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INFERRING CAUSAL RELATIONS BY MODELLING STRUCTURES (*)1 

M. Mouchart, F. Russo, G. Wunsch 

1. INTRODUCTION AND BACKGROUND 

A common objective across the sciences is to look for causes. Knowledge of 
causes is helpful in order to explain phenomena, to make predictions and to con-
trol for bias and confounding. The social sciences are no exception in this re-
spect. This is not to say that we are always able to find and to use causes, but this 
is a reason why causal knowledge is so central in science. 

One difficulty the social sciences face is the large variability of its units of ob-
servation–that is, at bottom, humans, but going up in the level of aggregation we 
may also find families, firms, nations–and the large size of data we can collect on 
them. Statistics proved so helpful in the practice of quantitative social science to 
the point of becoming a necessary tool. Yet, statistics alone cannot find causes; 
social scientists instead need expertise in modelling procedures and wise use of 
background knowledge. A very brief history of causal analysis will make the pre-
vious point clear. 

Causal analysis has a long tradition, starting with the pioneering and seminal 
works of the demographer Adolphe Quetelet and of the sociologist Emile Durk-
heim. Major improvements have been done by, to name a few, Sewall Wright and 
Otis Dudley Duncan, up to the most recent advancement by econometricians 
such as Jim Heckman or Kevin Hoover and computer scientists such as Judea 
Pearl or Peter Spirtes, Clark Glymour and Richard Scheines. What is peculiar to 
this development is that, whilst the early methodologists were overtly and explic-
itly causalist, the most recent generations have shown some skepticism as to 
whether we can infer causation from statistics. 

There is another way the development of causal analysis can be read. Whilst 
early methodologists used basic statistics only, as time passed researchers aimed 
to model structures in order to analyse complex networks of causal relations. This 
lead to the so-called structural modelling approach, which is endorsed, with some 
differences to be discussed later in the paper, by a number of scholars nowadays. 
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The last reading of this short history of causal analysis concerns the way re-
searchers dealt with modelling. In fact, despite the great advancement in complexity 
and sophistication of the statistical models, what went lost is an overarching view 
of modelling qua scientific practice. That is to say, what went lost is a global view 
on modelling that does not confine to the statistical model and does not narrowly 
focus on the (statistical) properties of the distributions and on (statistical) tests. 
As we shall discuss later in detail, modelling includes, within a hypothetico-
deductive approach, making background and field knowledge explicit and taking 
into account the type of data to be analysed, and on this ground to put in motion 
the whole statistical machinery. 

This last point is a very sketchy formulation of the so-called hypothetico-deductive 
(H-D) methodology. According to the H-D methodology, causal relations cannot 
be inferred directly from data nor with the sole aid of an algorithmic procedure. 
Nevertheless, there is also a florid tradition that uses statistics in an inductive way, 
e.g. data mining or exploratory data analysis. This is, for instance, the approach of 
Spirtes et al. (2000). Inductivist approaches claim that causal relations can be 
drawn from data without the burden of extra-statistical and causal assumptions 
made in their hypothetico-deductive counterparts. Unfortunately, it goes far be-
yond the goal of this paper to discuss the success of inductive causal models. 
Consequently the scope will be limited to causal models that employ a hy-
pothetico-deductive methodology. 

Thus, following the seminal works of e.g. Wright, Haavelmo, Blalock, Pearl  
and others, we present the main features of structural modelling. There are in the 
literature competing ‘structural accounts’, and we will discuss in section 3.1 in 
what respect these accounts are similar or different and what are the characteris-
ing features of our own approach. In essence, a model is deemed structural if it 
uncovers a structure underlying the data generating process. In section 2.1 we 
present hypothetico-deductivism, a general methodology according to which 
causal analysis can be schematically represented stepwise thus: 1. formulate the 
causal hypothesis out of background knowledge and preliminary analyses of data; 
2. build the statistical model; 3. test the model; 4. check congruence between the 
results and available background knowledge. Sections 2.2-2.4 argue that a struc-
tural approach systematically blends two ingredients. First, the model must be 
congruent with background knowledge: modelling the data generating process 
must be operated in the light of the current information on the relevant field. 
Second, the model must show stability in a wide sense: both the structure of the 
model and the parameters have to be stable or invariant with respect to a large 
class of interventions or of modifications of the environment. Section 2.4 intro-
duces causality in terms of exogeneity within structural models. Section 2.5 dis-
cusses some difficulties of and threats to structural modelling in the presence of 
latent variables. 

It is crucial to note that this concept of structural modelling is wider than the 
framework of structural equation models, also known as covariance structure 
models or LISREL type models, widely used in psychology or in sociology, and 
of simultaneous equations models, widely used in econometrics. 
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A first consequence of this approach is that the notion of causality becomes 
relative to the model itself, rather than to the data, as is the case, for instance, in 
the Granger-type concept of causality. Also, this means that we do not aim at 
making metaphysical claims about causal relations, but rather at saying when we 
have enough reasons–specifically, reasons about background knowledge and 
about structural stability–to believe that we modelled a causal mechanism able to 
explain a given social phenomenon. A second consequence of this model-based 
concept of causality, involving both background knowledge and stability, is that 
the model does not simply derive from theory as is often the case in the econo-
metric tradition. Therefore structural modelling is much more than a sophisti-
cated statistical tool that translates (economic) theory into mathematical equa-
tions. Good structural modelling ought to be accompanied by a broad and sensi-
ble account of what a statistical model is and represents, of what statistical infer-
ence is. 

An important aspect of structural modelling is its relation with explanation.  
In section 3 we discuss a feature of structural modelling having explanatory im-
port. This is the recursive decomposition, appropriately interpreted as a mecha-
nism. 

Another important debate in the broad area of causal analysis concerns the re-
lations and competitions between the structural and the counterfactual approach, 
which we have considered elsewhere. Space is limited and we cannot engage in a 
thorough discussion of the counterfactual approach. Nevertheless, we shall try to 
set the tracks that we think should guide this debate in section 4. We close the 
paper, in section 5, with some conclusions and discussions. 

In this paper we attempt to present our views building on our previous works 
on structural modelling, explanation, causality, and the relations they stand with 
each other. The attempt here is to blend viewpoints coming from statistics, social 
sciences and philosophy in order to provide a comprehensive approach to struc-
tural modelling, along with its practical aspects. 

2. MODELLING STRUCTURES 

In this section, we develop the formal framework of structural modelling. We 
start by presenting the hypothetico-deductive methodology and three notions: (i) 
conditional model, (ii) exogeneity, (iii) recursive decomposition. We then intro-
duce the structural model as a model enabling a causal interpretation of exoge-
nous variables and a mechanistic interpretation of the recursive decomposition. 
We close the section with some remarks on partial observability and latent vari-
ables. 

2.1. Hypothetico-deductivism 

As anticipated in the Introduction, there are, broadly speaking, two approaches 
in causal analysis. On the one hand, inductivist approaches, put it very simply, try 
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to infer causal relations from data, with very minimal prior assumptions and vir-
tually no explicit background knowledge supporting the specific algorithm used 
(such as principal components analysis). On the other hand, hypothetico-
deductive approaches heavily rely on the prior specification of assumptions and 
of background knowledge in order to infer causal relations. In this section we 
discuss this hypothetico-deductive methodology, which we endorse, in detail. 

Hypothetico-deductivism (H-D) is a general methodology that prescribes to 
formulate hypotheses and to derive consequences in order to test whether the 
hypotheses obtain or not. Famously, the philosopher of science Karl Popper 
(1959) was the first to theorise the H-D methodology motivated by the need of 
providing a methodology alternative to inductive ones (that is, Baconian). Pop-
per’s H-D methodology was characterised by (i) a strict meaning of ‘deducing the 
consequences from the hypotheses’, and (ii) a complete rejection of the hypothe-
sis in case tests disconfirm it. This implied, in Popper’s view, to start every time 
from scratch. However, the form of hypothetico-deductivism more recently en-
dorsed by philosophers of sciences (see, e.g. Cartwright, 2007, ch. 2 and Russo 
2009, ch. 3.2) is much less strict concerning deduction and does not imply start-
ing from complete scratch any time a hypothesis is disconfirmed. Yet, it does re-
tain from the Popperian account the primary role of the hypothesis-formulation 
stage. We shall return to these points later. 

The H-D methodology can be presented as a stepwise procedure for model 
building and model testing: 1. formulate the causal hypothesis out of background 
knowledge and preliminary analyses of data; 2. build the statistical model; 3. test 
the model; 4. check congruence between the results and available background 
knowledge. 

In the first step (hypothesis formulation) background knowledge–from knowl-
edge concerning the phenomenon at stake to preliminary analyses of data–looms 
large. But background knowledge is also very important for building the model, 
that is, as we shall discuss in detail in section 2.3 and 2.4, choosing the particular 
statistical model and the recursive decomposition. Model testing, performed in 
step 3, concerns various aspects: estimation, goodness of fit, exogeneity, stability. 
The results of those tests, alone, do not allow yet inferring a causal structure as 
the results need to be checked, again, against background knowledge. This is 
done in step 4. This last stage is very important because, even if positive results 
are not obtained–that is we are not able to successfully infer the presence of a 
causal relation–it is not all lost. In fact, this all may feed research later on. Differ-
ently put, we also learn from failure. 

As just said, hypothetico-deductivism in causal modelling does not involve mak-
ing deductive inferences strictly speaking. What is instead at stake in H-D method-
ology is a weaker inferential step of ‘drawing consequences’ from the hypothesis. 
This means that, after we formulate the causal hypothesis taking into account avail-
able background knowledge and meaningful co-variations between the putative 
cause and effect, we do not require data to be implied by the hypothesis but just that 
data conform to it. ‘Conform’ means that the available indicators in the data set 
adequately represent the conceptual variables appearing in the causal hypothesis. 
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It is in this sense that the confirmation of the causal hypothesis is not done by 
‘deductive inferences’ strictly interpreted but does involve a ‘deductive procedure’ 
loosely speaking. To be more precise, it is a hypothetico-deductive procedure in the 
sense that it goes the opposite direction of inductive methodologies: not from 
data to causation, but from causal hypotheses down to data, so to speak. 

The important role of background knowledge is worth emphasising. The no-
tion of background knowledge belongs to most quoted and least explicated con-
cepts in causal analysis. It is so broad that it is hard to discriminate between 
knowledge and information that does or does not count as background knowledge. 
Let’s try to be more specific. Background knowledge may include various aspects: 
(i) general knowledge about socio-demo-political contexts, (ii) knowledge of 
physical-biological-physiological mechanisms, (iii) institutional knowledge (such 
as the procedure of a central bank), (iv) evidence supporting similar mechanisms 
in different populations, (v) use of similar or different methodologies or data to 
study the phenomenon of interest. It is important to carefully take these points 
into account because studies in social science typically consider different popula-
tions. It is a proper and explicit use of background knowledge that justifies the 
choice of variables and of the model, and that allows a sound interpretation of 
results. Any empirical study based on sound structural modelling is in turn a con-
tribution to background knowledge, that is to the process of gathering together 
knowledge and information coming from different sources. 

The H-D methodology hereby presented is general and is not restricted to 
quantitative causal approaches but also includes qualitative methodologies. In the 
following, we shall restrict our attention to quantitative approaches, and more 
particularly to the so-called structural modelling approach in statistics. 

2.2. The conditional model 

Let us start with an unconditional parameterized statistical model XM  given in the 
following form:  

{ ( | ) : }Xp x   XM    (1) 

where for each   , ( | )Xp x   is a (sampling) probability density on an under-
lying sample space corresponding to a (well-defined) random variable X  and   
is the parameter space, aimed at describing the set of sampling distributions con-
sidered to be of interest. The basic idea is that the data can be analyzed as if they 
were a realization of one of those distributions. Thus, a statistical model is based 
on a stochastic representation of the world. Its randomness delineates the frontier 
or the internal limitation of the statistical explanation, since the random compo-
nent represents what is not explained by the model. 

A conditional model is constructed through embedding this concept into the 
usual concept of an unconditional statistical model (1). For expository purposes, 
we only consider the case where a random vector X  of observations is decom-
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posed into ( , )X Y Z    (where ʹ denotes transposition) and where the model is 
conditional on Z . 

The basic idea of a conditional model is the following: starting from a global 
model XM  as given in (1), each sampling density ( | )Xp x   is first decomposed a 
marginal-conditional product: 

| | |( | ) ( | ) ( | , ) ( , )X Z Z Y Z Y Z Z Y Zp x p z p y z        (2) 

where ( | )Z Zp z   is the marginal density of Z , parametrized by Z , and 

| |( | , )Y Z Y Zp y z   is the conditional density of ( | )Y Z , parametrized by |Y Z . Next, 

one makes specific assumptions on the conditional component leaving virtually 
unspecified the marginal component. Thus a conditional model may be repre-
sented as follows: 

| | | |{ ( | ) ( | ) ( | , )  ( , ) }X Z Z Y Z Y Z Z Y Z Z Y Zp x p z p y z            Z
YM   

(3) 

where Z  parametrizes a typically large family of sampling probabilities on Z  

only and for each | | | |, ( | , )Y Z Y Z Y Z Y Zp y z   represents a conditional density of 

( | )Y Z . 
A conditional model, as in (3), endows the global model (1) with two proper-

ties. Firstly, the parameters characterizing the marginal ( )Z  and the conditional 

|( )Y Z  components are independent. Here, ‘independence’ means ‘variation-free’ 

in a sampling theory framework, i.e. | |( , )Z Y Z Z Y Z        , or independ-

ent in the (prior) probability in a Bayesian framework, i.e. Z    |Y Z . Secondly, a 

conditional model leaves almost unspecified the marginal component, i.e. the set 

Z  represents a ‘very large’ set of possible distributions for Z . 

2.3. Exogeneity and recursive decomposition 

Formally, the condition of exogeneity can be stated as follows: the parameter 
of interest should only depend on the parameters identified by the conditional 
model and the parameters identified by the marginal process should be “inde-
pendent” of the parameters identified by the conditional process. It should be 
stressed that the independence among parameters has no bearing on a (sampling) 
independence among the corresponding variables. 

Exogeneity is a condition of separation of inference. The (partial) explanation 
of the statistician is cast in the framework of a statistical model, in terms of pa-
rameters that characterise the distribution of interest. Originally, the concept of 
exogeneity appears with regression models. A first, and naive, approach was to 
consider an exogenous variable as a non-random variable, the endogenous vari-


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able being the only random one. That this approach was unsatisfactory became 
clear when considering complex models where the same variable could be exoge-
nous in one equation and endogenous in another one. A first progress came 
through a proper recognition of the nature of a conditional model; for a more 
formal presentation, see e.g. Mouchart and Oulhaj (2000) and Oulhaj and 
Mouchart (2003). 

The concept of exogeneity has a long history in econometrics. The works of 
the Cowles Commission in the late Forties and the early Fifties have been path-
breaking and are still influential nowadays; in particular, Koopmans (1950) puts 
emphasis on exogeneity in dynamic models. Barndorff-Nielsen (1978) is signifi-
cant in the development of conditions for separation of inference. Florens and 
Mouchart (1980, 1985) and Florens, Mouchart and Rolin (1980) bridge Koop-
mans (1950) and Barndorff-Nielsen (1978) works and provide a coherent account 
of exogeneity integrating the separation of inference in dynamic and non-dynamic 
models. Engle, Hendry and Richard (1983) present a list of different concepts 
from the econometric literature and display their connections with exogeneity 
through the introduction of supplementary conditions. 

What are the consequences of a failure of exogeneity? There may be a loss of 
efficiency in the inference if the failure comes from a restriction (equality or ine-
quality), or a lack of independence in a Bayesian framework, between the parame-
ters of the marginal model and those of the conditional model. There may also be 
an impossibility of finding a suitable, e.g. unbiased or consistent, estimator if the 
parameter of interest is not a function of |Y Z  only. A typical example, well 

known in the field of simultaneous equations in econometrics, is that the parame-
ter of interest in a structural equation may not be a function of the parameters 
identified by the model conditional on the explanatory variables corresponding to 
that specific equation. 

Let us now consider a decomposition of X  into p  components: 

1 2( , , ..., )pX X X X . Suppose that the components of X  have been ordered in 

such a way that in the complete marginal-conditional decomposition: 

1 2 1

1 1 2 2

1 2 1 1

| , ,... 1 2 1 |1,... 1

| , ,... 1 1 2 2 1|1,... 2

| , ,... 1 2 1 |1,... 1 1 1

( | ) ( | , , ... , )

( | , , ... , )...

( | , , ... , )... ( | )

p p

p p

j j

X X X X X p p p p

X X X X p p p p

X X X X j j j j X

p x p x x x x

p x x x x

p x x x x p x

 



 



 



 

   

 







 (4) 

each component of the right hand side have mutually independent parameters, i.e. 
in a sampling theory framework: 

|1,..., 1 1|1,... 2 1 |1,... 1 1|1,... 2 1( , ..., ) ...p p p p p p p p              (5) 

Under the condition (5), the decomposition (4) is called a recursive decomposition 
and the conditioning variables of each term are the exogenous variables of their 
corresponding component. 
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Once the number of components p  increases, we shall see in section 2.4 that 
background knowledge, possibly substantiated by statistical tests, typically pro-
vides a simplification of the factors in the form of conditional independence 
properties. More specifically, it is often the case that the distribution of 

1 1( | ,..., )j jX X X   is known not to depend on some of the conditioning vari-

ables. Thus there is a subset 1 1{ ,..., }j jX X  , of variables actually relevant for 

the conditional process generating 1 1| ,...,j jX X X   as defined by the property  

jX     1 1, ..., |j jX X    (6) 

implying that the factor 
1 2 1| , ,...j jX X X Xp


 in (4) is actually simplified into |j jXp   

and j  may be called the relevant information of the j-th factor. Once j  has been 

specified for each factor, (4) is condensed into 

1 2, ,... |
1

p j jX X X X
j p

p p
 

    (7) 

This form is accordingly called a condensed recursive decomposition. 

2.4. Structural models, exogeneity and causality 

Structural models are a class of models enabling the interpretation of exogeneous 
variables as causes of the phenomenon to be explained. In this subsection, we show 
how the concepts of structural model, exogeneity and causality are connected. 

A structural model conveys the idea of a representation of the world that is sta-
ble, or invariant, under a large class of interventions or of modifications of the 
environment. Structural models are also called ‘causal models’. Here, the concept 
of causality is internal to a model which is itself stable, in the sense of structurally 
stable. Thus a structural model aims at capturing an underlying structure; model-
ling this underlying structure requires taking into account the contextual knowl-
edge of the field of application. 

The invariance, or stability, requirement is however not a sufficient condition for 
making a structural model palatable. A structural model should also help under-
stand the data generating process; more precisely its characteristics, or parameters, 
should be interpretable. This is typically achieved by decomposing a model repre-
senting the generation of a set (vector) of variables into an ordered sequence of 
subprocesses representing sub-mechanisms that are congruent with field knowl-
edge. This decomposition corresponds to a systematic marginal-conditional decomposi-
tion; the ordered feature corresponds to a recursive decomposition. As developed in 
section 2.3, the conditioning variables of each conditional component of the de-
composition are exogenous variables for the corresponding sub-process. 

For this purpose, we look for a recursive decomposition such that each factor 
of the right-hand side of (4) is structurally valid. As argued in Mouchart, Russo 


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and Wunsch (2009), causes may then be viewed as exogenous variables in the con-
densed recursive decomposition, alternatively as the relevant information of a 
structurally valid conditional distribution. Readers familiar with the literature on 
graph models may recognise that a directed acyclic graph (DAG) is a graphic rep-
resentation of a condensed recursive decomposition and that the causal structure 
is depicted by the set of ancestors. 

Why interpreting exogenous variables as causal factors? The main reason is that 
structural modelling is also meant to explain a phenomenon–an issue that we 
briefly mentioned in the Introduction and that we will develop in detail in section 
3. In order to do that, we have to model ‘structures’, that is mechanisms where 
causal factors play a role. This ties a knot between structural modelling, explana-
tion, and causation. 

Thus the variation-free condition (5) does not only allow us to separate the in-
ferences on |1,..., 1j j   and on 1,..., 1j  , but it also allows us to distinguish the proc-

ess generating the causes, characterised by 1,..., 1j   – and the process generating 

the effects, characterised by |1,..., 1j j  . Separating causes from effects mirrors the 

asymmetry of causation. 
The goal of structural modelling is to characterise clearly identified and inter-

pretable mechanisms. The choice of the marginal-conditional decomposition is 
therefore not arbitrary; we need background knowledge and invariance to make a 
selection among the various possible decompositions. In other words, the mar-
ginal-conditional decomposition alone does not provide a (causal) explanation of a 
given phenomenon, but the whole modelling procedure does. This is indeed mir-
rored in the step-wise H-D methodology presented in section 2.1 which seeks to 
decompose a vector of variables into structurally valid components. Next section 
shows that when latent variables are present in a structural model, causal attribu-
tion becomes substantially more complex. 

2.5. Partial observability and latent variables 

Consider a three-variate completely recursive system, represented in Figure 1, 
for data in the form ( , , )X Y Z U : 

| , | , | |( | ) ( | , , ) ( | , ) ( | )X Y Z U Y Z U Z U Z U U Up x p y z u p z u p u     (8) 

where each of the three components of the right hand side may be considered as 
structural models with mutually independent parameters, 

 

 
Figure 1 – 3-component completely recursive system. 
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This diagram suggests that U  causes Z  and ( , )U Z  cause Y . Here, U  is a 
confounding variable for the effect of Z  on Y ; for more detail see e.g. Wunsch 
(2007). 

Now suppose that U  is not observable. It might be tempting to collapse the 
diagram in Figure 1 into that of Figure 2. Formally, Figure 2 may be obtained by 
integrating the latent variable U  out of (8): 

| , | , | |
| |

| , | , | |

( | , , ) ( | , ) ( | )
( | , )

( | , , ) ( | , ) ( | )
Y Z U Y Z U Z U Z U U U

Y Z Y Z
Y Z U Y Z U Z U Z U U U

p y z u p z u p u du
p y z

p y z u p z u p u du dy

  

  
 




 (9) 

| |( | ) ( | , ) ( | )Z Z Z U Z U U Up z p z u p u du     (10) 

 

 
Figure 2 – 2-component system. 

 

Therefore: 

| 1 | , | 2 |( , , ) ( , )Y Z Y Z U Y U U Z Z U Uf f         (11) 

Two remarks are in order: 
1) In general, Z  is not exogenous anymore because (11) shows that the pa-

rameters |Y Z  and Z  are, in general, not independent; indeed some components 

of |Z U  and of U  may be common to |Y Z  and Z . Therefore, Figure 2 is an 

inadequate simplification of Figure 1 (see however next remark); 
2) the non-observability of U  typically implies a loss of identification: the 

functions 1f  and 2f  are not one-to-one; thus Z  might still be exogenous because 

potentially common parameters in |Y Z  and Z  might not be identified. 

3. EXPLAINING THROUGH STRUCTURES 

In the Introduction, we mentioned that causal analysis is important in order to 
explain, predict, and intervene. We also expressed skepticism about methodolo-
gies that pretend to infer causal relations on the basis of sole data under analysis. 
In this section we therefore address two issues of a more theoretical concern. 
One is the specific meaning of ‘structural’ adopted here. We will argue that calling 
the approach ‘structural’ goes well beyond employing structural equations and has 
instead to do with the goal of modelling structures. The second theoretical issue is 
the explanatory import of structural models. We will argue that structural models 
explain insofar as they model structures, that is causal mechanisms. 



Inferring causal relations by modelling structures 421 

3.1. Meanings of ‘structural’ 

As the name suggests, structural modelling has to do with structures. What we 
take to be peculiar to structural modelling is that the whole modelling procedure 
aims to uncovering (or modelling) structures, i.e. mechanisms. The literature on 
‘structural modelling’ abounds. One conception (and perhaps the most wide-
spread) takes ‘structural modelling’ and ‘structural equation modelling’ as syno-
nyms. In our view, however, those are not coextensive terms. 

‘Structural equation modelling’ is a particular type of statistical model used in 
quantitative social science, especially in econometrics. ‘Structural modelling’, in-
stead, does not denote a particular (statistical) model (e.g. structural equation mod-
els, covariance models, multilevel models, etc.) but refers to a general methodologi-
cal account of model-building and model-testing. In this sense, we take structural 
modelling to be a general methodological framework for causal analysis. This distinc-
tion between a particular statistical model and a general methodological framework 
is often not clear. Some examples of how scholars both in statistics and in philoso-
phy of science characterise structural modelling clarifies the point. 

A notable example is Pearl (2000). In his seminal book on causation, he deals 
with structural models sometimes meaning structural modelling and sometimes 
more specifically structural equation modelling. In a more recent contribution, 
Pearl (2011) develops a ‘structural theory of causation’, i.e. in his terms, a ‘general 
theory of causation’. A possible interpretation of what he means is a ‘general 
methodological framework’ for causal analysis. In that paper, he develops a for-
malism that is general enough to subsume, as special cases, particular models such 
as structural equation models, potential outcome models, and graphical models. 
The leading idea of his formalism is that we have to evaluate whether the prob-
ability distributions over a set of variables would differ if external conditions were 
to change. Such information is provided by causal assumptions made in the 
model. Those assumptions allow us to identify relationships that remain invariant 
when external conditions change. We do not think that Pearl’s latest approach is 
in opposition with our approach, at least as far as the formal tools of causal analy-
sis are concerned. 

However, what distinguishes Pearl’s from our approach is an explicit explana-
tion of what makes a structural model structural. This we attempt to do later in 
section 3.2, where we advance an explicit mechanistic interpretation of structural 
modelling. There is another difference between Pearl’s and our approach. Pearl 
usually distinguishes three types of queries: (i) about the effects of potential inter-
ventions, (ii) about counterfactuals, and (iii) about direct and indirect effects. Ac-
cording to the methodology of structural modelling detailed throughout section 
2, some structure needs to be identified beforehand in order to answer any of 
these queries. Such structure, or mechanism, is identified by the recursive decom-
position, as explained in section 2.4. 

Among philosophers of science, Woodward (2003, ch.7) provides a lenghty 
discussion of ‘structural models’. To begin with, Woodward focuses on structural 
equation models; in particular, he explains the underlying regression techniques 
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and provides a particular definition of invariance condition. However, in this  
way his account neglects the whole variety of statistical models used in quantita-
tive causal analysis and that could rightly be called ‘structural’ under our under-
standing but not under his understanding. Thus the main difference is that whilst 
our discussion is quite general in scope, Woodward’s discussion narrows down to 
one specific type of statistical model. Other differences between our approaches 
exist, for instance about the use of counterfactuals in causal analysis or about the 
role of manipulation and intervention. A thorough discussion falls beyond the 
scope of the present paper. However, counterfactuals will be covered later in sec-
tion 4.2. As for the role of manipulation, the reader is referred to Russo (2011a, 
2012). 

In econometrics, another example is Hoover (2011) who considers that the 
goal of quantitative causal analysis is to represent causal relationships by invariant 
parametrizations of a system of equations. It is worth noting that this position 
does not automatically imply endorsing a counterfactual approach. In fact, quite 
to the contrary, Hoover criticises Woodward because, if causal analysis is reduced 
to counterfactual analysis, it is eventually impoverished. Hoover is also concerned 
with approaches that bestow much importance to counterfactual manipulability. 
As it will be clear from section 4, we do share Hoover’s criticism of manipulation. 
So, there is a lot of positive overlap between Hoover’s and our approach. Never-
theless, when Hoover presents the structural account as based on Herbert 
Simon’s causal ordering (see, e.g. Simon (1953 and 1954) and Fennell (2011)) and 
on the condition of exogeneity, the question that is left unanswered is, again, 
what makes a structural account structural. 

Going back to philosophy of science again, Nancy Cartwright has also exten-
sively written on quantitative causal analysis. Her worries and concerns are how-
ever different from ours. For instance Cartwright (2007) discusses at length 
econometric techniques and theoretical models used for the purposes of causal 
analysis in economics. Thus she restricts on purpose the discussion to one social 
science area, whereas our arguments apply also to disciplines outside economics. 
But, interestingly enough, the conclusion of one of her arguments indirectly sup-
ports ours. Cartwright is concerned that controlled experiments are considered 
the ‘ideal’ test for causal hypotheses. She challenges the claim that sometimes we 
do not need to run the experiment, as Nature does it for us. Cartwright is particu-
larly worried because we are seldom in the conditions to appeal to such an argu-
ment. In fact, even if in principle ‘ideal’ tests done by Nature are conceivable, the 
reality of things is that causal hypotheses are difficult to test. Consequently, we 
need reasons that are outside the regime over which the test is conducted in order 
to draw causal conclusions. These reasons are, at bottom, the background knowl-
edge that we have been invoking so far. 

Thus, we believe, none of the available approaches explains how we get a 
mechanism out of a statistical model, which is exactly what the modelling proce-
dure hereby presented instead is meant to do. In the next sub-section, we focus 
on what we take to be the main characterising aspect of structural models: that is, 
structural models model mechanisms, and those carry explanatory power. 
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It is interesting to point out that some discussion on the relations between 
structural (equation) modelling and mechanisms exists in the philosophical and 
methodological literature. Yet, the connection has been drawn differently from 
the one done here. Consider classical economists such as Adam Smith, David Ri-
cardo, Thomas Malthus and John Stuart Mill or the Chicago School of Econom-
ics. They developed economic theory so that the theory dictates the mechanism, 
whereas structural modelling aims at eliciting the mechanism using a wider basis, 
as outlined in section 2. Here is another example. We mentioned earlier Kevin 
Hoover’s approach, according to which the causal structure represented by a set 
of structural equations is a “network of counterfactual relations that maps out the 
underlying mechanisms through which one thing is used to control or manipulate 
another’’ (Hoover 2001, p. 24). This, as it will clear in the discussion later, is at 
variance with our own understanding of mechanisms. 

3.2. The mechanistic interpretation of the recursive decomposition 

As explained earlier in section 2.4, the basic idea behind the recursive decompo-
sition is to factorise the initial joint probability distribution into a sequence of prod-
ucts of marginal and conditional components, where the variables to condition 
upon play the explicit role of the causes. In this subsection we address the question 
of the explanatory import of structural models. We argue, in a nutshell, that the re-
cursive decomposition interpreted in mechanistic terms does the explanatory job; 
for a detailed discussion see Russo (2011b) and Mouchart and Russo (2011). 

The argument is that the whole recursive decomposition can be interpreted as 
characterising a global mechanism, whereas each conditional distribution within 
the recursive decomposition can be interpreted as characterising a sub-mechanism 
within the global one. If we can identify sub-mechanisms within a global one, this 
means that we are able to decompose the global mechanism and thus disentagle 
the action (or function) of each component. Notice, however, that this does not 
mean that all recursive decompositions are mechanisms, but that some are inter-
pretable in mechanistic terms; a thorough discussion of this issue is however too 
broad to be discussed here. 

The point we make is that explanatory power is provided by the specification 
of the decomposition and its interpretation in mechanistic terms. Why? Because 
the decomposition specifies, as much as possible, the functioning of a phenome-
non; the articulation of the mechanism in this sense does the explaining. Some 
remarks about the meaning of ‘mechanism’ are now in order. 

To begin with, in the philosophical literature, a very vivid debate on the con-
cept of mechanisms is happening. Many questions concern what a mechanism is 
and consequently what definition captures its essential features. Notwithstanding 
the importance of these discussions for those who have an interest in the meta-
physics of science, our claim that structural models carry explanatory power inso-
far as the recursive decomposition is mechanistically interpreted does not depend 
on the specific definition of mechanism. 

What is most important for our claim is why mechanisms carry explanatory 
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power (rather than what is the right definition of mechanism). Thus, in saying that 
structural modelling looks for structures, we are in line with the characterisation of 
Machamer, Darden and Craver (2000), in that the structure being modelled assem-
bles ‘things’ (entities, in MDC vocabulary; variables, in the jargon of statistical mod-
els) that interact with and influence each other in a specified way (the activities, in 
MDC vocabulary; the statistical relevance relations, in the jargon of statistical mod-
els). We are also in line with the characterisation of Bechtel and Abrahamsen 
(2005), who put a lot more emphasis on the structure or the organisation of the 
mechanism. Our understanding is however not equivalent to the one of Woodward 
(2003), who conceives of mechanisms as chains of invariance relations. 

In our approach we do not make any ontological commitment as to the (de-
gree of) physical existence of mechanisms. In other words, the choice of a par-
ticular ontological account of mechanisms is perpendicular to the epistemological 
issue of the explanatory power of mechanisms. The understanding of mecha-
nisms in structural modelling is rather epistemic–it is more concerned with how 
we can (causally) make sense of the phenomenon to be explained. Structural 
modelling achieves this goal by offering a story about a mechanism. Such epis-
temic understanding is akin to ‘mechanism schemata’, as discussed in Machamer 
(2004), Machamer, Darden and Craver (2000), and Darden and Craver (2002). 

Needless to say, this is not to suggest that structural models provide immutable 
and eternal causal explanations of social phenomena. Explanation is intrinsically 
relative and partial, that is relative to the specific conceptual framework and de-
pendent on available empirical and theoretical information. This means that noth-
ing prevents future explanations to discard previous ones. Also, such causal ex-
planations involve a stopping rule in order to avoid an otherwise ad infinitum 
chain of ‘explaining the explanatory’. 

4. ON THE COUNTERFACTUAL APPROACH TO CAUSAL ANALYSIS 

In the present paper we defend a structural modelling approach to causality. 
Other frameworks have however been proposed in the literature. In particular an 
approach based on counterfactuals has also gained recognition. In this section, we 
first point out that counterfactuals may be of help for causal reasoning. Next we 
question counterfactuals as a basis for causality. 

4.1 Counterfactual questions as an aid to inferring causal relations 

In observational studies especially, one is never sure that an observed associa-
tion between a putative cause and an effect reflects a causal relation between the 
two, as the association might also be due to the presence of unknown latent con-
founding variables which have not been controlled for. This important issue has 
been tackled in particular by epidemiologists several decades ago; they have de-
veloped a series of criteria which have been recommended for drawing causal in-
ferences. The criteria have been systemised by Bradford Hill (1966); more recent 
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versions can be found e.g. in Beaglehole, Bonita and Kjellström (1994) or in 
Rothman and Greenland (1998). Briefly, these criteria refer to the strength of the 
association, to the consistency of the observation of the association in different 
populations and settings, to the temporality of the relation (a cause must precede 
its effect in time), to the dose-response gradient, to the plausibility and coherence 
of the cause-and-effect interpretation with background knowledge, and to the re-
versibility of the association: in the absence of the cause one should not observe 
the effect. This last criterion can be stated in counterfactual terms: if the cause 
had not been, the effect would not have occurred. 

Except most probably for the criterion of temporality (see Wunsch, Russo and 
Mouchart, 2010), all the other criteria suffer from exceptions and reservations 
(see Rothman and Greenland, op. cit.). For example, an implausible explanation 
according to prior beliefs and current knowledge might actually be correct and 
possibly lead to progress in science. Lack of consistency might be due to the fact 
that the cause produces its effect only under particular circumstances. As to the 
counterfactual criterion, several counterarguments will be outlined in the follow-
ing sub-section. To take but one issue, suppose one is interested in the effect of 
‘Education’ (putative cause) on ‘Self-rated health’ (outcome). Following the coun-
terfactual criterion, one may ask what would happen to self-rated health for coun-
terfactual values of education. In order to assess the causal effect of, e.g. higher 
education on self-rated health, we have to ask what would happen to the indi-
viduals not benefiting from a higher education. This counterfactual is however 
highly ambiguous. Not having a higher education may mean different things: sec-
ondary schooling or less, just secondary schooling, primary schooling or less, just 
primary schooling, technical education, or no formal schooling at all. Which one 
is the counterfactual to evaluate? Each counterfactual would correspond to a dif-
ferent model, leading to a different measure of the effect. 

Finally, all these criteria can be of help in inferring causality but they are not 
foolproof. In actual social situations, taking into account the complexity of the 
network of causes and effects, some of these criteria will be satisfied and others 
very often not. For example, the effect might appear even in the absence of the 
putative cause due to the presence of other causes, in a multiple-cause multiple-
effect framework. It remains for the scientist to check all the evidence available 
and then to decide upon the existence or not of a possible causal relation. No set 
of criteria–and in particular no single criterion–will automatically lead to this re-
sult. 

4.2 Counterfactuals as a basis for causality 

We have seen that the counterfactual element is but one of several criteria to 
be of help in inferring causal relations. As with the other criteria, it is neither nec-
essary nor sufficient for this purpose. Nevertheless, notwithstanding its short-
comings, the counterfactual criterion has been taken as a basis for causality in 
what is now known as Rubin’s causal model (Holland, 1986), which has become 
influential in various spheres of social research. 
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Rubin (1974) formalised the basic idea behind the counterfactual model as fol-
lows. Consider comparing two ‘treatments’, E and C, in the case of a headache. 
Let E represent taking two aspirins and C drinking just a glass of water. The po-
tential outcomes Y relating to these two treatments may then be written as two 
random variables, namely ( )Y E  and ( )Y C . The causal effect of treatment E 
versus treatment C on Y for a particular subject j (say, Jones) observed at time 
t+k is then defined as ( ) ( )j jY E Y C , i.e. the differential headache response to 

taking the aspirins or just drinking a glass of water at time t. If we consider n sub-
jects instead of only one subject, we have one causal effect ( ) ( )j jY E Y C  per 

subject j. The average causal effect for this group of n persons can then be written 
[ ( ) ( )]/j j jY E Y C n  , the sum extending from j = 1 to n. Rubin’s solution is 

often called the potential outcome (or response) approach, the two potential out-
comes being in this simple case ( )jY E  and ( )jY C  for each j. The causal effect 

may differ from one individual to the other; thus a ‘typical’ causal effect (Rubin’s 
own term) is obtained as above by taking the average (or any other summary 
measure) of the individual causal effects. 

In the actual world, one never observes at the same time for the same individ-
ual both ( )Y E  and ( )Y C . People are assigned to or experience either E  or C  
but not both at the same time, i.e. not the fact and its counterfact. Rubin has nev-
ertheless shown that randomization and matching are two approaches measuring 
the causal effect in experimental and observational studies, though randomization 
cannot often be used in the social sciences and perfect matching is hardly possi-
ble in practice. In many actual situations in observational research, the assignment 
of units to the case and control groups is often prone to selection bias. Thus the 
likelihood of treatment on the one hand and of the outcome on the other hand 
are not independent. In this case, one must control as best as possible for the as-
signment factors which have an impact on the outcome. Clearly the actual chal-
lenge for the researcher is to ensure that that ‘all relevant factors’ have been con-
trolled for. 

The counterfactual basis of Rubin’s potential outcome framework raises some 
important epistemological issues, which we have discussed in another paper to 
which the reader is referred (Russo, Wunsch and Mouchart, 2011). The first two 
issues are quite often discussed in the literature. One concerns the soundness of 
the counterfactual approach given that the counter-fact is not observed, thus re-
sulting in a lack of sound empirical basis. The other concerns the alternative be-
tween a counterfactual model measuring effects of causes and other models con-
cerned instead with the causes of effects, the counterfactual model being ill-suited 
for searching for the causes of an effect. The next two issues concern the con-
cepts that back up the experimental method and which are subsumed by the 
counterfactual model: manipulation and randomization. Though useful of course, 
neither is necessarily required for inferring causal relations. Our arguments hinge 
on the idea that manipulation (contra the view of counterfactualist theorists) is 
not the methodological (nor the epistemological) basis of causal analysis. 
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This can be seen by analysing different readings of an equation of the type 
Y X   . It is important to notice that such an equation can be given a varia-
tional and a manipulationist reading. Let us explain further. At bottom, this equation 
is read thus: variations in the putative cause X  are accompanied by variations in 
the putative effect Y . How much Y  varies in response to the variation in X  is 
quantified by the parameter  . The manipulationist reading is then derived from 
this basic variational reading as follows. In an experimental setting, manipulations 
on X  make X  varying, such that Y  varies accordingly. In a controlled experi-
ment, therefore, co-variations in X  and Y  are due to manipulations, unlike in 
observational studies. However, for causal inference it is not necessary that X  
has been manipulated. It could well be, as is typically the case in observational 
studies in social science, that statements about co-variations are based on calcu-
lated statistical correlations between the variables. In such cases causal inference 
has to be supported by further considerations about structural stability, exogene-
ity, possible confounders, the chosen recursive decomposition and background 
knowledge. Differently put, we are in a position of making causal inference even 
in the absence of manipulation, provided that the model is deemed structural, to 
the best of our knowledge. 

The next issue deals with complex mechanisms. Even in seemingly simple 
situations one has to face an issue of multiple causes and multiple effects, involv-
ing more than one mechanism at a time. In practice, it is usually not sufficient, to 
come back to our example, to compare Jones taking the aspirin to Jones not tak-
ing the aspirin. One must control for the factors possibly confounding the rela-
tionship between aspirin and headache. The two Jones should be matched on all 
the relevant covariates which could lead to confounding. However if there are 
many covariates including latent ones, as is most often the case in social sciences, 
it will often be impossible to match on all these covariates. Finally, our last argu-
ment makes a critical assessment of the simplistic analogies and parallelisms that 
have oft been made between the counterfactual model developed in statistics and 
the counterfactual analysis of causation developed by philosophers. The former, 
although based on individual-level data, is generic, whilst the latter is single-case, 
that is it concerns a particular causal relation taking place in a given time and 
place. 

Following the arguments developed in Russo, Wunsch and Mouchart (op. cit.), 
our conclusion is that though counterfactual questions can help the researcher in 
drawing causal connections, counterfactuality per se cannot serve as the basis for 
inferring causal relations. 

5. DISCUSSION AND CONCLUSION 

Structural modelling, in the way it has been presented in this paper, aims to 
provide an approach to causal analysis of social phenomena. We made the effort 
to go beyond structural modelling intended as a mere statistical machinery and we 
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attempted to provide a view on modelling, that is a scientific procedure that goes 
from data collection and hypothesis formulation to statistical testing and interpre-
tation of results. Of course the implementation of scientific procedures, no mat-
ter how well and clearly defined, is easier said than done. Structural modelling 
may indeed be hard to put in place and is not immune from criticisms. 

Many scientists remain sceptical about the practical usefulness of structural 
modelling, even if they recognise that “understanding and identifying causal 
mechanisms is, perhaps, the primary driving force of science’’ (Holland, 2001, p. 
224). For Holland, for instance, the danger lies in the fact that almost ‘anything’ 
can be considered as a cause ‘because we are just talking rather than doing’’, i.e. 
setting up ‘treatments’ or ‘interventions’ (Holland 2001 p. 225). Actually, a causal 
mechanism does not appear from nowhere. Nor does it necessarily result from 
adding more and more variables to the predictive set (Sobel, 2000). As we have 
argued in this paper, a structural model should be based on the best available 
knowledge one has of the field; all postulated relations should be accounted for. 
In particular, to avoid loss of exogeneity the model should incorporate those 
variables deemed to be responsible for possible assignment bias. 

The structural modelling framework also has its problems, of course. First of all, 
known confounders can be incorporated into the model only upon the condition 
that indicators of these confounders are available in the data set. In many situations, 
especially when one uses secondary data (i.e. data collected by others), no informa-
tion is available for some of the variables in the model. Confounding bias may not 
be avoidable then, though in some cases omitted variable bias can be controlled  
for by fixed effects regression or by instrumental variables regression (Stock and 
Watson, 2003). Unknown latent confounders may however still bias the results. 

A second issue relates to the temporal ordering of variables. In many cases, the 
observation window is too wide to observe the exact ordering of the events in 
time. Depending on the length of the window, it is not always possible to state if 
the putative cause occurred before or after the effect. For example, if migration 
and occupational change are recorded on a yearly basis in the data set, one does 
not know on an annual basis whether migration has occurred before or after oc-
cupational change, if both have happened during the year. To illustrate further, let 
us take the example of commercial contracts. Consider the typical situation in the 
tour-operator market. Suppose that the tour-operator, acting as a price setter, 
prints in January a catalogue for the coming season. If the price is not altered 
within the year, the quantity observed on an annual basis may be assumed to have 
been contracted by a price-taker demand side, and the price construed as an ex-
ogenous factor of the demand. But if the price is modified, say around Easter 
time, annual data will not allow disentangling the demand from the supply, even 
under a price-taker demand, as long as different quantities have been contracted 
under different prices and the price changes have been operated under the pres-
sure of the demand. Recursivity of the decomposition is jeopardized in these ex-
amples, as causes and effects appear to be simultaneous. 

Another issue concerns invariance or stability. It will often be difficult, in the 
social field, to repeat the research on comparable populations, in order to check if 
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the results remain invariant under changes of context, even if the reference popu-
lation is well-defined. For example, it has been shown (Laplante and Flick, 2010) 
that cohabitation and health patterns are drastically different between Quebec 
and Ontario, two neighbouring provinces in Canada with rather similar popula-
tions. Very often, results differ from one study to another, and it will usually 
hardly be possible to determine if this is due to an inadequate model, insufficient 
data, or differential contexts. 

Moreover, structural modelling requires reliable prior information on the puta-
tive recursive decomposition of the data matrix. A major drawback is that in 
many cases one only has a scant knowledge of the underlying mechanism. Some 
of the sub-mechanisms thus remain black boxes and, in this situation, several al-
ternative models may fit the data equally well. It is then difficult to discriminate 
between alternatives that equally account for the same data set. In this case, a 
good descriptive analysis or exploratory data analysis might be more useful than 
poor structural modelling. 

Yet another danger is that because background knowledge plays a central role, it 
might be given too much weight. But background knowledge is not meant to be 
infallible nor immutable. Instead, background knowledge has to be the bridge be-
tween established knowledge and establishing knowledge. Established scientific 
knowledge is (and ought to be) used to formulate the causal hypothesis and to 
evaluate the plausibility of results on theoretical grounds. But causal analysis also 
participates in establishing new knowledge by proposing new conceptual frame-
works and testing them against new data or new interpretations of existing data. 
This reflects the idea that science is far from being monolithic, discovering immu-
table and eternal truths. If the model fits the data, if the relations are sufficiently in-
variant and congruent with background knowledge, then we can say, to the best our 
knowledge, that we modelled a causal mechanism that explains a given social phe-
nomenon. But what if one of these conditions fails? A negative result may trigger 
further research by improving the modelling strategies, or by collecting new data, 
thus leading to new discoveries that, perhaps, discard background knowledge. 

Actually, these various criticisms should be evaluated from three perspectives. 
Firstly, poor knowledge of the underlying structure, or the lack of consensus 
about it, should remind us that causality attribution is only relative to a well-
specified structural model: if the modelling procedure is weak, causal attribution 
is weak too. Secondly, an analysis confined to statistical associations (such as cor-
relations etc.) does not allow causal attribution. Statistical associations and regu-
larities are surely an essential ingredient for building a structural model but, we 
insist, causality can only be relative to a structural model. Thirdly, a major role of 
structural modelling, in particular of the recursive decomposition, is precisely to 
tentatively provide a structure in a world where apparently ‘everything depends 
upon everything’, and consequently ‘almost everything is a cause’, which would 
lead to a situation where no action is possible or where effects of treatments are 
not identifiable. 

What is the contribution of a structural modelling approach to causal attribu-
tion? Firstly, a structural approach can deal, within a same framework, both with 
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the effects of causes and with the causes of effects. Secondly, the specification of 
the recursive decomposition allows distinguishing and ordering the various sub-
mechanisms within a global one. From this, exogenous variables can eventually 
be given a causal interpretation. 

And what are the implications of a structural modelling approach for the prac-
ticing scientist? In such an approach, the quality of the results crucially depends 
upon the quality of the process of model building and model testing. Thus, from 
the very start, the scientist should make the causal hypotheses explicit until s/he 
obtains a recursive decomposition in agreement with all the available background 
knowledge. Then the scientist should carefully check for structural stability, or 
invariance, of each component of the recursive decomposition and try to con-
dense the latter as much as possible. Finally, the scientist should take into account 
the possible non-observability of some of the relevant variables and evaluate its 
impact, in the resulting model, on exogeneity and on the identifiability of the pa-
rameters of interest. 
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SUMMARY 

Inferring causal relations by modelling structures 

This paper provides an overview of structural modelling in its close relation to expla-
nation and causation. It stems from previous works by the authors and stresses the role 
and importance of the notions of invariance, recursive decomposition, exogeneity and 
background knowledge. It closes with some considerations about the importance of the 
structural approach for practicing scientists. 


