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TIME SERIES MODELING AND DECOMPOSITION 

Estela Bee Dagum 

1. INTRODUCTION 

A time series consists of a set of observations ordered in time, on a given phe-
nomenon (target variable). Usually the measurements are equally spaced, e.g. by 
year, quarter, month, week, day. The most important property of a time series is 
that the ordered observations are dependent through time, and the nature of this 
dependence is of interest in itself. Examples of time series are the gross national 
product, the unemployment rate, or the daily closing value of the Dow Jones in-
dex. Time series analysis comprises methods for analyzing time series data in or-
der to extract meaningful statistics and other characteristics of the data. 

Time series data have a natural temporal ordering. This makes time series 
analysis distinct from other common data analysis problems, in which there is no 
natural ordering of the observations (e.g. explaining people’s income relative to 
their education level, where the individuals’ data could be entered in any order). 
Time series analysis is also distinct from spatial data analysis where the observa-
tions typically relate to geographical locations (e.g. house prices). A time series 
model will generally reflect the fact that observations close together in time will 
be more closely related than observations further apart. In addition, time series 
models will often make use of the natural one-way ordering of time so that values 
for a given period will be expressed as deriving in some way from past values, 
rather than from future values. 

Formally, a time series is defined as a set of random variables indexed in time, 
1 T{  , ...,  }X X . In this regard, an observed time series is denoted by 1 , ..., T   { }x x , 

where the sub-index indicates the time to which the observation tx  pertains. The 
first observed value 1x  can be interpreted as the realization of the random vari-
able 1X , which can also be written as ( 1, )X t =   where   denotes the event 
belonging to the sample space. Similarly, 2x  is the realization of 2X , and so on. 
The T-dimensional vector of random variable can be characterized by different 
probability distribution. 

For socio-economic time series the probability space is continuous, and the 
time measurements are discrete. The frequency of measurements is said to be 
high when it is daily, weekly or monthly and to be low when the observations are 
quarterly or yearly. 
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2. TIME SERIES DECOMPOSITION MODELS 

An important goal in time series analysis is the decomposition of a series into a 
set of non-observable (latent) components that can be associated to different 
types of temporal variations. The idea of time series decomposition is very old 
and was used for the calculation of planetary orbits by seventeenth century as-
tronomers. Persons (1919) was the first to state explicitly the assumptions of un-
observed components. As Persons saw it, time series were composed of four 
types of fluctuations: 
(1) A long-term tendency or secular trend. 
(2) Cyclical movements super-imposed upon the long-term trend. These cycles 

appear to reach their peaks during periods of industrial prosperity and their 
troughs during periods of depressions, their rise and fall constituting the busi-
ness-cycle. 

(3) A seasonal movement within each year, the shape of which depends on the 
nature of the series. 

(4) Residual variations due to changes impacting individual variables or other ma-
jor events such as wars and national catastrophes affecting a number of vari-
ables. 

Traditionally, the four variations have been assumed to be mutually independ-
ent from one another and specified by means of an additive decomposition 
model: 

t t tt t= + + +C SX T I , (1) 

where tX  denotes the observed series, tT  the long-term trend, tC  the busi-
ness-cycle, tS  seasonality and tI  the irregulars. 

If there is dependence among the latent components, this relationship is speci-
fied through a multiplicative model  

t t tt t      C SX T I ,  (2) 

where now tS  and tI  are expressed in proportion to the trend-cycle t t  CT . In 
some cases, mixed additive-multiplicative models are used. 

Whether a latent component is present or not in a given time series depends 
on the nature of the phenomenon and on the frequency of measurement. For ex-
ample, seasonality is due to the fact that some months or quarters of a year are 
more important in terms of activity or level. Because this component is specified 
to cancel out over 12 consecutive months or 4 consecutive quarters, or more 
generally over 365.25 consecutive days, yearly series cannot contain seasonality. 

Flow series can be affected by other variations associated to the composition 
of the calendar. The most important are the trading-day variations, which are due 
to the fact that some days of the week are more important than others. Months 
with five of the more important days register an excess of activity (ceteris paribus) 
in comparison to months with four such days. Conversely, months with five of 
the less important days register a short-fall of activity. The length-of-month varia-
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tion is usually assigned to the seasonal component. The trading-day component is 
usually considered as negligible in quarterly series and even more so in yearly data. 
Another important calendar variation is the moving-holiday or moving-festival 
component. That component is associated to holidays which change date from 
year to year, e.g. Easter and Labour Day, causing a displacement of activity from 
one month to the previous or the following month. For example, an early date of 
Easter in March or early April can cause an important excess of activity in March 
and a corresponding short-fall in April, in variables associated to imports, ex-
ports, hospitality and tourism.  

Under models (1) and (2), the trading-day and moving festival components (if 
present) are implicitly part of the irregular. Young (1965) developed a procedure 
to estimate trading-day variations which was incorporated in the X-11 seasonal 
adjustment method by Shiskin et al. in 1967 (for more details see Ladiray and 
Quenneville, 2001) and its subsequent versions, the X-11-ARIMA (Dagum 1980 
and 1988) and X12-ARIMA (Findley et al. 1998) methods. The later two versions 
also include models to estimate moving-holidays due to Easter. 

Considering these new components, the additive decomposition model (1) be-
comes 

t t t t tt t=  +  +  +  +  +C SX T D H I , (3) 

where tD  and tH  respectively denote the trading-day and moving-holiday com-
ponents. Similarly, the multiplicative decomposition model (2) becomes 

t t t t tt t  =          C SX T D H I , (4) 

where the components tS , tD , tH  and tI  are proportional to the trend-cycle 
t t CT . 
Decomposition models (3) and (4) are traditionally used by seasonal adjust-

ment methods. Seasonal adjustment actually entails the estimation of all the time 
series components and the removal of seasonality, trading-day and holiday effects 
from the observed series. The rationale is that these components which are rela-
tively predictable conceal the current stage of the business cycle which is critical 
for policy and decision making. 

Another major objective in time series analysis is the modelling of the ob-
served series mainly for forecasting purposes. In this case, an often used decom-
position model for univariate time series is 

t tt = + eX  , (5) 

where t  and te  are referred to as the signal and the noise using electrical engi-

neering terminology. The signal t  comprises all the systematic components of 

models (1) to (4), i.e. t t CT , tS , tD  and tH . 
Model (5) is classical in signal extraction where the problem is to find the best 

estimates of the signal t{ }  given the observations t{ }x  corrupted by noise t{ }e . 

The best estimates are usually defined as minimizing the mean square error. 
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Signal extraction can be made by means of parametric models or non-
parametric procedures. The latter has a long standing and was used by actuaries at 
the beginning of the 1900’s. The main assumption in non-parametric procedures 
is that t  is a smooth function of time. Different types of smoothers are used 

depending on the series under question. The most common smoothers are the 
cubic splines originally applied by Whittaker (1923) and Whittaker and Robinson 
(1924) to smooth mortality tables. Other smoother are moving averages and high 
order kernels used in the context of seasonal adjustment and form the basis of 
methods such as Census X-11 (Shiskin et al. 1967), X-11-ARIMA (Dagum 1980 
1988), X-12-ARIMA (Findley et al. 1998), STL (Cleveland et al. 1990). 

Non-parametric signal extraction has also been very much applied to estimate 
the trend (non-stationary mean) of time series (see among others Henderson 
1916; Macaulay 1931; Gray and Thomson 1996 and 2002; Dagum, 1996, Dagum 
and Luati 2000). Among nonparametric procedures, the 13-term Henderson 
trend-cycle estimator is the most often applied because of its good property of 
rapid turning point detection but it has the disadvantages of: (1) producing a large 
number of unwanted ripples (short cycles of 9 and 10 months) that can be inter-
preted as false turning points and, (2) large revisions for the most recent values 
(often larger than those of the corresponding seasonally adjusted data). 

The use of longer Henderson filters is not an alternative for the reduction in 
false turning points is achieved at the expense of increasing the time lag of turn-
ing point detection. In 1996, Dagum proposed a new method that enables the use 
of the 13-term Henderson filter with the advantages of: (1) reducing the number 
of unwanted ripples, (2) reducing the size of the revisions to most recent trend-
cycle estimates and, (3) no increase in time lag of turning point detection. 

The Dagum (1996) method basically consists of producing one year of 
ARIMA extrapolations from a seasonally adjusted series with extreme values re-
placed by default; extending the series with the extrapolated values and then, ap-
plying the Henderson filter to the extended seasonally adjusted series requesting 
smaller sigma limits (not the default) for the replacement of extreme values. The 
object is to pass through the 13-term Henderson filter, an input with reduced 
noise. This procedure was applied to the nine Leading Indicator series of the Ca-
nadian Composite Leading Index with excellent results and is currently being 
used by many statistical agencies. In a recent work, Dagum and Luati (2009) de-
veloped a linear approximation to the nonlinear Dagum (1996) method which 
gave very good results in empirical applications. 

Other recent works on nonparametric trend-cycle estimation were done by 
Dagum and Bianconcini (2006) where these authors derive a Reproducing kernel 
Hilbert Space (RKHS) representation of the Henderson (1916) and LOESS (due 
to Cleveland, 1979) smoothers with particular emphasis on the asymmetric ones 
applied to most recent observations. A RKHS is a Hilbert space characterized by 
a kernel that reproduces, via an inner product, every function of the space or, 
equivalently, a Hilbert space of real valued functions with the property that every 
point evaluation functional is a bounded linear functional. This Henderson kernel 
representation enables the construction of a hierarchy of kernels with varying 
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smoothing properties. The asymmetric filters are derived coherently with the cor-
responding symmetric weights or from a lower or higher order kernel within a 
hierarchy, if more appropriate. In the particular case of the currently applied 
asymmetric Henderson and LOESS filters, those obtained by means of the 
RKHS are shown to have superior properties relative to the classical ones from 
the view point of signal passing, noise suppression and revisions. 

In another study, Dagum and Bianconcini (2008) derive two density functions 
and corresponding orthonormal polynomials to obtain two Reproducing Kernel 
Hilbert Space representations which give excellent results for filters of short and 
medium lengths. Theoretical and empirical comparisons of the Henderson third 
order kernel asymmetric filters were made with the classical ones again showing 
superior properties of signal passing, noise suppression and revisions. Dagum and 
Bianconcini (2009, and 2010) provide a common approach for studying several 
nonparametric estimators used for smoothing functional time series data. Linear 
filters based on different building assumptions are transformed into kernel func-
tions via reproducing kernel Hilbert spaces. For each estimator, these authors 
identify a density function or second order kernel, from which a from which a 
hierarchy of higher order estimators is derived. These are shown to give excellent 
representations for the currently applied symmetric filters. In particular, they de-
rive equivalent kernels of smoothing splines in Sobolev space and polynomial 
space. A Sobolev space intuitively, is a Banach space and in some cases a Hilbert 
space of functions with sufficiently many derivatives for some application do-
main, and equipped with a norm that measures both the size and smoothness of a 
function. 

Sobolev spaces are named after the Russian mathematician Sergei Sobolev. 
The asymmetric weights are obtained by adapting the kernel functions to the 
length of the various filters, and a theoretical and empirical comparison is made 
with the classical estimators used in real time analysis. The former are shown to 
be superior in terms of signal passing, noise suppression and speed of conver-
gence to the symmetric filter. 

On the other hand, signal extraction by means of explicit models arrived much 
later. Under the assumption that the entire realization of ty  is observed from - ∞ 

to + ∞ and t  and te  are both mutually independent and stationary, Kolmo-

gorov (1939, 1941) and Wiener (1949) independently proved that the minimum 
mean square estimator of the signal t  is the conditional mean given the obser-

vations ty , that is ˆ ( , ,  ... )t t t t -1y y =  E |       . This fundamental result was ex-

tended by several authors who provided approximate solutions to the non-
stationary signal extraction, particularly Hannan (1967), Sobel (1967) and Cleve-
land and Tiao (1976). Finally, Bell (1984) provided exact solutions for the condi-
tional mean and conditional variance of vector   when non-stationarity can be 
removed by applying differences of a finite order. This author used two alterna-
tives regarding the generation of vectors y ,   and e . 

Model-based signal extraction was also used in the context of seasonal adjust-
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ment where the signal t  is assumed to follow an ARIMA model of the Box and 

Jenkins (1970) type, plus a regression model for the deterministic variations (see 
e.g. Burman 1980, Gómez and Maravall 1996, Findley et al. 1998). The latter is 
applied to estimate deterministic components, such as trading-day variations or 
moving-holiday effects and outliers. Gersch and Kitagawa (1983) and Koopman 
et al. (1998) also used signal extraction for seasonal adjustment where the signal 

t  is assumed to follow a structural time series component model (Harvey 1989) 
cast in state-space representation. Signal extraction, parametric and non-paramet- 
ric, is also widely applied for forecasting purposes. 

The feasibility of the decomposition of a time series was proved by Herman 
Wold in 1938. Wold showed that any second-order stationary stochastic process 

t{ }X  can be decomposed in two mutually uncorrelated processes t{ }Z  and 

t{ }V , such that 

t t t=  +VX Z , (6.a) 

where 

t j=0 t - jj =     aZ  , 0 1  , 2
j=1 j   <   ,  (6.b) 

with ~ ( , )2
t a{ }    WN 0   a  .  

Model (6.b) is known as an infinite moving average ( )MA   where the ta ’s 
are the innovations. t{ }Z  is a convergent infinite linear combination of the ta ’s, 
which are assumed to follow a white noise (WN ) process of zero mean, constant 

variance 2
a , and zero autocovariance. The component t{ }Z  is called the non-

deterministic or purely linear component since only one realization of the process 
is not sufficient to determine future values , > 0t+   Z   , without error. Compo-
nent t{ }V  can be represented by 

1 [ sin( ) cos( )]t j j jj j        t     tV    
   , - j       (6.c) 

where   is the constant mean of process t{ }X  and j{ } , j{ }  are mutually 

uncorrelated white noise processes. The series t{ }V  is called the deterministic 
part because it can be predicted in the future without error from a single realiza-
tion of the process by means of an infinite linear combination of past values. 

Wold theorem demonstrates that the property of stationarity is strongly related 
to that of linearity. It provides a justification for autoregressive moving average 
(ARMA) models (Box and Jenkins 1970) and some extensions, such as the auto-
regressive integrated moving average (ARIMA) and regression-ARIMA models 
(RegARIMA). 

A stochastic process t{ }X  is second-order stationary or weakly stationary, if 
the first two moments are not time dependent, that is, the mean and the variance 
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are constant, and the autocovariance function depends only on the time lag and 
not on the time origin, that is, 

( )tE   X    , (7.a) 

2 2)( t XE    X     , [( ) ( )] ( )t t kE    k   X X      , (7.b) 

where 0, 1, 2, ...k      denotes the time lag. 

3. THE SECULAR OR LONG-TERM TREND 

The concept of trend is used in economics and other sciences to represent 
long-term smooth variations. The causes of these variations are often associated 
with structural phenomena such as population growth, technological progress, 
capital accumulation, new practices of business and economic organization. For 
most economic time series, the trends evolve smoothly and gradually, whether in 
a deterministic or stochastic manner. When there is sudden change of level 
and/or slope this is referred to as a structural change. It should be noticed how-
ever that series at a higher levels of aggregation are less susceptible to structural 
changes. For example, a technological change is more likely to produce a struc-
tural change for some firms than for the whole industry.  

The identification and estimation of the secular or long-term trend have posed 
serious challenges to statisticians. The problem is not of statistical or mathemati-
cal character but originates from the fact that the trend is a latent (non-
observable) component and its definition as a long-term smooth movement is 
statistically vague. The concept of long-period is relative, since a trend estimated 
for a given series may turn out to be just a long business cycle as more years of 
data become available. To avoid this problem statisticians have used two simple 
solutions. One is to estimate the trend and the business cycles jointly, calling it 
the trend-cycle. The other solution is to estimate the trend over the whole series, 
and to refer to it as the longest non-periodic variation.  

It should be kept in mind that many systems of time series are redefined every 
fifteen years or so in order to maintain relevance. Hence, the concept of long-
term trend loses importance. For example, in Canada, the system of Retail and 
Wholesale Trade series was redefined in 1989 to adopt the 1980 Standard Indus-
trial Classification (SIC), and again in 2003 to conform to the North American 
Industrial Classification System (NAICS), following the North American Free 
Trade Agreement. The following examples illustrate the necessity of such reclassi-
fications. The 1970 Standard Industrial Classification (SIC) considered computers 
as business machines, e.g. cash registers, desk calculators. The 1980 SIC rectified 
the situation by creating a class for computers and other goods and services. The 
last few decades witnessed the birth of new industries involved in photonics (la-
sers), bio-engineering, nano-technology, electronic commerce. In the process, 
new professions emerged, and Classification systems had to keep up with these 
new realities. 
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There is a large number of deterministic and stochastic models which have 
been proposed for trend estimation (see among many others, Dagum and Da-
gum, 2006, Alexandrov et al., 2010). 

Deterministic models are based on the assumption that the trend can be well 
approximated by mathematical functions of time such as polynomials of low de-
gree, cubic splines, logistic functions, Gompertz curves, modified exponentials. 
Stochastic trends models assume that the trend can be better modelled by differ-
ences of low order together with autoregressive and moving average terms. Sto-
chastic trend models are appropriate when the trend is assumed to follow a non-
stationary stochastic process where the non-stationarity is modelled with finite 
differences of low order (cf. Harvey 1985, Maravall 1993). 

A typical stochastic trend model often used in structural time series modelling, 
is the so-called random walk with constant drift. In the classical notation this 
model is 

2
1 , 1, 2, ... ; _ (0, )t t t t  t    n   N          , (8.a) 

t t     , where t  denotes the trend,   a constant drift and { }t  is a nor-

mal white noise process. Solving the difference equation (2.15a) and assuming 

0 0   , we obtain 

1
t t  t       0 , 1, ...,j t j  t     t   n 

    , (8.b) 

which show that a random walk with constant drift consists of a linear determi-
nistic trend plus a non-stationary infinite moving average. 

Another type of stochastic trend belongs to the ARIMA (p,d,q) class, where p is 
the order of the autoregressive polynomial, q is the order of the moving average 
polynomial and d the order of the finite difference operator (1 ) B   . The 

backshift operator B is such that -
n

t t nz z   B  . The ARIMA (p,d,q) model is writ-
ten as 

)( ) (1 ( )d
q tp tz B  B      B   a   , 2~ (0, )t a   N   a  , (9) 

where tz  now denotes the trend, ( )p B  the autoregressive polynomial in B of 

order p, ( )q B  stands for the moving average polynomial in B of order q, and 

{ }ta  denotes the innovations assumed to follow a normal white noise process. 
For example, with p=1, d=2, q=0, model (9) becomes 

2
1 )(1 ) (1 ttz    B  B   a   , (10) 

where tz  now denotes the trend, ( )p B  the autoregressive polynomial in B of 

order p, ( )q B  stands for the moving average polynomial in B of order q, and 
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{ }ta  denotes the innovations assumed to follow a normal white noise process. 
For example, with p=1, d=2, q=0, model (9) becomes 

2
1 )(1 ) (1 ttz  B  B    a   , (11) 

which means that after applying first order differences twice, the transformed se-
ries can be modelled by an autoregressive process of order one.  

The Hodrick & Prescott (1997) filter follows the cubic smoothing spline ap-
proach. The framework used in Hodrick & Prescott is that a given time series X 
is the sum of a growth component T and a cyclical component C such that X = T 
+ C. The measure of the smoothness of the trend T is the sum of the squares of 
its second order difference. The C are deviations from T and the conceptual 
framework is that over long time periods, their average is near zero. 

The Hodrick-Prescott (HP) filter was not developed to be appropriate, much 
less optimal, for specific time series generating processes. Rather, apart from the 
choice of the smoothing parameter λ, the same filter is intended to be applied to 
all series. Nevertheless, the smoother that results can be viewed in terms of opti-
mal signal extraction literature pioneered by Wiener (1949) and Whittle (1963) 
and extended by Bell (1984) to incorporate integrated time series generating proc-
esses. King & Rebelo (1993) and Ehglen (1998) analyzed the HP filter in this 
framework, motivating it as a generalization of the exponential smoothing filter. 
On the other hand, Kaiser& Maravall (1999) showed that under certain restric-
tion the HP filter can be well approximated by an Integrated Moving Average 
model of order 2, whereas Harvey & Jaeger (1993) interpreted the HP filter in 
terms of structural time series models. 

4. THE BUSINESS CYCLE 

The business cycle is a quasi-periodic oscillation characterized by periods of 
expansion and contraction of the economy, lasting on average from three to five 
years. Because most time series are too short for the identification of a trend, the 
cycle and the trend are estimated jointly and referred to as the trend-cycle. As a 
result the concept of trend loses importance. The trend-cycle is considered a fun-
damental component, reflecting the underlying socio-economic conditions, as 
opposed to seasonal, trading-day and transient irregular fluctuations. 

The proper identification of cycles in the economy requires a definition of con-
traction and expansion. The definition used in capitalistic countries to produce 
the chronology of cycles is based on fluctuations found in the aggregate eco-
nomic activity. A cycle consists of an expansion phase simultaneously present in 
many economic activities, followed by a recession phase and by a recovery which 
develops into the next expansion phase. This sequence is recurrent but not 
strictly periodic. Business cycles vary in intensity and duration. In Canada for ex-
ample, the 1981 recession was very acute but of short duration, whereas the 1991 
recession was mild and of long duration. Business cycles can be as short as 18 
months and as long as 10 years. 
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A turning point is called a peak or downturn when the next estimate of the 
trend-cycle indicates a decline in the level of activity; and a trough in the opposite 
situation. There are many ways to determine when a downturn occurs, but in 
general, (see e.g. Dagum and Luati 2000, Chhab et al. 1999, Zellner et al. 1991) a 
downturn is deemed to occur at time t in the trend-cycle of monthly series, if 

1 1...t l t t t      c c c c      ; (12.a) 

and an upturn, if 

1 1...t l t t t    c c c c      . (12.b) 

Thus, a single change to a lower level tc , between t+1 and t, qualifies as a down-
turn, if 1t t  c c   and 3 2 1t t t    c c c    ; and conversely for an upturn. 

The dating of downturns and upturns is based on a set of economic variables 
related to production, employment, income, trade and so on.  

Similarly to the trend, the models for cyclical variations can be deterministic or 
stochastic. Deterministic models often consist of sine and cosine functions of dif-
ferent amplitude and periodicities. Stochastic models of the ARIMA type, involv-
ing autoregressive models of order 2 with complex roots, have been used to 
model business cycles.  

4.1. Same-Month Comparisons 

In the absence of seasonal adjustment, only the raw series is available. In such 
cases, it is customary to use same-month comparisons from year to year, 

12t tz z  , to assess the stage of the business cycle. The rationale is that the sea-

sonal effect in tz  is approximately the same as in 12tz  , under the assumption of 

slowly evolving seasonality. Same-month year ago comparisons can be expressed 
as the sum of the changes in the raw series between tz  and 12tz  , 

-12 1 1 2 2 3( ) ( ) ( )t t t t t t t tz z z z z z z z             

              12
111 12 1... ( )  ( )jt t t j t jz z z z         . (13) 

Eq. (13) shows that same-month comparison display an increase, if the in-
creases dominate the decreases over the 13 months involved, and conversely. The 
timing of 12t tz z   is 6t  , the average of t  and 12t  . This points out a limi-

tation of this practise: the diagnosis provided is not timely with respect to t. Fur-
thermore, tz  and 12tz   may contain irregular variations affecting one observation 

positively and the other negatively, hence conveying instability to the comparison. 
Moreover, for flow data the comparison is systematically distorted by trading-day 
variations if present. 

Seasonal adjustment entails the removal of seasonality, trading-day variations 
and moving-holiday effects from the raw data, to produce a seasonally adjusted 
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series, which consists of the trend-cycle and the irregular components. The ir-
regular fluctuations in the seasonally adjusted series can be reduced by smooth-
ing, to isolate the trend-cycle and to enable month-to-month comparisons. 

5. SEASONALITY 

Time series of sub-yearly observations, e.g. monthly, quarterly, weekly, are of-
ten affected by seasonal variations. The presence of such variations in socio-
economic activities has been recognized for a long time. Indeed seasonality usu-
ally accounts for most of the total variation within the year. 

Seasonality is due to the fact that some months, quarters of the year are more 
important in terms of activity or level. For example, the level of unemployment is 
generally higher during the winter and spring months and lower in the other 
months. Yearly series cannot contain seasonality, because the component is speci-
fied to cancel out over 12 consecutive months or 4 consecutive quarters.  

5.1. The Causes and Costs of Seasonality 

Seasonality originates from climate and conventional seasons, like religious, so-
cial and civic events, which repeat from year to year. 

The climatic seasons influence trade, agriculture, the consumption patterns of 
energy, fishing, mining and related activities. For example, in North America the 
consumption of heating oil increases in winter, and the consumption of electricity 
increases in the summer months because of air conditioning.  

Institutional seasons like Christmas, Easter, civic holidays, the school and aca-
demic year have a large impact on retail trade and on the consumption of certain 
goods and services, namely travel by plane, hotel occupancy, consumption of 
gasoline. 
 

 
 
Fig. 1 – Seasonal pattern of Sales by Canadian Department Stores. 
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In order to determine whether a series contains seasonality, it is sufficient to 
identify at least one month (or quarter) which tends to be systematically higher or 
lower than other months. Fig.1 exhibits the seasonal pattern of sales by Canadian 
Department Stores, where the values are much larger in December and much 
lower in January and February with respect to other months. The seasonal pattern 
measures the relative importance of the months of the year. The constant 100% 
represents an average month or a non-seasonal month. The peak month is De-
cember, with sales almost 100% larger than on an average month; the trough 
months are January and February with sales almost 40% lower than on an average 
month. The seasonal amplitude, the difference between the peak and trough 
months of the seasonal pattern, reaches almost 140%. 

Seasonality entails large costs to society and businesses. One cost is the neces-
sity to build warehouses to store inventories of goods to be sold as consumers 
require them, for example grain elevators. Another cost is the under-use and 
over-use of the factors of production: capital and labour. 

Capital in the form of un-used equipment, buildings and land during part of 
the year has to be financed regardless. For example, this is the case in farming, 
food processing, tourism, electrical generation, accounting. The cold climate in-
creases the cost of buildings and infrastructure, e.g. roads, transportation systems, 
water and sewage systems, schools, hospitals; not to mention the damage to the 
same caused by the action of ice.  

The labour force is over-used during the peak seasons of agriculture and con-
struction for example; and, under-used in trough seasons sometimes leading to 
social problems.  

A more subtle unwanted effect is that seasonality complicates business deci-
sions by concealing the fundamental trend-cycle movement of the variables of 
interest.  

The four main causes of seasonality are attributed to the weather, composition 
of the calendar, major institutional deadlines, and expectations. Seasonality is 
largely exogenous to the economic system but can be partially offset by human 
intervention. For example, seasonality in money supply can be controlled by cen-
tral bank decisions on interest rates. In other cases, the effects can be offset by 
international and inter-regional trade. For example Hydro Québec, a major Cana-
dian electrical supplier, sells much of it excess power during the summer seasonal 
trough months to the neighbouring Canadian provinces and U.S. states; and im-
ports some of it during the winter seasonal peak months of electrical consump-
tion in Québec. The scarcity of fresh fruits and vegetables in Canada is handled in 
a similar manner. Some workers and businesses manage their seasonal pattern 
with complementary occupations: for example landscaping in the summer and 
snow removal in winter.  

To some extent seasonality can evolve through technological and institutional 
changes. For example the developments of appropriate construction materials 
and techniques made it possible to continue building in winter. The development 
of new crops, which better resist cold and dry weather, have influenced the sea-
sonal pattern. The partial or total replacement of some crops by chemical substi-
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tutes, e.g. substitute of sugar, vanilla and other flavours, reduces seasonality in the 
economy. 

As for institutional change, the extension of the Canadian academic year to the 
summer months in the 1970s affected the seasonal pattern of unemployment for 
the population of 15 to 25 years of age. Similarly the practice of spreading holi-
days over the whole year impacted on seasonality.  

The changing industrial mix of an economy also transforms the seasonal pat-
tern, because some industries are more seasonal than others. In particular, 
economies which diversify and depend less on “primary” industries (e.g. fishing, 
agriculture) typically become less seasonal. 

In most situations, seasonality evolves slowly and gradually. Indeed the sea-
sonal pattern basically repeats from year to year, as illustrated in Fig. 1. Merely 
repeating the seasonal pattern of the last twelve months usually provides a rea-
sonable forecast. 

5.2. Models for Seasonality 

The simplest seasonal model for monthly seasonality can be written as 

12
1jt j j  t t        S d u  , 

1 , 12 , 0,1, 2, ..., 11 ,

0 , ,j  t

j t  k  k    
   d

otherwise              

  
 


 (14) 

subject to 12
1 0j j      , { }tu  is assumed white noise. The j  are the seasonal 

effects and the j td s  are dummy variables. 

Model (14) can be equivalently written by means of sines and cosines 

6
1jt  S   [ cos ( )j j     t  sin ( )]jj     t  , (15) 

where 2 /12j    j    , 1, 2, ..., 6j      and 6 0   . The j s are known as the sea-

sonal frequencies, with j corresponding to cycles lasting 12, 6, 4, 3, 2.4 and 2 
months respectively.  

In order to represent stochastic seasonality, the j  of model (14) are specified 
as random variables instead of constant coefficients (see Dagum, 2001). Such a 
model is 

12t t t  S S   , (16.a) 

or   12(1 ) t t SB  , (16.b) 

subject to constraints 11
0j t j t     S     where t  is assumed white noise. 
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Model (16.a) specifies seasonality as a non-stationary random walk process. 

Since (1 )s  B  1(1 ) (1 ... )sB   B   B     , model-based seasonal adjustment 

method assigns (1 )B  to the trend and -1
0( ) s j

j   S B   B   to the seasonal com-
ponent. Hence, the corresponding seasonal model is 

-1
0

s
j t j t    S    , (17) 

which entails a volatile seasonal behaviour, because the sum is not constrained to 

0 but to the value of t . Indeed, the spectrum of 1
0

s j
j   B
  (not shown here) 

displays broad bands at the high seasonal frequencies, i.e. corresponding to cycles 
of 4, 3, and 2.4 months. 

Model (17) has been used in many structural time series models (see e.g. Har-
vey 1981, Kitagawa and Gersch 1984). A very important variant to model (17) 
was introduced by Hillmer and Tiao (1982) and largely discussed in Bell and 
Hillmer (1984), that is 

-1
0 ( )s

j t j ts     B  S b   , (18) 

where ( )s B  is a moving average of 1s   minimum order and 
2~ (0, )t b    WN    b  . The moving average component enables seasonality to 

evolve gradually. Indeed, the moving average eliminates the afore mentioned 
bands at the high seasonal frequencies. 

Another stochastic seasonality model is based on trigonometric functions (see 
Harvey 1989) defined as 

[ /2]
1

s
t j j  t   S   , (19) 

where j  t  denotes the seasonal effects generated by 

, 1

* * *
, 1

cos sin

sin cos
j  t j  t j  t

j j  tj  t j  t

                 
  

  

  





      
                

, (20) 

and 2 /j   j s  , 1, ..., [ /2]j   s  and 1, ...,t   T . The seasonal innovation j  t  

and *
j  t  are mutually uncorrelated with zero means and common variance 2

 . 

6. THE MOVING-HOLIDAY COMPONENT 

The moving-holiday or moving-festival component is attributed to calendar 
variations, namely the fact that some holidays change date from year to year. 
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For example, Easter can fall between March 23 to April 25, and Labour Day on 
the first Monday of September. The Chinese New Year date depends on the lu-
nar calendar. Ramadan falls eleven days earlier from year to year. In the Moslem 
world, Israel and in the Far East, there are many such festivals. For example, 
Malaysia contends with as many as eleven moving festivals, due to its religious 
and ethnic diversity. These festivals affect flow and stock variables and may 
cause a displacement of activity from one month to the previous or the follow-
ing month. For example, an early date of Easter in March or early April can 
cause an important excess of activity in March and a corresponding short-fall in 
April, in variables associated to imports, exports, tourism. When the Christian 
Easter falls late in April (e.g. beyond the 10-th), the effect is captured by the 
seasonal factor of April. In the long run, Easter falls in April eleven times out 
of fourteen. 

Some of these festivals have a positive impact on certain variables, for exam-
ples air traffic, sales of gasoline, hotel occupancy, restaurant activity, sales of 
flowers and chocolate (in the case of Easter), sales of children clothing (Labour 
Day).1 The impact may be negative on other industries or sectors which close or 
reduce their activity during these festivals.  

The festival effect may affect only the day of the festival itself, or a number of 
days preceding and/or following the festival. In the case of Easter, travellers tend 
to leave a few days before and return after Easter, which affects air traffic and ho-
tel occupancy, etc., for a number of days. Purchases of flowers and other highly 
perishable goods, on the other hand, are tightly clustered immediately before the 
Easter date. 

The effect of moving festivals can be seen as a seasonal effect dependent on 
the date(s) of the festival. Fig. 2 displays the Easter effect on the sales by Cana-
dian Department Stores. In this particular case, the Easter effect is rather mild. In 
some of the years, the effect is absent because Easter fell too late in April.  

In the case exemplified, the effect is felt seven days before Easter and on 
Easter Sunday but not after Easter. This is evidenced by years 1994, 1996 and 
1999 where Easters falls early in April and impacts the month of March. Note 
that the later Easter falls in April, the smaller the displacement of activity to 
March; after a certain date the effect is entirely captured by the April seasonal fac-
tor. The effect is rather moderate for Department Stores. This may not be the 
case for other variables. For example, Imports and Exports are substantially af-
fected by Easter, because Customs do not operate from Good Friday to Easter 
Monday. Easter can also significantly affect quarterly series, by displacing activity 
from the second to the first quarter. 

                
1 In Canada and the United States, the school year typically starts the day after Labour Day (the 

first Monday of September). 
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Fig. 2 – Moving Holiday component of the Sales by Canadian Department Stores. 
 

There has been cases of complete reversal on the timing of the Easter effect. 
For example, Marriages in Canada were performed mainly by the Church during 
the 1940s up to the 1960s. The Church did not celebrate marriages during the 
Lent period, i.e. the 40 days before Easter. Some marriages therefore were cele-
brated before the Lent period, potentially affecting February and March. How-
ever, if Easter fell too early, many of these marriages were postponed after 
Easter. Generally, festival effects are difficult to estimate, because the nature and 
the shape of the effect are often not well known. Furthermore, there are few ob-
servations, i.e. one occurrence per year. 

7. THE TRADING-DAY COMPONENT 

Flow series may be affected by other variations associated with the composi-
tion of the calendar. The most important calendar variations are the trading-day 
variations, which are due to the fact that some days of the week are more impor-
tant than others. Trading-day variations imply the existence of a daily pattern 
analogous to the seasonal pattern. However, these daily factors are usually re-
ferred to as daily coefficients. 

Depending on the socio-economic variable considered, some days may be 60% 
more important than an average day and other days, 80% less important. If the 
more important days of the week appear five times in a month (instead of four), 
the month registers an excess of activity ceteris paribus. If the less important days 
appear five times, the month records a short-fall. As a result, the monthly trading-
day component can cause increase of +8% or -8% (say) between neighbouring 
months and also between same-months of neighbouring years. The trading-day 
component is usually considered as negligible and very difficult to estimate in 
quarterly series.  

For the multiplicative, the log-additive and the additive time series decomposi-
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tion models, the monthly trading-day component is respectively obtained in the 
following manner 

5/ ( )/2800t   t   t    timest t       d n d nD        , (21.a) 

5exp ( / ) exp (( )/ )t   t   t    timest t        d n d nD       , (21.b) 

5( )t   t   t    times       d dD       , (21.c) 

where d   are the daily coefficients in the month. The preferred option regarding 
tn  is to set it equal to the number of days in month t, so that the length-of-

month effect is captured by the multiplicative seasonal factors, except for Febru-
aries.2 The other option is to set tn  equal to 30.4375, so that the multiplicative 
trading-day component also accounts for the length-of-month effect. The num-
ber 2800 in Eq. (21.a) is the sum of the first 28 days of the months expressed in 
percentage. 

Same-month year-ago comparisons are never valid in the presence of trading-
day variations, not even as a rule of thumb. For a given set of daily coefficients, 
there are only 22 different monthly values for the trading-day component, for a 
given set of daily coefficients: seven values for 31-day months (depending on 
which day the month starts), seven for 30-day months, seven for 29-day months 
and one for 28-day months. In other words, there are at most 22 possible ar-
rangements of days in monthly data. 

7.1. Models for Trading-Day Variations 

A frequently applied deterministic model for trading-day variations was devel-
oped by Young (1965), 

t tty uD  , 1, , ...,t   n , (22.a) 

7
1t j j j  t    ND   , (22.b) 

where 2~ (0, )t u  WN    u  , 7
1 0j j    , , 1, ..., 7j  j      denote the effects of the 

seven days of the week, Monday to Sunday, and j  tN  is the number of times day 

j is present in month t. Hence, the length of the month is 7
1jt j  t  N N  , and 

the cumulative monthly effect is given by (22.b). Adding and subtracting 
7

1( )/ 7jj         to Eq. (22.b) yields 

7
1 ( )t jt j j  t           N ND     . (23) 

                
2 To adjust Februaries for the lengh-of-month, the seasonal factors of that month are multiplied 

by 29/28.25 and 28/28.25 for the leap and non-leap years respectively. 
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Hence, the cumulative effect is given by the length of the month plus the net ef-

fect due to the days of the week. Since 7
1 ( ) 0j j      , model (23) takes into 

account the effect of the days present five times in the month. Model (23) can 
then be written as 

6
1 7( ) ( )t jt j j  t  t          N N ND      , (24) 

with the effect of Sunday being 6
17 j j       . 

Deterministic models for trading-day variations assume that the daily activity 
coefficients are constant over the whole range of the series. Stochastic model for 
trading-day variations have been rarely proposed. Dagum et al. (1992) developed a 
model where the daily coefficients change over time according to a stochastic dif-
ference equation. 

8. THE IRREGULAR COMPONENT 

The irregular component in any decomposition model represents variations re-
lated to unpredictable events of all kinds. Most irregular values have a stable pat-
tern, but some extreme values or outliers may be present. Outliers can often be 
traced to identifiable causes, for example strikes, droughts, floods, data process-
ing errors. Some outliers are the result of displacement of activity from one 
month to the other. 

Fig. 3 – Irregular component of Sales by Canadian Department Stores. 
 

Fig. 3 displays the irregular component of Sales by Canadian Department 
Stores, which comprises extreme values, namely in 1994, 1998, 1999 and Jan 
2000. Most of these outliers have to do with the closure of some department 
stores and the entry of a large department store in the Canadian market. 



Time series modeling and decomposition 451 

As illustrated by Fig. 3, the values of the irregular component may be very in-
formative, as they quantify the effect of events known to have happened. 

Note that it is much easier to locate outliers in the irregular component than in 
the raw series because the presence of seasonality hides the irregular fluctuations. 

The irregulars are most commonly assumed to follow a white noise process de-
fined by 

2 2
-( ) 0 , ( ) , ( ) 0 if 0t t u t t k  E   E     E  ku u u u     . 

If 2
u  is assumed constant (homoscedastic condition), tu  is referred to as white 

noise in the strict sense. If 2
u  is finite but not constant (heteroscedastic condi-

tion), tu  is called white noise in the weak sense. 
For inferential purposes, the irregular component is often assumed to be nor-

mally distributed and not correlated, which implies independence. Hence, 
2~ (0, )t u  NID u  . 

There are different models proposed for the presence of outliers depending on 
how they impact the series under question. If the effect is transitory, the outlier is 
said to be additive; and if permanent, to be multiplicative. 

Box and Tiao (1975) introduced the following intervention model to deal with 
different types of outliers, 

0
 
j t j t j tty    h x 
    0 ( ) j

tjj j t tx     H Bxh B  
     (25) 

where the observed series { }ty  consists of an input series { }tx  considered a 

deterministic function of time and a stationary process { }t  of zero mean and 

non-correlated with { }tx . In such a case the mean of { }ty  is given by the deter-

ministic function 0
 
j t j t j  h x
   . The type of function assumed for { }tx  and 

weights { }jh  depend on the characteristic of the outlier or unusual event and its 

impact on the series. 

9. LINEAR AND NONLINEAR TIME SERIES MODELS 

Models for time series data can have many forms and represent different sto-
chastic processes. When modeling variations in the level of a process, three broad 
classes of practical importance are the autoregressive (AR) models, the integrated 
(I) models, and the moving average (MA) models. 

These three classes depend linearly on previous data points. Combinations of 
these three types produce autoregressive moving average (ARMA) and autore-
gressive integrated moving average (ARIMA) models. The autoregressive frac-
tionally integrated moving average (ARFIMA) model generalizes the former two. 
Extensions of these classes to deal with vector-valued data are available under the 
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heading of multivariate time-series models. An additional set of extensions of 
these models is available for use where the observed time-series is driven by some 
“forcing” time-series (which may not have a causal effect on the observed series): 
the distinction from the multivariate case is that the forcing series may be deter-
ministic or under the experimenter’s control. For these models, the acronyms are 
extended with a final “X” for “exogenous”. 

Non-linear dependence of the level of a series on previous data points is of in-
terest, partly because of the possibility of producing a chaotic time series. How-
ever, more importantly, empirical investigations can indicate the advantage of us-
ing predictions derived from non-linear models over those from linear mod-
els.When dealing with nonlinearities, Campbell, Lo, and MacKinlay (1997) make 
the distinction between: (1) Linear time series where shocks are assumed to be 
uncorrelated but not necessarily identically independent distributed (iid), and (2) 
Nonlinear time series where shocks are assumed to be iid, but there is a nonlinear 
function relating the observed time series {xt} and the underlying shocks. 

Among the most applied non-linear time series models in financial data are 
those representing changes of variance along time (heteroskedasticity). These 
models are called autoregressive conditional heteroskedasticity (ARCH) and the 
collection comprises a wide variety of representation (GARCH, TARCH, 
EGARCH, FIGARCH, CGARCH, etc). Here changes in variability are related to, 
or predicted by, recent past values of the observed series. This is in contrast to 
other possible representations of locally varying variability, where the variability 
might be modeled as being driven by a separate time-varying process, as in a 
doubly stochastic model. 

9.1. Autoregressive Conditional Heteroskedasticity (ARCH) Model 

Autoregressive Conditional Heteroskedasticity (ARCH) models are used to 
characterize and model observed time series. They are used whenever there is 
reason to believe that, at any point in a series, the terms will have a characteristic 
size, or variance. In particular ARCH models assume the variance of the current 
error term or innovation to be a function of the actual sizes of the previous time 
periods’ error terms: often the variance is related to the squares of the previous 
innovations. Such models are often called ARCH models (Engle, 1982), although 
a variety of other acronyms is applied to particular structures of model which 
have a similar basis. ARCH models are employed commonly in modeling finan-
cial time series that exhibit time-varying volatility clustering, i.e. periods of swings 
followed by periods of relative calm. 

Suppose one wishes to model a time series using an ARCH process of order q. 
Let t  denote the error terms (return residuals, with respect to a mean process) 

i.e. the series terms. These t  are split into a stochastic part zt and a time-
dependent standard deviation σt characterizing the typical size of the terms so that 

t t tz    (26) 
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where zt is a random variable drawn from a Normal distribution centered at 0 

with standard deviation equal to 1. (i.e. (0,1)iid
tz N ) and where the series σt 2 

are modeled by 

2 2 2 2
0 1 0

1

...
q

t t q t q i t i
i

         


         (27) 

and where 0 0, 0, 0i i    . An ARCH(q) model can be estimated using or-
dinary least squares. A methodology to test for the lag length of ARCH errors us-
ing the Lagrange multiplier test was proposed by Engle (1982). 

9.2. Generalized Autoregressive Conditional Heteroskedasticity (GARCH) Model 

If an ARMA model is assumed for the error variance, the model is a General-
ized Autoregressive Conditional Heteroskedasticity (GARCH) model introduced 
by Bollerslev in 1996. In that case, the GARCH(p, q) model (where p is the order 
of the GARCH terms σt 2 and q is the order of the ARCH terms t ) is given by 

2 2 2 2 2 2 2
0 1 1 1 0

1 1

... ...
q p

t t q t q t p t p i t i i t i
i i

                 
 

            (28) 

The Nonlinear GARCH (NGARCH) also known as Nonlinear Asymmetric 
GARCH(1,1) (NAGARCH) was introduced by Engle and Ng in 1993 

2 2 2
1 1 1( )t t t t           . (29) 

, 0; 0    . For stock returns, parameter  is usually estimated to be positive; 
in this case, it reflects the leverage effect, signifying that negative returns increase 
future volatility by a larger amount than positive returns of the same magnitude.  

9.3. Self-Exciting Threshold AutoRegressive (SETAR) Model 

Another type of nonlinear time series models are the Self-Exciting Threshold 
AutoRegressive (SETAR) models introduced in a seminal paper by Tong and Lim 
(1980). They are typically applied as an extension of autoregressive models, in or-
der to allow for higher degree of flexibility in model parameters through a regime 
switching behavior. Given a time series of data xt, the SETAR model is a tool for 
understanding and, perhaps, predicting future values in this series, assuming that 
the behavior of the series changes once the series enters a different regime. The 
switch from one regime to another depends on the past values of the x series 
(hence the Self-Exciting portion of the name). The model consists of k autore-
gressive (AR) parts, each for a different regime. The model is usually referred to 
as the SETAR(k, p) model where k is the number of regimes and p is the order of 
the autoregressive part (since those can differ between regimes, the p portion is 
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sometimes dropped and models are denoted simply as SETAR(k).They allow for 
changes in the model parameters according to the value of weakly exogenous 
threshold variable zt, assumed to be past values of y, e.g. yt-d, where d is the delay 
parameter, triggering the changes. Defined in this way, SETAR model can be pre-
sented as follows: 

( ) ( )j j
t t ty X       if  1j t jr z r    

where 1 2(1, , , ..., )t t t t pX y y y    is a column vector of variables; 

0 1 ... kr r r        are k-1 non-trivial thresholds dividing the domain of 
zt into k different regimes. In each of the k regimes, the AR(p) process is gov-
erned by a different set of p variables: (j). In such setting, a change of the regime 
(because the past values of the series yt-d surpassed the threshold) causes a differ-
ent set of coefficients: (j). to govern the process y. The SETAR model is a special 
case of Tong’s general threshold autoregressive models (Tong 1990). The latter 
allows the threshold variable to be very flexible, such as an exogenous time series 
in the open-loop threshold autoregressive system, a Markov chain in the Markov-
chain driven threshold autoregressive model which is now also known as the 
Markov switching model. 
 
Department of Statistics ESTELA BEE DAGUM 
University of Bologna 

REFERENCES 

ALEXANDROV, T.A.; BIANCONCINI, S.; DAGUM, E.B.; MAAS, P. AND MCELROY, S.T. (2010): “Review of 
some modern approaches to the problem of trend extraction”, Econometric Reviews, 
forthcoming. 

BELL, W.R. (1984): “Signal Extraction for Non-stationary Time Series”, Annals of Statistics, 
646-664. 

BELL W.H., HILLMER, S.C., (1984): “Issues Involved with the Seasonal Adjustment of Eco-
nomic Time Series”, Journal of Business and Economic Statistics, 2, 3, pp. 291-320. 

BOLLERSLEV, T. (1986): “Generalized Autoregressive Conditional Heteroskedasticity”, Jour-
nal of Econometrics, 31:307-327. 

BOX, G.E.P., JENKINS, G.M. (1970): Time Series Analysis: Forecasting and Control, Holden-Day, San 
Francisco, U.S.A (seconda edizione, 1976). 

BOX, G.E.P., TIAO, G.C. (1975): “Intervention Analysis with Applications to Economic and 
Environmental Problems”, Journal of the American Statistical Association, 70, pp. 70-79. 

BURMAN, J.P. (1980): “Seasonal adjustment by signal extraction”, Journal of the Royal Statistical 
Society, Series A, 143, pp. 321-337. 

CAMPBEL, J.Y., LO A.W., AND MACKINLAY, A.C. (1997): The Econometrics of Financial Markets, 
Princeton University Press, New Jersey. 

CHAAB, N., MORRY, M., DAGUM, E.B. (1999): “Further Results on Alternative Trend-Cycle Es-
timators for Current Economic Analysis”, Estadistica, 6, pp. 3-73. 

CLEVELAND, R.B., CLEVELAND, W.S., MCRAE, J.E., TERPENNING, I.J. (1990): “A Seasonal Trend 
Decomposition Procedure Based on Loess”, Journal of Official Statistics, 6, pp. 3-73. 



Time series modeling and decomposition 455 

CLEVELAND, W.P., TIAO, G.C. (1976): “Decomposition of Seasonal Time Series: a Model for 
Census X11 Program”, Journal of the American Statistical Association, 71, pp. 581-587. 

DAGUM, C AND DAGUM, E.B. (2006): “Stochastic and Deterministic trend Models”, Statistica, 
3, 269-280. 

DAGUM, E.B. (1980): The X-11-ARIMA Seasonal Adjustment Method, Statistics Canada, Ot-
tawa, Canada. 

DAGUM, E.B. (1982a): “Revisions of Time Varying Seasonal Filters”, Journal of Forecasting, 1, 
pp. 173-187. 

DAGUM, E.B. (1982b): “The Effects of Asymmetric Filters of Seasonal Factor Revisions”, 
Journal of the American Statistical Association, 77, pp. 732-738. 

DAGUM, E.B. (1982c): “Revisions of Seasonally Adjusted Data Due to Filter Changes”, Pro-
ceedings of the Business and Economic Section, American Statistical Association, pp. 
39-45. 

DAGUM, E.B. (1983): “Spectral Properties of the Concurrent and Forecasting Seasonal Lin-
ear Filters of the X11ARIMA Method”, The Canadian Journal of Statistics, 11, pp. 73-90. 

DAGUM, E.B. (1988): The X11ARIMA/88 Seasonal Adjustment Method – Foundations and User’s 
Manual, Time-series research and analysis centre, Statistics Canada, Ottawa, Canada. 

DAGUM, E.B. (1996): “A New Method to Reduce Unwanted Ripples and Revisions in 
Trend-Cycle Estimates from X11ARIMA”, Survey Methodology, 22, 1, pp. 77-83. 

DAGUM, E.B. (2001): “Time Series: Seasonal Adjustment”, in International Encyclopedia of the 
Social and Behavioral Sciences, vol. II - Methodology, Fienberg, S. e Kadane, J. Editors, 
Elsevier Sciences Pub.  

DAGUM, E.B. AND BIANCONCINI, S. (2006): “Local Polynomial Trend-cycle Predictors in Re-
producing Kernel Hilbert Spaces for Current Economic Analysis. Anales de Economía 
Aplicada, pp. 1-22. 

DAGUM, E.B AND BIANCONCINI, S. (2008): “The Henderson Smoother in Reproducing Kernel 
Hilbert Space”, Journal of Business and Economic Statistics, 26 (4), pp. 536-545. 

DAGUM, E.B. AND BIANCONCINI, S. (2009): “Recent Developments in Short-term Trend Pre-
diction for Real Time Analysis”, Proceedings of the American Statistical Association, 
Business and Economic Statistics Section, Washington D.C., August (invited paper). 

DAGUM, E.B. AND BIANCONCINI, S. (2010): “A Unified Probabilistic View of Nonparametric 
Predictors via Reproducing Kernel Hilbert Spaces”, under review. 

DAGUM, E.B. AND LUATI, A. (2000): “Predictive Performance of some Nonparametric Linear 
and Nonlinear Smoothers for Noisy data”, Statistica, Anno LX, vol. 4, pp. 635-654. 

DAGUM, E.B. AND LUATI, A. (2009): “A Cascade Linear Filter to Reduce Revisions and False 
Turning Points in Real Time Trend- cycle Estimation”, Econometric Reviews, vol. 28, 1-3, 
pp. 40-59. 

DAGUM, E.B., QUENNEVILLE, B., SUTRADHAR, B. (1992): “Trading-Day Variations Multiple Re-
gression Models with Random Parameters”, International Statistical Review, 60, 1, pp. 57-
73. 

EHGLEN, J. (1998), ‘Distortionary effects of the optimal Hodrick–Prescott filter’, Economics 
Letters 61, 345-349. 

ENGLE, R.F. (1982): “Heteroscedasticity with Estimates of Variance of United Kingdom 
Inflation”, Econometrica 50: 987-1008. 

FINDLEY, D.F., MONSELL, B.C., BELL, W.R., OTTO, M.C., CHEN B. (1998): “New Capabilities and 
Methods of the X12-ARIMA Seasonal Adjustment Program”, Journal of Business and 
Economic Statistics, 16, 2. 

GERSCH, W., KITAGAWA, G. (1983): “The Prediction of Time Series with Trends and Season-
alities”, Journal of Business and Economic Statistics, 1, pp. 253-263. 



 E.B. Dagum 456 

GOMEZ, V., MARAVALL, A. (1996): TRAMO-SEATS, Bank of Spain, Madrid. 
HANNAN, E.J. (1967): “Measuring of Wandering Signal Amid Noise”, J. of Applied Probabil-

ity,4, 90-102. 
HARVEY, A.C. (1981, 1993): Time Series Models, Harvester- Wheatsheaf, Great Britain. 
HARVEY, A.C. (1985): “Trends and Cycles in Macroeconomic Time Series”, Journal of Business 

and Economic Statistics, 3, pp. 216-227. 
HARVEY, A.C. (1989): Forecasting Structural Time Series Models and the Kalman Filter, Cambridge 

University Press, Cambridge, England. 
HARVEY, A.C. AND JAEGER, A. (1993), Detrending, Stylized Facts and the Business Cycle, Jour-

nal of Applied Econometrics, 8, 231-247. 
HENDERSON, R. (1916): “Note on Graduation by Adjusted Average”, Transaction of the Actu-

arial Society of America, 17, pp. 43-48. 
HILLMER, S.C., TIAO, G.C. (1982): “An ARIMA Model Based Approach to Seasonal Adjust-

ment”, Journal of the American Statistical Association, 77, pp. 63-70. 
KAISER, R. AND MARAVALL A. (1999), “Estimation of the Business-Cycle: A Modified 

Hodrick-Prescott filter”, Spanish Economic Review, 1, 175-206. 
KING, R.G. AND REBELO, S.T. (1993), “Low Frequency Filtering and Real Business Cycles”, 

Journal of Economic Dynamics and Control, 17, 207-233. 
KITAGAWA, G., GERSCH, W. (1984): “A Smoothness Priors-State Space Modeling of Time Se-

ries with Trend and Seasonality”, Journal of the American Statistical Association, 79, pp. 
378-389. 

KOLMOGOROV, A.N., (1939), Sur l’interpolation et l’extrapolation des suites stationnairres: 
C.R. Acad.Sci., 208, 2043-2045. 

KOLMOGOROV A.N., (1941). “The local structure of turbulence in incompressible viscous 
fluid for very large Reynolds numbers, “Proceedings of the USSR Academy of Sci-
ences 30: 299-303. (Russian), translated into English in Proceedings of the Royal Soci-
ety of London, Series A: Mathematical and Physical Sciences 434 (1991): 9-13. 

KOOPMAN, S.J., HARVEY, A.C., DOORNIK, J.A., SHEPHARD, N. (1998): Structural Time Series Analyser, 
STAMP (5.0), International Thomson Business Press, London, England. 

HODRICK, R.J. AND PRESCOTT, E.C. (1997): “Post war U.S. Business Cycles: An Empirical In-
vestigation”, Journal of Money, Credit and Banking,. 29, nº 1, 1-16. 

HILLMER, S.C., TIAO, G.C. (1982): “An ARIMA Model Based Approach to Seasonal Adjust-
ment”, Journal of the American Statistical Association, 77, pp. 63-70. 

LADIRAY, D., QUENNEVILLE, B. (2001): “Seasonal Adjustment with the X11 Method”, Lecture 
Notes in Statistics no. 158, Springer-Verlag, New York. 

MACAULAY, F.R. (1931): The Smoothing of Time Series, National Bureau of Economic Research, 
Washington, D.C. 

MARAVALL, A. (1993). “Stochastic and Linear Trends: Models and Estimators”, Journal of 
Econometrics, 56, pp. 5-37. 

PERSONS, W.M. (1919): “Indices of Business Conditions”, Review of Economic Statistics, 1, pp. 
5-107. 

SHISKIN, J., YOUNG, A.H., MUSGRAVE, J.C. (1967): “The X-11 Variant of Census Method II Seasonal 
Adjustment”, Technical Paper n. 15, Washington, D.C.: U.S. Bureau of Census. 

SOBEL, E.L. (1967): “Prediction of Noise-distorted Multivariate Non-stationary Signal” J. of 
Applied Probability, 4, 330-342. 

TONG, H. AND LIM, K. S. (1980) “Threshold Autoregression, Limit Cycles and Cyclical Data 
(with discussion)”, Journal of the Royal Statistical Society, Series B, 42, 245-292. 

TONG H. (1990). Non-Linear Time Series: A Dynamical System Approach. Oxford University 
Press. 



Time series modeling and decomposition 457 

WHITTAKER, E.T. (1923), “On a New Method of Graduation”, Proceedings of the Edin-
burgh Mathematical Society 41, 63-75. 

WHITTAKER, E.T. AND ROBINSON, G. (1924), Calculus of Observations: a Treasure on Numerical Cal-
culations, Blackie and Son, London. 

WIENER, N. (1949): Extrapolation, Interpolation and Smoothing of Stationary Time Series, John 
Wiley and Sons, New York. 

WHITTLE, P. (1963): Prediction and regulation by linear least-square methods, English Universities 
Press, London.  

WOLD, H.O. (1938): A Study in the Analysis of Stationary Time Series, Almquist and Wicksell, 
Uppsala, (second edition 1954). 

YOUNG, A.H. (1965): “Estimating Trading-Day Variation in Monthly Economic Time Series”, 
Technical Paper 12, Washington, D.C.: U.S. Bureau of Census. 

ZELLNER, A. HONG,C. AND MIN, C. (1991): “Forecasting Turning Points in International Out-
put Growth Rates using Bayesian Exponentially Weighted Autoregression, Time Vary-
ing Parameters and Pooling Techniques”, Journal of Econometrics, 48, 275-304. 

SUMMARY 

Time series modeling and decomposition 

The paper provides an overview of techniques and methods in time series modeling 
and decomposition with focus on the business cycle, models for seasonality, the moving 
holiday component, the trading-day component and the irregular component. 


