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1. INTRODUCTION 

In the last decades, many factors stimulated an increasing interest towards dis-
similarity measures for comparing time series data; in particular: 

• thousands of financial, hydrological, meteorological, environmental, seismic, 
astronomical time series are regularly collected and their analysis demands 
for fast and effective methods for clustering and discriminating in order to 
select representative elements of homogenous groups of series;  

• time series data mining is a research area where effective selection criteria are 
needed as long as a vast amount of information is now available on web and 
data warehouse;  

• computers speed and numerical algorithms efficiency allow to monitor vari-
ability of dynamic phenomena in real time;  

• complexity of systems may be investigated only by checking several individ-
ual time behavioural (as in Medicine, Control and Safety area, for instance) 
and departure from standard condition is a relevant objective for regular 
monitoring.  

In this respect, statistical literature includes a number of proposals in order to 
solve such problems. Given that the methodological issue concerns the concept 
of dissimilarity among time series, such ideas generated different measures mainly 
aimed at solving the peculiar problem at hand. The main difference relies among 
proposals concerning the processes which generate data, the class of models cho-
sen for parsimonious representations of dynamic phenomena and the time series 
realizations, respectively. 

In the following, we will quote some of them but we prefer to focus on a spe-
cific solution whose generality and pervasiveness we will confirm throughout this 
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work. Thus, we deepen the foundations of the Autoregressive (AR) metric as a 
simple and effective measure of dissimilarity among time series in order to spread 
current researches and to suggest new developments. Extensive reviews on cluster-
ing and discrimination of time series have been pursued by Maharaj (2000), Liao 
(2005), Corduas (2003, 2007), Piccolo (2007), Corduas and Piccolo (2008). 

The paper is organized as follows: after a review of motivations and genesis of 
the AR metric, the rationale of the proposal, its statistical and topological proper-
ties are discussed in sections 3-4. Section 5 is devoted to inferential issues mainly 
based on the asymptotic distribution of the maximum likelihood estimator of the 
distance. Extensions and generalizations are presented in section 6 whereas a syn-
thetic analysis of relevant alternatives is discussed in section 7. Some concluding 
remarks end the paper. 

2. MOTIVATIONS AND DEVELOPMENT OF THE AR METRIC 

The public domain release of the AR metric – as a distance measure among 
time series generated by ARIMA models – begins on 14 September, 1983, during 
my visit at the Department of Statistics, University of Wisconsin, Madison (USA), 
when I was invited by prof. George Box to give a Seminar on “A Distance Measure 
among ARIMA Models”. 

Indeed, I experienced this problem in a previous research involving the con-
struction of an ARIMA model for the monthly wholesale prices index tP  in Italy 

(Piccolo, 1972). In this circumstance, I compared two models for tP : 
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by plotting the Autoregressive coefficients ( )j  obtained from the ARIMA operators, as re-

ported in Figure 1. In that occasion, I was comparing an ARMA(2,1) model for 

the inflation rate with an ARMA(1,2) model for the acceleration rate 2 log( )tP  of 
the wholesale prices. It is evident that when comparing linear models fitted to the 
same data set the visual inspection of the original coefficient is not conclusive. 
On the contrary, the Autoregressive approximation enhances the strong similarity 
between the estimated models. 

As a benchmark, we compare the following three ARMA ( , )p q  models of in-
creasing complexity and characterized by the parameters:  

TABLE 1 

ARMA (p,q) models of increasing complexity 

Models 1  2  3  4  1  2  3  

M1: ARMA(2,1) 0.81 -0.62 – –  0.12 – – 
M2: ARMA(3,2) 1.33 -1.04  0.32 –  0.57 -0.05 – 
M3: ARMA(4,3) 0.48  0.09 -0.56 0.27 -0.21  0.39 -0.04 
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Figure 1 – Autoregressive coefficients obtained by two models for the same series. 
 

The question is: How different are these different ARMA models? A simple way to 
face the problem could be via a parametric approach, by comparing the parame-
ter vectors of common length: 

1 1 = (0.81, 0.62,0,0,0.12,0,0) ;M  β  

2 2 = (1.33, 1.04,0.32,0,0.57, 0.05,0) ;M   β  

3 3 = (0.48,0.09, 0.56,0.27, 0.21,0.39, 0.04) ,M    β  

by means of a Euclidean metric defined by: 

( , )= ( ) ( ).i j i j i jM M  β β β β  (1) 

This coefficient-based criterion leads to the following results: 

1 2 1 3 2 3( , )= 0.868; ( , )=1.123; ( , )=1.911.M M M M M M    

Thus, one reaches the wrong conclusion of a large dissimilarity among the mod-
els. Instead, all the models are almost coincident since they were obtained by using the 
rational operators:  

1 2 1 3 22

1 0.12 1 0.45 1 0.78
( )= ; ( )= ( ) ; ( )= ( )

1 0.52 1 0.851 0.81 0.62

B B B
B B B B B

B BB B
    

  
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Their similarity can be recognized by looking for the roots of polynomial op-
erators in the complex plane, or simply by comparing their spectra as shown in 
Figure 2. This situation is common when we get different parametric formula-
tions by means of some automatic fitting criterion. 

Anyway, notice that spectra cannot be computed for non-stationary data and 
thus the previous visual aids fail if we need to compare ARIMA ( , , )p d q  models 
with different orders of difference operator. 
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Previous evidence discourages from considering to compare parameters of 
ARIMA models in their rational formulation as the basis for introducing a dis-
tance measure since this criterion is not resistant with respect to near-cancellation 
of ARMA operators. 
 

 

Figure 2 – Operators in the spectral domain of three ARMA models. 

 
The genuine idea for a metric came out as the answer to a methodological is-

sue raised during the DESEC project (1982-85), a national research aimed at 
convincing the Italian public Institutions to adopt a shared and unique seasonal 
adjustment procedure. 

Given the need for the implementation of a massive seasonal adjustment ex-
periment with thousands of time series, I faced the following problem: “How to 
choose few representative series from a large data set in order to reduce time and 
costs of the statistical analysis?” Formally, the problem is: 

“Given a collection of time series ,j tX C , select a series *
tX  such that: 

*
, ,distance( , )= ! ".j t t j tX X min X C   (2) 

Since the series to be considered were generated from different areas with dif-
ferent time lengths, the investigation required the introduction of a completely 
general metric. These considerations were firstly diffused among a subset of Ital-
ian researchers by means of the DESEC research Technical Reports series, as “A 
Distance Measure for ARIMA Models” (RS 21/1984). 

The journal “Statistica” published the first paper on the new proposed metric 
(Piccolo, 1984a) and the distribution of the maximum likelihood (ML) estimator 
of the metric for pure AR processes was presented at the ASA Conference in 
Washington (Piccolo, 1989). Then, after a long revision process, a contribution 
on this topic (submitted in 1986) appeared in “Journal of Time Series Analysis” (Pic-
colo, 1990) and this paper became the standard international reference for the AR 
metric. 
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It is worth considering that other criteria are based on AR coefficients. In 
speech recognition analyses, the AR coefficients denoted as LPC (=Linear Pre-
dictor Coding) were used in order to synthesize the voice signals for a specific 
word (Gray and Markel, 1976); however, the method was finalized only to fitting 
and testing purposes as in Basawa et al. (1984). In this respect, De Souza (1977) 
and Thomson and De Souza (1985) introduced the Mahalanobis distance be-
tween AR models and derived its distributional properties. Many recent medical 
applications in ECGs and EEGs classifications still refer to this kind of approach 
(Kosĕc, 2000; Ge et al., 2002). 

For many years, the AR metric has been used in several fields (with some 
original emphasis on seasonal adjustment procedures, as reported by Agustin 
Maravall, Spain and David Findley, Usa) and many statistical papers have been 
published. From the methodological point of view, a significant advancement on 
these topics has been achieved thanks to Corduas (1996, 2000a) who assessed dis-
tributional properties of the AR metric in a general setting, as we will discuss in 
section 5. 

3. STATISTICAL FOUNDATIONS 

Dictionaries define distance as: “the property created by the space between two 
objects or points; the size of the gap between two places; the interval between 
two times;...” 

Instead, metric is: “a system of related measures that facilitates the quantifica-
tion of some particular characteristic; a function of a topological space that gives, 
for any two points in the space, a value equal to the distance between them,...” 

Then, a preliminary remark applies: distance is a concept that may be trans-
formed into an operational tool by means of some conventional measure. It is cor-
rect to argue in favor or against a specific metric, since a metric is strictly deter-
mined by the purpose of a research: different metrics are acceptable if different objectives 
are pursued. 

In fact, when objects to be compared are time series, an effective metric should 
satisfy the following requirements:  

• it is simple to compute and provides meaningful interpretation of data;  
• it is dependent on the stochastic structure of the data generating process;  
• it is implemented for the largest class of stochastic processes generally con-

sistent with observed time series;  
• it is not dependent both on the length of data and the unit of measurement 

of time series;  
• it is robust with respect to local anomalies in the series to be compared.  
In addition, our approach relies on the fundamental paradigm which relates a 

time series to the generating stochastic process via a statistical model. As a consequence, 
we will define the metric on a well defined space of stochastic processes which is 
adequate to generate almost any real time series. The statistical determination of 
the features of such processes may be effectively recovered on the basis of the 
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observed realizations by means of inferential procedures, which are consistent 
and asymptotically efficient. 

From a statistical point of view, the AR metric is justified by a fundamental 
theorem which we quote from Brockwell and Davis (1991, 130-133): “for any  
stationary process with a continuous spectrum ( )f   there exists a finite order 

AR ( )p  whose spectrum ( )ARf   is as close as possible in absolute value to 
( )f   uniformly on [ , ]  ”. 
The theorem is extended to moving average (MA) processes and, for numeri-

cal efficiency, to mixed ARMA structures. As a consequence, the AR operator 
provides the simplest and effective approximation of any stationary process or 
any process that may be transformed to stationarity. In fact, the theorem applies 
to both linear and not linear processes. 

Specifically, given the process tX , we consider ARIMA models for 

= ( )t t tZ g X f , where tZ  is obtained after g -transforming tX  (in order to re-
duce asymmetries, improve Gaussianity and take into account of non-linearities) 
and after removing any deterministic components tf  (such as trading days, cal-
endar effects, outliers and mathematical functions of time, including constants). 

Hereafter, we will refer to Box and Jenkins (1970) standard notation and we 
will assume that tZ  is a zero mean invertible ARIMA process defined as:  

( ) = ( ) ,d D
s t tB Z B a    (3) 

where ta  is a White Noise (WN) process with constant variance 2 <a  . If ta  
is a Gaussian process, given the initial values, the operators ( ), ( )B B   and the 

WN variance 2
a  characterize the probability distribution of the process tZ . 

The polynomials ( )= ( ) ( )sB B B    and ( )= ( ) ( )sB B B   , for any 0s  , 
have no common factors, and all the roots of ( ) ( )= 0B B   lie outside the unit 

circle. We denote by  the class of invertible linear stochastic processes 

tZ  ARIMA  such that the MA  operators have all the roots outside the unit circle. 
The invertibility assumption ensures the absolute (and squared) convergence of 

the j  coefficients so that tZ  can be represented in terms of its past values ac-

cording to:  

1 1 2 2( ) = = ,t t t t t tB Z a Z Z Z a        (4) 

where: 1

=1

( )= (1 ) (1 ) ( ) ( )=1d s D j
j

j

B B B B B B   


   . 

For any tZ , the forecast function 1 2= { | , , }t t t tF Z Z Z    is given by: 
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1 1 2 2= ,t t tF Z Z     (5) 

whereas a corresponding orthogonal representation is: = , ,t t t t tZ F a F a t  . 

Let tX  and tY  be invertible processes whose forecast functions may be 
expressed via the corresponding AR coefficients: 

1, 2, , 1, 2, ,= ( , , , ); = ( , , , ).x x x j x y y y j y     π π     (6) 

Then, given the absolute convergence of the  -sequences in , Piccolo 

(1984a, 1990) introduced a metric between two ARIMA processes, tX  and tY , 
with given orders, as the Euclidean distance between the  -weights of their cor-
responding AR( )  formulation: 

1
22

, ,
=1

( , )=[( ) ( )] = ( ) .'
t t x y x y j x j y

j

d X Y  


  π π π π  (7) 

The most immediate and convincing interpretation of the AR metric stems 
from the following result: given the same set of initial values, the distance between two 
ARIMA processes is zero if and only if the corresponding models produce the same forecasts. 

The distance ( , )t td X Y  is a well defined measure of structural dissimilarity 

among any processes belonging to  and its value is determined by all the com-

ponents of the stochastic structures to be compared. Notice that, if both tX  

and tY , then ( , )t td X Y  is always well defined irrespective of the fact that one 
or both processes are stationary or non-stationary. 

Since AR metric takes rational operators into account before their expansion 
into j  coefficients, it may be considered fairly robust with respect to over-

parameterization (although we discourage this practice in time series inference). 
We mention a recurrent objection against the AR metric which assesses that it 

does not take the WN variance into account. Indeed, this quantity is a mere scale 
factor depending on the measurement unit: it is well known that, for stationary 
linear processes, the noise-to-series variances ratio is a function of the process 
parameters. To face the objection, different proposals have been introduced in 
the literature and we just quote two of them since they are motivated by different 
needs. 

In order to detect influential observations, Peña (1990) considered the squared 
Mahalanobis AR distance to assess how the parameters of a model change when 
each observation is in turn removed from the time series and replaced by the es-
timated missing value. Such measure is not a metric; it explicitly depends on the 
WN variance, and it turns out that it is related to the squared Euclidean distance 
between the one step ahead forecast values of the series. Consequently, it is 
strongly affected by the scale unit. 
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Similar considerations apply to the proposal of Tong and Dabas (1990), which 
introduced similarity and dissimilarity measures for clustering the residuals obtained 
from various statistical models fitted to the same time series, and to Maharaj 
(1996, 1999, 2000) results aimed at classifying and clustering time series data. 

These criteria are effective for the purposes that the Authors considered (out-
liers detection, clustering of several homogeneous time series, comparing residu-
als from different models fitted to the same series, and so on) but they cannot be 
used to compare time series obtained by completely different data generating 
processes. For instance, these proposals are not even useful to compare a model 
fitted to a time series with a model fitted to the logarithm of the same series. 

4. TOPOLOGICAL PROPERTIES 

The introduction of ( , )t td X Y  over  transforms  in a metric space, and any 

sub-class of  (e.g. the ,  ,  ,  AR MA ARMA IMA  classes) is a well defined metric 
space with respect to the same metric. 

Any WN process is the origin for the metric space , and for any tZ , the 

norm is defined by: 2 <jj
  . In addition, we are able to define the angle   

between two processes tX , tY  by means of: 

1/2

2 2
, , , ,cos( ) = .j x j y j x j y

j j j

    


 
  
 

    (8) 

The metric space  is isometric with respect to seasonal processes since, for any 
> 0s : 

( ( ) , ( ) )= ( ( ) , ( ) ).s s
x t y t x t y td B X B Y d B X B Y     (9) 

For multivariate applications of the metric it is important to define the distance 
of a single series from a given class, and the diameter of a class of time series 
models. 

Given a series tX  and a class of time series models   , the distance of 

tX  from  is defined by: 

( , ) = inf { ( , ), }.t t t tdist X d X Y Y    (10) 

For any class   , the diameter is defined by: 

( ) = sup{ ( , ), , }.t t t tdiam d X Y X Y     (11) 
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Finally, it may be shown that the sub-class of AR processes has a finite diame-
ter. Notice that the size of the diameter has an immediate impact on the reliability 
of a selected time series model to represent the whole set. 

It is of interest to consider a prototypical example for computing the AR met-
ric. Let tX   and tY  two ARMA(1,1) processes. From a formal expansion 

of the corresponding j  coefficients: 

1 1
, ,= ( ) ; = ( ) ; =1, 2,j j

j x x x x j y y y y j            

we obtain: 

22
2

2 2

( ) ( )( )( )
( , ) = 2 .

11 1
y y x x y yx x

t t
x yx y

d X Y
      

  

  
 

 
 

This result is completely general for computing also the distance between proc-
esses belonging to the sub-classes AR(1), MA(1), ARIMA(0,1,0), ARIMA(0,1,1): it 
suffices, in the previous formula, to let some parameters equal to 0 and/or 1. 

For instance, by letting = = 0x y   and =1 ; =1x x y y     , we obtain the 

distance between the (0,1,1)ARIMA  processes implied by the so-called exponen-
tial smoothing procedure (EWMA processes). 

By letting = =1x y  , we obtain the distance between two non-stationary 

MA(1) processes:  

2
2 ( )
( , ) = 2 .

(1 )(1 )(1 )
x y

x y x y

d X Y
 

   



  
 

From the last expression, we get:  

2 2

1 1

1 1
( , ) = ; ( , )= .lim lim

1 1
y x

y xx y

d X Y d X Y
 

 
  

 
 

 

In this case, the metric is well defined also for borderline non-invertible ARIMA 
processes (Piccolo, 1990). Notice that here tX  and tY  are cointegrated of order 
1 and borderline non-invertible processes. 

5. COMPUTATIONAL ISSUES AND STATISTICAL INFERENCE 

From an operational point of view the AR metric addresses several problems 
related to the correct specification of time series models to be compared, efficient 
estimation of parameters and effective numerical computations of the AR coeffi-
cients. We defer to Corduas and Piccolo (2008) for most of them and we limit 
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ourselves to briefly discuss the model selection step given that specification is one 
of the critical and controversial point with respect to a correct use of this metric. 

First of all, computations are feasible if one knows processes whereas in the 
real world researcher need to infer on them. Thus, if one needs to compare sev-
eral ARIMA processes on the basis on their finite realizations, it is effective to 
obtain the estimation of the parameter vector by maximum likelihood methods 
which require a specification of the orders of the ARIMA models. In this respect, 
strategies split into ad hoc modelling criteria (for small/moderate size of the data 
set) and automatic modeling via AIC or BIC criteria (for large data set). 

As a matter of fact, one has to choose between ad hoc modelling of all series or 
to rely on some automatic identification criterion, within a predefined class of 
models. In this area, some caution is necessary since most of the published works 
compare the AR metric with alternative measures by means of massive automatic 
selection criteria. In these cases, we are not convinced that comparison is really 
performed among metrics and not among selection criteria. 

When the number of series to be analyzed may be conveniently handled, we 
always prefer ad hoc modelling procedures before using AR metric since the 
strength of the proposal relies on the possibility to fit the ARMA operators to 
real data in an efficient way: this mostly applies when some doubt concerns the 
use of non-stationary operators. 

Afterwards, the distribution of the distance estimator is required to assess sig-
nificant dissimilarities. A preliminary result, concerning the comparison of AR 
models based on ML estimators, was obtained by Piccolo (1989). Instead, Sarno 
(2000, 2001) discusses asymptotic distribution of the metric derived from least 
squares estimators when MA processes are involved. 

The asymptotic distribution of the metric for any ARIMA processes in  has 
been fully derived by Corduas (1996), together with efficient algorithms (Corduas, 
2000a). Briefly, assuming that efficient ML methods have been implemented for 
estimating the =k p q P Q    parameters of the ARMA models to be com-

pared, it can be shown that, under the null hypothesis 0 : =x yH π π : 

2 2

=1

ˆ ( , ) ,
k

t t j g j
j

d X Y    (12) 

where 2
g j

  are independent Chi-square random variables, with jg  degrees of 

freedom given by the multiplicity of each eigenvalue (usually, 1jg  ) and j  are 

the eigenvalues of a convenient matrix 0C  of order ( )k k . 
We write the non-stationary π  coefficients as the linear transformation: 

= A π Aπ v  of the stationary coefficients Aπ , for some non-stochastic matrix 

A  and vector v . For ARIMA models, the matrix 0C  is defined by:  

1 1
0 = ( ) ,' '

x yn n C ABVB A  (13) 
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where yn  and xn  are the lengths of the realizations of tX  and tY , respectively, 

and the matrices , ,A B V  can be derived from the model operators by effective 
algorithms. 

For computing critical values, standard results may be applied to this problem: 
specifically, we may exploit results on the approximation of a linear combination 
of Chi-square random variables by means of a linear transformation of a Chi-
square, with convenient degrees of freedom (as proposed by Corduas, 1996), or 

we may apply a Box-Cox transformation to the estimator d̂  in order to improve 
its convergence to Normality (as proposed by D’Elia, 2000). An updated account 
of this approach for clustering purposes has been obtained by Corduas and Pic-
colo (2008). 

Finally, as explorative tools for visualizing clusters and representations induced 
by the AR metrics, we quote dendrograms generated by a cluster analysis based 
on such distance, visual displays (Tran-Luu and DeClaris, 1997), multidimen-
sional scaling representations (Piccolo, 1984b) and graph methods (Sarno, 2005; 
Palomba et al., 2008). 

6. EXTENSIONS AND GENERALIZATIONS OF THE AR METRIC 

Distance is an ubiquitous concept in Statistics and it is able to meet most of 
the need for empirical analysis. Then, the AR metric has been applied in several 
scientific fields such as Economics, Finance, Demography, Medicine, Linguistic, 
Signal processing, Environmental Sciences, Hydrology and Meteorology, Seis-
mology, Astronomy, and so on. 

In addition to the standard comparison of time series and statistical mod- 
els, the literature registers different variants of the original proposal of an AR 
metric: 

• methodological arguments aimed at extending the proposal from a statistical 
point of view;  

• statistical methods aimed at specific objectives;  
• fields of applications and different perspectives leading to an effective usage 

of a metric among time series models.  

6.1 Generalizations and methodological extensions 

Firstly, the AR metric may be generalized in order to compare (long-memory) 
fractional difference processes tZ  ARFIMA( , , )p d q , when | |< 0.5d . In this 

case, for the fractional difference operator = (1 )d dB   we get:  

1 2
2

=1

(1 2 )
( )= ( 1) , =1, 2, ; ( )= 1< .

(1 )
i

i i
i

d d
d i d

i d
 


 



  
     

  
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Remember that tZ  as long as > 0.5d   and the Euclidean distance be-
tween two  -sequences is well defined even if one or both are generated by AR-
FIMA operators. In this way, the AR metric is generalized to the class of invert-
ible ARFIMA processes and may be correctly applied if one or both processes 
encompass long-memory behaviour (Corduas and Piccolo, 2006). Instead, most 
of the alternative proposals of the literature cannot share this remarkable prop-
erty with the AR metric. 

A second relevant extension of the AR metric has been proposed by Otranto 
(2004, 2008) for the classification of the volatility of financial time series gener-
ated by GARCH models and further developed in several directions, even multi-
variate (Otranto, 2009, 2010; Lisi and Otranto, 2010; Otranto and Trudda, 2008a, 
2008b). The starting point is to apply the AR metric to measure the distance be-
tween squared noise processes; then, cluster algorithms are applied in order to 
classify the volatility of several stock prices and to study their interdependence. 
The joint application of the AR metric to both ARIMA and GARCH model 
components proves to be a sound extension of the approach since it accounts for 
important components often detected in the majority of real time series when we 
are faced with clustering and discrimination objectives in economic and financial 
data sets. 

In the econometric arena, a significant contribution to enlarge the spectrum of 
applications derives from the idea that the AR metric helps in detecting the rela-
tionship between feedback in stochastic systems and thus it may be an useful tool 
for testing Granger causality (Triacca, 2004a). This approach has been recently 
generalized in a multivariate context by Di Iorio and Triacca (2011) who formally 
proved that for checking non-causality in the sense of Granger is sufficient to 
compute the AR metric among two univariate processes. Some simulation ex-
periments and a real case study sharply favour their proposal with respect to 
standard econometric tests thanks to a dominant power function. 

6.2 Further statistical developments 

Corduas (2000b) exploited the AR metric as an estimation method in order to 
find the fractional value of d  such that the process =d

t ztZ a  is as close as pos-

sible to the tX  ARMA(1,1)  process defined by: (1 ) = (1 )t xtB X B a   , 
where the closeness is measured by the AR metric. 

Then, given the estimates ˆ ˆˆ = ( , )  β , the problem is to find d  such that:  

2

° 2 1

=1 =1

ˆ ˆ ˆˆ( )= [ ( ) ( )] ( 1) ( )( ) = min!
L

i i
i i

i i

d
G d d

i
    


  

     
  

 β   (14) 

for some fixed =100,150L , say. Further aspects of the approach have been de-
veloped by Corduas and Piccolo (2001, 2003, 2006); D’Elia and Piccolo (2002a, 
2002b). 
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A different proposal aimed at a spectral decomposition of the AR metric has 
been introduced by Iannario and Piccolo (2011) and their result relies on a theo-
rem proved for computing this distance in an effective way. In fact, Corduas 
(1992a) showed that: the squared AR metric is always the variance of a well defined station-
ary process. 

Specifically, we denote by  

, ,=| |, =1, 2, .j j x j y j     

the absolute difference of the AR  expansion of processes tX  and tY . 
Then, we introduce the stationary process: 

1 1 2 2= = ( ) ,t t t t tW B           

where 2
1(0, )t WN   and the coefficients j  are obtained as: 

1

1

= , = 1, 2,j
j j





   

It is immediate to show that: 

2 2
, ,

=1

( )= | | = ( , ).t j x j y
j

Var W d X Y 


  (15) 

The process tW  is obtained by filtering the WN  process t  by means of a 

linear operator ( )B  where the differences of the AR  expansions of both proc-

esses tX  and tY  are taken into account. It is evident that the time dynamics of 

tW  reflects characteristics of both processes to be compared. Two processes tX  

and tY  with similar behaviour produce small j  coefficients while processes 

with quite dissimilar structures induce large coefficients j . 

Although tW  is a fictitious process, its statistical analysis helps in investigating 

the structural dissimilarity among tX  and tY  as synthesized by the AR  metric. 
The process tW  may be non-invertible but it is always stationary. Thus, it admits a 
symmetric spectral function defined by: 

2
21( ) = | ( )| , 0 < < .g e 

   


  

Then, the spectral decomposition of the AR  metric immediately follows: 

2

0
( , )= ( )= ( ) .td X Y Var W g d


   
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This result allows to ascertain whether some components at low, high, peri-
odic, seasonal frequencies contribute to the determination of the value of 

2( , )d X Y . In addition, since 2( )/ ( , )g d X Y  shares all the properties of a well 
defined density function over (0, ) , one should consider that a high accumula-
tion of variance of tW  around some range of angular frequencies means that 
such components are important for explaining the computed distance among 
processes, and thus for increasing dissimilarities among them. 

Finally, we remember that – for computing the AR metric as a variance – Cor-
duas (1992b) suggested efficient numerical algorithms based on a state-space rep-
resentation of the ARMA processes (Anderson and Moore, 1979) or on the auto-
covariance generating function of the tW  process (Tunnicliffe Wilson, 1979). 

Further methodological issues concerning the AR metric include the computa-
tion of power functions in time series analysis (Gonzalo and Lee, 1996); the con-
sequences on the metric when the series are correlated (Corduas, 1992b); a test of 
parallelism between two ARIMA processes (Triacca, 2004b). 

6.3 Different applications and perspectives 

We limit ourselves to mention the applications we are aware of in several sci-
entific fields and with non standard objectives: 

• regional classification of streamflow time series (Corduas, 2011);  
• redundancy in environmental monitoring networks (Costanzo and Sarno, 

2000; Sarno, 2005);  
• data mining problems (Agrawal et al., 1994; Ng and Huang, 1999);  
• validation of seasonal adjustment procedures (Corduas and Piccolo, 1999a, 

1999b); selecting between direct and indirect model-based seasonal adjust-
ment (Otranto and Triacca, 2002).  

• representativeness of an aggregated index (Caceres et al., 1993);  
• convergence of inflation rates in the EU countries (Sarno and Zazzaro, 2002; 

Palomba et al., 2008);  
• plotting time series as objects in a multidimensional scaling space (Corduas, 

1984; Piccolo, 1984b, 1987);  
• comparison of stochastic components of a time series (Corduas and Piccolo, 

1995); similarity among original series and canonical components (Quilis, 
2004);  

• time series clustering (Piccolo, 1984; Corduas, 1985b; Cano et al., 1992; Cor-
duas and Piccolo, 1996; Maharaj, 1996, 2000; Grimaldi, 2004; Liao, 2005) 
and time series discrimination (Corduas, 2004);  

• classification of multivariate time series (Maharaj, 1999; Galeano and Peña, 
2000);  

• detecting extreme (anomalous) behaviors in a homogeneous time series data 
set (Corduas and Piccolo, 1999a); 
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7. DISCUSSION OF RELATED ALTERNATIVES 

An accurate discussion of relative merits and pitfalls of the alternatives to the 
AR metric is out of the objectives of this paper. We defer to the literature for an 
extensive treatment of such topics and briefly review some of them since they are 
more related with AR metric. 

We mention some metrics based on autocorrelation sequences (as those  
proposed by Bohte et al., 1980, and Mélard and Roy, 1984) which are conceptu- 
ally related to well known tests in residual time series analysis, as Box and  
Pierce (1970) and Ljung and Box (1978) tests, for instance. In this regard, we no-
tice that metrics based on the comparisons of partial autocorrelation sequences 
are more effective in the subspace of stationary processes (given some orthogo-
nality property of their estimators), as experienced in the Monti (1994) test, for 
instance. 

A large number of proposals aimed at clustering and/or discriminating time se-
ries are based on spectral functions as those of Alagón (1989), Dargahi-Noubary 
and Laycock (1981), Kakizawa et al. (1998), Kazakos and Papantoni-Kazakos 
(1980), Shumway (1982, 2003) and Shumway and Unger (1974) and noticeable 
those derived by comparing periodograms and log-periodograms, as Caiado et al. 
(2006, 2009). 

Further measures are derived from divergence concepts (Corduas, 1985a; 
Chaudury et al., 1991; Gersh et al., 1979; Kailath, 1967), wavelet analysis (Struzik 
and Siebes, 1999) and forecast densities (Alonso et al., 2006). 

We linger over a few proposals related to the AR metric and generated by the 
definition of cepstrum introduced by Bogert at al. (1962). The cepstrum coefficients 

jc  are obtained by the parametric expansion of the logarithm of the spectrum 

( )Zf   of a stationary process tZ , so that: 

1
= log[ ( )] , = 1, 2,

2
j

jc f e d j
 


 




   

and 2
0 = log( /(2 ))c    by Kolmogorov identity. Gray and Markel (1976) pro-

posed the Euclidean distance ( , )t tX Y  among the cepstral coefficients of two 

stationary processes tX  and tY  as an effective metric among time series data. 

The proposed metric correctly excludes the 0c  coefficient arguing that it is a scale 
factor. It has been applied with some interesting results by Kang et al. (1995), 
Kalpakis et al. (2001), Savvides et al. (2008); see also: Childers et al. (1975), Boets et 
al. (2005). A weighted version of ( , )t tX Y  has been reformulated by Martin 
(2000) who completely ignores the existence of any other metric. Recently, Maha-
raj and D’Urso (2011) argument in favour of fuzzy methods involving cepstral 
coefficients as a basic metric for their proposal of time series clustering. 

Indeed, cepstral coefficients have several properties, including relationships 
with spectral exponential models of Bloomfield (1973) and with the partial auto-
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correlation function (Li, 2004). It is worth to observe that, with obvious nota-
tions, the following identity holds: 

2
2 2 2

2
=

|log[ ( )] log[ ( )]| = ( ) = 2 ( , ) log .ax
X Y xj yj t t

j ay

f f c c X Y





  








 
     

 
  

As a consequence, if the processes have different degree of non-stationarity 
the cepstral metric is not defined. A further problem is generated by the fact that, 
after few lags, the cepstral coefficients are nearly zero. This circumstance may 
support their computational convenience but shows that any cepstral metric is 
heavily determined by few AR parameters. 

Finally, it is important to quote the pioneering work of Zani (1983) and the re-
sults of some Italian researchers whose contributions are relevant in this area and 
are consistent with our perspective. Specifically, Baragona (2001) and Baragona et 
al. (2001) introduced genetic algorithms to measure diversity in time series data. 
Moreover, Ingrassia et al. (2003) applied functional analysis and Cerioli et al. 
(2004) performed clustering by means of symbolic analysis. 

8. CONCLUDING REMARKS 

Time and/or spectral properties are the stylized features of any time series 
generated by ARIMA models: these characteristics are fully conveyed by the fore-
cast function. Economists use exactly the same logic leading to AR metric when 
they introduce the concepts of parallelism between time series, as shown by Triacca 
(2004b) or pairwise and multiple similarity of dynamics of phenomena introduced by 
Bernard and Durlauf (1996), as discussed by Palomba et al. (2008). 

Thus, the AR formulation is a fundamental issue for econometric and time se-
ries analysis, both for stationary and non-stationary processes. Notice that non-
linearity and deterministic trends are excluded from our approach; thus, when 
these dynamics are relevant, we suggest to move towards non-parametric metrics, 
as for instance those discussed by Zhang and Taniguchi (1995). 

A further issue to be analyzed concerns the peculiar specificity of the AR met-
ric to discriminate among dynamic strictures and not among observed data, as 
emphasized by Cubadda (2007, personal communication). If two processes tX  

and tY  are defined by different ARMA operators applied to the same WN ta  
their time realizations are obviously deterministically related (a perfect forecast of 

tY  is possible from the knowledge of tX ) but their AR distance is positive. On 
the contrary, we may obtain a null AR distance between processes with the same 
ARMA operators even if different WN processes may generate quite different re-
alizations and dynamic patterns. 

Since any distance measure both enhances and hides several aspects of the 
compared objects, it is important to recognize that the AR metric is a distance 
among rational operators irrespective of time series realizations. Then, the AR 
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metric is a useful tool for several statistical objectives if the whole structural diversity 
is the main point of the analysis. On the other hand, a spectral metric could be more 
effective if the comparison involves local features (e.g. long memory, periodic pat-
terns, seasonality, etc.). 

As a matter of fact, in the AR metric, the contribution of each j  coefficient 

to the stochastic components of the process is spread over all the angular fre-
quencies; thus, this metric should not be applied if our concept of closeness is re-
lated to some specific frequential component. For instance, Caiado et al. (2006) 
proved by simulation that a periodogram-based measure may result more effec-
tive than the AR metric for detecting a non-stationary behaviour. Similarly, Pic-
colo and Corduas (2006) supported a spectral metric when the angular frequen-
cies around origin are the central issue for assessing the similarity among station-
ary and fractional difference processes. 

As a conclusion, we emphasize that the AR metric is well defined for station-
ary and non stationary, short and long memory, seasonal and non seasonal sto-
chastic processes; it encompasses the relevant time and frequential domain fea-
tures of a time series dynamics in a parsimonious parametric way. Thus, accord-
ing to our opinion and experiences, the AR metric is a powerful and wide appli-
cable tool to study and understand the relationships among time series, but it also 
helps to produce new ideas, genuine proposals and innovative developments. 
 
Dipartimento di Teorie e Metodi delle Scienze  DOMENICO PICCOLO 
Umane e Sociali, sezione di Scienze Statistiche 
Università degli Studi di Napoli Federico II 
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SUMMARY 

The Autoregressive metric for comparing time series models 

The Autoregressive metric was firstly introduced in 1983 as a tool for choosing a rep-
resentative element from a large collection of time series and for clustering temporal data. 
The proposal has been extended to many contexts and has raised increasing interests in 
both time series methods and applications. The main results concerning this metric, its 
asymptotic distribution and some operational and comparative issues are presented. A 
discussion about the merits of this distance criterion and some caveats about its usage 
conclude the paper. 


