with the multi-aspect procedure, we do require to  

break down these hypotheses into two sub-hypotheses, as in 

0 1 2 1 2: ( = ) ( = | > 0)
d

H p p X X X  against 1 1 2 1 2: ( > ) ( > | > 0)
d

H p p X X X , we 

can apply two partial tests: one for 01 1 2: ( = )H p p  against 11 1 2: ( > )H p p  and 

one for 02 1 2: ( = | > 0)
d

H X X X  against 11 1 2: ( > | > 0)
d

H X X X  followed by their 

NPC. In this framework, first test could be T f1 10= , the permutation distribution 

of which is given by 10f  ; second test could be 

2 1 1 10 2 2 20= / / ,i ii i
T X n f X n f     (8) 

whose permutation distribution, in accordance with the permutation treatment of 
censored and missing data as in Pesarin (2001) and Pesarin and Salmaso (2010), is 
given by 

2 1 1 10 2 2 20= / /i ii i
T X n f X n f        . (9) 

After then the NPC applies for the global testing. In order to provide the two 
separate tests, one must use one multiple testing procedure as in Basso et al. 
(2009) or in Westfall and Young (1993). 

Of course, if we are not interested to separate testing of zeros from the posi-
tive components, a very simple permutation procedure is by considering a test on 

sample means as in the plain unidimensional two-sample testing: 1
1=1

=
n

ii
T X , 

whose permutation distribution is given by 1
1=1

=
n

ii
T X  , where is to be empha-

sized that, due to (P.1), all data including the zeros are permuted. 

5.2 Testing two-sided alternatives separately 

Within the multi-aspect context there is the possibility to go somewhat further 
than traditional two-sided testing by considering the NPC of two one-sided tests. 
That is, with clear meaning of the symbols, by considering the following fourfold 
procedure: 
 

 (i) Let 1H  be a global alternative, i.e. 1 1 1:{ }H H H  , where two sub-

alternatives are respectively 1 : >0
d

H   and 1 : <0
d

H  . Of course, it is to be 
emphasized that in the traditional two-sided setting one and only one between 

1H   and 1H   is active. 
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 (ii) The two related partial test statistics are: 1 1 2 2= ( ) ( )T S S  
 X X , and 

2 2 1 1= ( ) ( )T S S  
 X X , for sub-alternatives 1H   and 1H   respectively, where 

the jS , 1, 2,j   are suitable symmetric statistics for separate testing two sub-

alternatives. 

 (iii) Let us use a NPC method on associated p -values * 0Pr{ | }T T
   x , 

and * 0Pr{ | }T T
   x , as for instance Tippett’s, or Fisher’s, etc. (but not 

Liptak’s or the direct, or every other such that (1 )= ( )G G   , 0 < < 1 ). 
 (iv) Then, according to the theory of multiple testing and closed testing proce-

dures, once 0H  is rejected, it is possible to make an inference on which sub-
alternative is active, where it is to be emphasized that the associated error rates 
such as the FWE are exactly controlled. 

 
Of course, in this framework a third type of error might occur by false accep-

tance of one sub-alternative when the other is actually active. It is worth noting 
that the inferential conclusion becomes rather richer than that offered by a tradi-
tional two-sided testing. However, since one of such partial tests is not unbiased, 
their NPC does not provide this procedure with two-sided unbiasedness. 

5.3 Testing for multi-sided alternatives 

Suppose now that in a two-sample design random effect   is negative in the 
alternative for some units and positive for others, so that Pr{ < 0}> 0 , 
Pr{ 0}> 0   and Pr[( 0) ( 0)]> 0   . On the one hand, such a situation is 
essentially different from that of the traditional two-sided testing, in that sub-
alternatives can be jointly true. Actually, the hypotheses are 0 :{Pr[ = 0]= 1}H  , 

against 1 :{( <0) ( >0)}
d d

H   , where it is to be emphasized that two sub-

alternatives 1 :{ <0}
d

H   and 1 :{ >0}
d

H   can be jointly active. On the other 
hand, this situation may occur, for instance, when a drug treatment can have  
genetic interaction, i.e. it can be active with positive effects on some individu- 
als, negative effects on others, and be ineffective on the rest. Thus, starting  
for instance from an underlying unimodal distribution in 0H  the response distri-
bution in the alternative may become two- or three-modal. In order to deal  
with such an unusual situation, we may firstly apply two goodness-of-fit tests,  

e.g. of the Kolmogorov-Smirnov type 2 1
ˆ ˆ= [ ( ) ( )]max i nKS i iT F X F X  

   and 

1 2
ˆ ˆ= [ ( ) ( )]max i nKS i iT F X F X  

   respectively, and then proceed with their NPC 
(Bertoluzzo et al., 2011). 

It is worth noting that in multi-sided testing more than two traditional errors 
may occur: (i) type I by rejecting 0H  when it is true; (ii) type II by accepting 0H  
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when it is false; (iii) a type III error by rejecting 1 :{ <0}
d

H   when it is true; (iv) a 

type IV error by rejecting 1 :{ 0}
d

H    when it is true. The type II, III and IV er-

rors may occur jointly. As to point (iv) in 5.2 above, once 0H  is rejected it is pos-
sible to find out the active sub-alternatives, if any. 

5.4 Testing for monotonic stochastic ordering 

In this example we consider a C -sample univariate problem concerning an 
experiment where units are randomly assigned to C  samples according to increas-
ing levels of a treatment. Let us assume that responses are quantitative, and the re-
lated model is { =ji ji jiX Z   , =1, , ,ji n  = 1, , }j C , where   is a 

population constant, Z  are exchangeable random errors with finite mean value, 
and j  are the stochastic effects on the j th sample. In addition, assume that ef-

fects satisfy the monotonic stochastic ordering condition 1

d d

C   , so that re-

sulting CDFs satisfy 1( ) ( )CF t F t  , 1t  . Extensions to ordered cate-
gorical variables are straightforward. A rather difficult problem is to test for 

0 1 1:{ = = }={ = = }
d d d d

C CH X X     against the alternative with monotonic order 

restriction 1 1 1:{ }={ }
d d d d

C CH X X        with at least one strict inequality. 
A parametric exact solution to this problem is quite difficult, especially when 

2C   and becomes very difficult, if not impossible, in general multivariate situa-
tions. Note that these hypotheses define a problem of isotonic inference (Hi-
rotsu, 1998b). A nonparametric rank solution to this kind of problem is given by 
the well-known Jonckheere-Terpstra test (Hollander, 1999; Mansouri, 1990; 
Randles and Wolfe, 1979; Shorack, 1967). In the permutation context, this prob-
lem can be tackled in at least two ways (Pesarin and Salmaso, 2010): 
 
 I) Let us suppose that responses are quantitative, errors Z  have finite mean, 

(| |)< ,Z   and that design is balanced: = ,jn n  = 1, ,j C . Consider all 

pair-wise comparisons, i.e. = ,jh j hT X X    > =1, , 1j h C  , all unbiased 

for testing the respective partial hypotheses 0 :{ = },
d

jh j hH X X  against 

1 :{ > }
d

jh j hH X X ; in fact, we may write 0 0:{ }jh jhH H  and 1 1:{ }jh jhH H . 

Application of the direct combining function gives 

= = (2 1)''
D jh jjh j

T T j C X     , which is nothing other than the covari-

ance between the sample ordering j  and the related mean jX  . Of course, it is 

assumed that the permutations are with respect to the pooled data set 
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1
C
j jU X X . Since all partial tests under the null hypothesis are exact, unbi-

ased and consistent, ''
DT   is exact, unbiased and consistent. This solution can 

easily be extended to unbalanced designs. In this context, within homoscedas-
ticity of individual responses and by pair-wise comparison of standardized par-

tial tests, we get = (2 1)''
D j jj

T j C X n   . It is worth noting that partial 

tests jhT  , in general, do not play the role of marginal tests for 0 jhH  against 

1 jhH  because permutations are on the whole pooled data set X . 

 
 II) Let us imagine that for any {1, , 1}j C  , the whole data set is split into 

two pooled pseudo-samples, where the first is obtained by pooling together data 
of the first j  ordered samples and the second by pooling the rest. To be more 

specific, we define the first pooled pseudo-sample as 1( ) 1j j CU UY X X  and 

the second as 2( ) 1j j CU UY X X , 1, , 1j C  , where ={ ,j jiXX  

= 1, , }ji n  is the data set in the j th sample. 

In 0H , data from every pair of pseudo-samples are exchangeable because re-

lated pooled variables satisfy the relationships 1( ) 2( )=
d

j jY Y , 1, , 1j C  . In 

the alternative we see that 1( ) 2( )

d

j jY Y , which corresponds to the monotonic sto-

chastic ordering (dominance) between any pair of pseudo-samples. This suggests 

that we express the hypotheses in the equivalent form 0 1( ) 2( ):{ ( = )}
d

j j jH Y Y  

against 1 1( ) 2( ):{ ( )}
d

j j jH Y Y  with at least one strict inequality, where a break-

down into a set of sub-hypotheses is emphasized. 

Let us pay attention to the j th sub-hypothesis 0 1( ) 2( ):{ = }
d

j j jH Y Y  against 

1 1( ) 2( ):{ }
d

j j jH Y Y . We note that the related sub-problem corresponds to a two-

sample comparison for restricted alternatives, a problem which has an exact and 
unbiased permutation solution. This solution is based on the test statistics 

2( )1 2( )
=j j ii N j

T Y 
  , where 2( ) >

=j rr j
N n  is the sample size of 2( )jY . Thus, 

the set of suitable partial tests for the problem is { jT  , 1, , 1j C  . There-

fore, since these partial tests are all exact, marginally unbiased and consistent, 
their NPC provides for an exact overall solution. 
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6. FINITE-SAMPLE CONSISTENCY 

Quite an important problem usually occurs in several multidimensional appli-
cations when sample sizes are fixed and the number of variables to analyze is 
much larger than sample sizes (Goggin, 1986). Typical examples are encountered 
in longitudinal analysis (Diggle et al., 2002), microarrays and genomics (Salmaso 
and Solari, 2005, 2006), brain images (Friman and Westin, 2005; Hossein-Zadeh 
et al., 2003), shape analysis (Bookstein, 1991; Dryden and Mardia, 1998), func-
tional data (Bosq, 2005; Ferraty and Vieu, 2006; Ramsay and Silverman, 1997, 
2002), finance data, etc. In Pesarin and Salmaso (2009 and 2010) it is shown that, 
under very mild conditions, the power function of univariate permutation tests 
monotonically increases as the related noncentrality increases. This is true also for 
multivariate situations. In particular, for any added variable the power does not 
decrease if this variable induces larger global noncentrality. Thus the behavior of 
the rejection rate for diverging numbers of variables can be investigated. This al-
lows us to introduce the concept of finite-sample consistency. Sufficient conditions 
are given in order for the rejection rate to converge to one at any attainable  -
value for fixed sample sizes when the number of variables diverges, provided that 
the global noncentrality induced by the combined test statistics also diverges. 

Other than to cases where the number of variables is large, its application can 
be specific to problems related to discrete or discretized stochastic processes, as 
for instance when data are curves or images, and for which at most a countable 
set of variables are observed or derived by Fourier or wavelet expansions, or by 
functional principal component data transformations, etc. Hence, the application 
range is rather broad. 

Such a finite-sample consistency is based on the following idea: 
Suppose that: 

 (i) the data set, sized 1n  and 2n  is 1 2)={ )X(d Z d, Z , where Z  and 

1( , , )V d =   are V -dimensional vectors of exchangeable errors and of non-negative 
random effects respectively (with V   a natural integer); 

 (ii) the hypotheses are 0 :{ }H d = 0  and 1 :{ ,
d

H d 0  with at least one strict inequality}; 

 (iii) 1[ ( )]= ( , , )''
VT   X d   is a combined test of V  partial tests through 

combining function  ; 

 (iv) if for diverging V  the combined statistic [ ( )]''T X 0  is measurable in 0H , i.e. without 

concentration of points at the infinity, and the global noncentrality 

( ) [ ( )] [ ( )]'' ''D T T d, Z = X d X 0  diverges in probability, then the combined test 

[ ( )]''T X d  is finite-sample consistent irrespective of the underlying dependence among the V  

variables. 
The same conclusion applies if it is possible to find a function ( )V  such that, 

as V  diverges, ( ) [ ( )]''V T X 0  converges in probability to 0 and ( ) ( )V D d, Z  is 
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positive in probability. Of course, for any attainable   in such a context the criti-

cal value ''T  converges to 0 and so [ ( )]''T X d  falls in the rejection region in 

probability. 
Among the many applications we only mention the following: (a) suppose the 

data set is 

1 1 2 2{ , = 1, , , , = 1, , , =1, , }h h h i h h iZ i n Z i n h V  X(d) =     (10) 

with heteroscedastic components; (b) the hypotheses are as in (ii); (c) all V  vari-
ables have a finite second moment; (d) the test (direct combination) is 

1 1 1
11 1

( )

ˆ
1 1 1

[ ( )]= ( )/ =

= [ )] ,

''
D h i h h h ih V i n h i

''
D V

T X Y
Vn V n

T

  



   
 

 





   X d

X (0

 (11) 

where 2 2ˆ = ( ) /( 1),h hji hjji
X X n    ( ) 1

1

ˆ
1

= / ,V h hhn
     and 1 =iY   

1 ˆ
1

/ .h i h hh
Z

V
   Now, as V  diverges, supposing that conditions for a law of 

large numbers for non i.i.d. variables holds (Révész, 1968) then 1iY   converges to 

0 at least in probability and so does [ ( )]''
DT X 0 , whereas the global effect ( )V   is 

positive in probability (it may diverge), thus getting finite-sample consistency. For 
instance, if some errors Z  were multivariate i.i.d. Cauchy, in order to get finite-
sample consistency it would be sufficient using a test statistic based on divergence 

of sample means of medians such as: [ ( )]=''
MdT X d 1 2

1 21 2

1 1
i ii n i n

Y Y
n n

 
 

   , 

where = /ji hji hY X S   are medians with respect to V  variables of the V ji th 

permuted vector ji
X , and hS  is the median of absolute deviations from the 

sample median of the h th variable, i.e. =| |h hji h
S X X  . 

The following table shows some simulation power results, where: (0,1)N   

Standard Normal; 2t   Student’s t with 2 degrees of freedom; (0,1)Cy   Stan-
dard Cauchy; (2)AR   Autoregressive of lag 2; A   homoscedastic variables; 
B   heteroscedastic variables; a   divergence of means; b   divergence of me-
dians; sample sizes are 1 2= = 5;n n  constant fixed effects = 0.5h , =1, ,h V ; 
and = (0.01,0.05  bold face). Except for the (2)AR , the correlation matrix is 
diagonal. Simulations are based on =1000MC  random samples from each dis-
tribution and complete enumeration of permutation reference space. 
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TAVOLA 1 

Simulation power results 

A Distribution V=20 50 100 1000 
a N(0,1) .928/.978 1.00/1.00 1.00/1.00 1.00/1.00 
a t2 .399/.540 .613/.730 .779/.874 .993/.995 
b Cy(0,1) .509/.685 .829/.927 .972/.997 1.00/1.00 
a AR(2), N(0,1) .182/.317 .271/.416 .440/.611 .996/1.00 
b AR(2), Cy(0,1) .083/.164 .096/.180 .141/.246 .450/.604 
B      
a N(0,1) .920/.966 .999/1.00 1.00/1.00 1.00/1.00 
b t2 .579/.744 .883/.846 .988/.996 1.00/1.00 
b Cy(0,1) .492/.684 .819/.915 .969/.997 1.00/1.00 

7. DISCUSSION ON NONPARAMETRIC COMBINATION 

The NPC of dependent permutation partial tests is a method for the combina-
tion of significance levels. Conversely, the way generally followed by most para-
metric tests, based for instance on likelihood ratio behavior, essentially corre-
sponds to the combination of discrepancy measures usually expressed by point 
distances in the sample space  . In this sense, this method appears to be a sub-
stantial extension of standard parametric approaches. 

As the NPC method is conditional on a set of sufficient statistics, it shows 
good general power behavior. Monte Carlo experiments reported in Pesarin 
(2001) show that the Fisher, Liptak or direct combining functions often have 
power functions which are quite close to their best parametric counterparts, even 
for moderate sample sizes. Thus, NPC tests are relatively efficient and much  
less demanding in terms of underlying assumptions with respect to parametric 
competitors. In this respect we report simulation results for sample sizes 

1 2= =10n n  and multivariate normal distribution with Σ I  and various number 

V  of variables, comparing two-sample Hotelling’s 2T  and the simplest of  
its permutation competitors based on the direct combination of partial tests,  

i.e. 2 2
1 2=1

ˆ= [ ] / ,
V''

D h h hh
T X X     where = /hj hji ji

X X n  , =1,2j , 
2 2ˆ = ( ) /( 1)h hji hjji

X X n   , are respectively permutation sample means and 

variance of the h th variable, 1,...,h V , and where it is worth noting that all 2ˆh  
are permutation invariant quantities The major differences between the two tests 

are that 2T  is conditional on the minimal sufficient statistics for covariance ma-

trix S  and parametrically takes account of linear dependences, whereas ''
DT   is 

conditional on a sort of “maximal” sufficient statistics and nonparametrically 
takes account of all underlying dependences. 
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TAVOLA 2 

Simulations under: 1 1 2: = = 10,  0,  0.40H n n     

V  2T  ''T   
4 .079/.219 .081/.237 
8 .063/.234 .126/.347 
12 .037/.186 .176/.436 
15 .027/.118 .231/.484 
17 .019/.081 .258/.543 
18 .013/.067 .253/.543 
19  .244/.544 
22  .340/.618 
25  .365/.656 

 

These results, where 1000B   1000MC   0.01,0.05   (bold face), show 

that: (i) as V  increases, the power of Hotelling’s 2T  increases up to a maximum 

and then decreases to a minimum for 2V n  ; (ii) power of ''
DT  increases 

monotonically with V  (iii) power of ''
DT  is not invariant with respect to alterna-

tives lying at Mahalanobis distance from 0H  and so in some circumstances it can 

be more powerful than 2T  which in turn is the uniformly most powerful unbi-

ased similar invariant ( ''
DT  is simply unbiased). 

Fisher, Liptak, Tippett and direct combining functions for NPC are not at all 
affected by the functional analogue of multicollinearity among partial tests; in-
deed, the combination only results in a kind of implicit weighting of partial tests. 
In order to illustrate this, let us suppose that within a set of K  partial tests, the 

first two are 1 2T T   with probability one, and that Fisher, Liptak or direct com-

bining functions are used. Thus, denoting log( ),k  1(1 )k
   or kT  by k , 

for the Fisher, Liptak and direct functions respectively, the combined test be-

comes 1 3
= 2''

kk K
T  

 
 , which is a special case of an unbounded, convex, 

weighted linear combination function. Thus these solutions belong to   because 
they satisfy the conditions of Section 4. So that, possible functional analogues of 
multicollinearity do not give rise to computational problems in NPC methods. 
That is why, problems in which the number V  of component variables is larger 
than the number n  of units are easy to solve. 

Of course, NPC procedures require intensive computation in order to find suf-
ficiently accurate Monte Carlo estimates of the K -dimensional permutation dis-
tribution of partial tests and combined p -value. The availability of fast and rela-
tively inexpensive computers, and of efficient software, makes the procedure ef-
fective and practical. One major feature of NPC, provided that the permutation 
principle applies, is that we must pay attention to the set of partial tests, each ap-
propriate for the related sub-hypotheses, because the underlying dependence rela-
tions are nonparametrically captured by the combination procedure. This aspect 
is of great importance especially for non-normal and categorical variables in 
which dependence relations are generally too difficult to define and, even when 
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well-defined, are too hard to cope with (Joe, 1997). The researcher is only re-
quired to make sure that all partial tests are marginally unbiased and consistent, a 
sufficient condition which is generally easy to check. Furthermore, in the pres-
ence of a stratification variable, through a straightforward multi-phase procedure, 
NPC allows for quite flexible solutions. This is also particularly true when, as in 
most observational studies, observed covariates are used to provide post-
stratification groups (Pesarin and Salmaso, 2010). From a general point of view 
and in very mild conditions, the NPC method may be considered as a way of re-
ducing the degree of complexity of most testing problems. 
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SUMMARY 

The permutation testing approach: a review 

In recent years permutation testing methods have increased both in number of applica-
tions and in solving complex multivariate problems. A large number of testing problems 
may also be usefully and effectively solved by traditional parametric or rank-based non-
parametric methods, although in relatively mild conditions their permutation counterparts 
are generally asymptotically as good as the best ones. Permutation tests are essentially of 
an exact nonparametric nature in a conditional context, where conditioning is on the 
pooled observed data as a set of sufficient statistics in the null hypothesis. Instead, the 
reference null distribution of most parametric tests is only known asymptotically. Thus, 
for most sample sizes of practical interest, the possible lack of efficiency of permutation 
solutions may be compensated by the lack of approximation of parametric counterparts. 
There are many complex multivariate problems (quite common in biostatistics, clinical 
trials, engineering, the environment, epidemiology, experimental data, industrial statistics, 
pharmacology, psychology, social sciences, etc.) which are difficult to solve outside the 
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conditional framework and outside the nonparametric combination (NPC) method for 
dependent permutation tests. In this paper we review this method along with a number of 
applications in different experimental and observational situations (e.g. multi-sided alter-
natives, zero-inflated data and testing for a stochastic ordering) and we present properties 
specific to this methodology, such as: for a given number of subjects, when the number 
of variables diverges and the noncentrality of the combined test diverges accordingly, 
then the power of combination-based permutation tests converges to one. 
 
 


