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A SIMPLIFIED PROCEDURE OF LINEAR REGRESSION 
IN A PRELIMINARY ANALYSIS 

S. Facchinetti, U. Magagnoli 

1. INTRODUCTION 

The use of the inferential statistical methodologies needs frequently to define 
preliminary procedures in order to choose a probabilistic model that has to be 
used in a second stage of the study. The aim of this study is to solve inferential 
problems of estimation, especially in case of large data set of observations, such 
as in economic, physical, biological, enviromental and technological fields. 

In fact, from a point of view economic and methodologic, it seems useful to 
choose in a preliminary stage the models and examine them closely, with more 
complex methods, in a second stage. For example, in financial field large data sets 
referred to the different characteristics of the stocks, whose structural links have 
to be studied, are present. Furthermore, also in biology, large data sets have to be 
examined, in particular in the observation or in the experimental analyses. 

This preliminary stage, that usually is called “identification of the model”, con-
sists in two components: structural and stochastic; it is better using simplier 
methodologies than the one of the likelihood, either from a formal point of view 
or a computational one. Indeed, in this way many optimal asymptotical properties 
of the likelihood procedure are lost. Consequently, the use of simplified methods 
must be evaluated in terms of efficiency loss, comparing, when possible, the in-
formation matrix or, simply, the variance or mean square error of the estimated 
parameters, always considering the unbias and verifying the consistency. 

These simplified methods can be applied in order to define the dependence, 
not fixed in a parametric form, of a curve or a surface; or even when it is neces-
sary substituting complex computations with simplier ones (Cox, 2006).  

Moreover, our purpose is to evaluate the median applications of the different 
subsets of observed values, instead of the location index usually represented by 
the mean. This kind of procedure is useful in case of anomalous values, given by 
particular types of observation contaminations. Therefore, this method can be 
considered as a simplified one in the subject of the “robust” regression (Huber 
and Ronchetti, 2009). 

This paper presents within the second paragraph the detailed operative proce-
dure, the general considered regression model and the assumptions that allow to 
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verify the properties of the estimator regression coefficients, obtained by the 
simplified procedure. To obtain the regression function we use either the ordered 
means or the ordered medians. In particular, a polynomial structure of the first 
and the second order has been considered, in order to define the functional link 
between the two variables. Furthermore, it has been assumed that the random 
variable X and the error component, defined in the regression model, have a 
normal distribution. 

In the third paragraph the results of the estimations obtained varying the pa-
rameters of the procedure for the polynomial model either of the first and the 
second order are presented. A reduced number of data than in the real analysis 
has been considered in details, because it allows to underline the limits of the 
procedure and some anomalous situations that can happen. Therefore a compari-
son between the simulation results and the one obtained by the ordinary least 
squares procedure is carried out. 

Finally, the fourth paragraph gives some remarks about the statistical proper-
ties of the proposed procedure, in particular, with relation to the consistency of 
the estimators of the regression coefficients for the first and the second order 
models. 

2. MODEL, ASSUMPTIONS AND SIMPLIFIED PROCEDURE 

Let (X, Y) be the two characteristics of interest whose n observations: Sn = 
{(xi, yi); i = 1, 2, ..., n} are known. In most cases the two random variables X and 
Y may be chosen in a set (X1, X2, ..., Xg) of large size g. In particular X is the re-
gressor or explicative variable and Y is the regressed one, whose behaviour will be 
studied related to X by the model: 

( )Y y X    (1) 

where  is the error component, independent of X, with E() = 0, Var() = 2. 
The regression function y(x), that generally belongs to the complete polyno-

mial family of order r, is estimated by:  

0

( )
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s
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s
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

  (2) 

with asr  1 and arr  0 gathered in the vector ar = (a0r,..., arr)’ of the parameters 
of order (r +1)  1. 

The y(x) function and the variance of the error component 2 can be see re-
spectively as conditioned mean E{Y|x} and conditioned variance Var{Y|x} 
(that is assumed as constant). 

Among the considered assumptions the random variable X and the error com-
ponent  are assumed with a normal distribution X  N(X, X2), with parameters 
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X = 0 and X2 = 1, without loss of generality, and   N(ε, 2), with parameters 
ε = 0 and ε2 costant. 

The proposed regression simplified procedure consists of four steps. 
1. Let have n observations of the bivariate random variable (X, Y), Sn =  

{(xi, yi); i = 1, 2, ..., n}, ordered for the increasing values of X (xi  xi+1), in 
the interval In = [mini (xi); maxi (xi)]  [x1; xn]. 

2. The data set Sn is partitioned in m  2 subsets ][ jS  for j = 1, 2, ..., m, of size 

[ ] /jn n m     or [ ] / 1jn n m     nearly constant, with [ ]
1

m

j
j

n n


 , defin-

ing u    the whole part of u, with [ ]
1

m

j n
j

S S


  and Sj  Sk =  for j  k. 

Each subset is formed by the couples (xi, yi) Î  Sn according to the relation:  

[ ] [ 1] [ ]{( , ) : }j i i j jS x y N i N    

where [ ] [ ]
1

j

j k
k

N n


  and N[0] = 0.  

3. For each subset ][ jS  the observations are synthesized by the “mean” or by 

the “median”: 

[ ] [ ] [ ] [ ]Mean( : ),   Mean( : )j i i j j i i jx x x S y y y S     

[ ] [ ] [ ] [ ]Median( : ),   Median( : )j i i j j i i jx x x S y y y S      (3) 

obtaining the points [ ] [ ] [ ]( , )j j jP x y , specifically signed [ ] [ ] [ ]( , )j j jP x y  

or [ ] [ ] [ ]( , )j j jP x y   . 

4. The so located points [ ]jP  (or [ ]jP ) in 2 give a “piecewise-linear regres-

sion” of (m – 1) consecutive segments which can be assumed as a prelimi-
nary estimation of the regression function y(x). Assuming a polynomial of 
order r = m – 1, it is possible a fitting through the m points [ ]jP  or [ ]jP  

that define “the regression procedure ordered by means or by medians”, 
respectively. The parameters (regression coefficients) are obtained as the 
solutions of the following system of m linear equations in r + 1 unknown 
quantities: 

[ ] [ ]
0

( )     for    1, 2, ...,
r

s
j sr j
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

   (4) 



 S. Facchinetti, U. Magagnoli 156 

or as a matrix: 

[.] [.] ry P a  (5) 

where [1] [ 2 ] [ ]( , , ..., )'my y y[.]y  is the m  1 vector of [ ]jy , with [ ]jy  equal 

to [ ]jy  or [ ]jy , 0( , ..., )'r rra ara  is the (r + 1)  1 vector of the regression 

coefficients and [.]P  is the m  (r + 1) invertible square matrix of [ ]jx  

( [ ]jx  or [ ]jx ) powers: 

[ ]{ ; 1, 2,..., ;   0,1,..., }s
js jp x j m s r   [.]P . 

As the [.]P  matrix is invertible by construction, the vector of the coeffi-

cient estimators ra  is 

 1
r [.] [.]a P y  (6) 

that gives the estimations of ra  or ra , if we consider [ ]jP  or [ ]jP , for  

j = 1, 2, ..., m. 
 
If we may suppose that the polynomial function y(x) has given by means of a 

polynomial in x of order r 

0

( )     with    (1 )
r

s r
r sr

s

y x a x ,x, ...,x '


   '
ra x x  (7) 

the proposed procedure allows to obtain the regression coefficient estimation ra , 

referred to the use of the [ ]jP  points for j = 1, 2, ..., m “means” ( [ ]jP ) or “medi-

ans” ( [ ]jP ), respectively. 

In this preliminary explorative research we study the polynomial functions of 
order r = 1 and r = 2 for their general approximation to the y(x) function (Taylor 
theorem). 

The polynomial function defined in (2) can be expressed by a series of or-
thogonal polynomial. In particular, among the different groups of orthogonal 
polynomials, we have considered the Hermite ones, relating to the possible values 
assumed by X (-, +) and under the assumption of normal distribution for the 
values of the random variable X, whose standardized density function is consis-
tent with the weight function w(x) = exp (-x2). 

The general function to define the Hermite polynomials (Abramovitz and 
Stegum, 1972) is the following: 

 



A simplified procedure of linear regression in a preliminary analysis 157 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 – The proposed simplified procedure: an example for n = 30, m = 4, r = 3. 
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In particular, for r from 0 to 5: 
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and the polynomial function is  

0

( ) ( )
r

r s s
s

y x c h x


 . (9) 
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By the (8) and (9) equations some linear functions, synthesized in the Tr matrix 
of order (r + 1)  (r + 1), ra  and 0 1( , ..., )'rc c crc  coefficients are obtained the 

ones from the others. In particular, the coefficients ra  of the polynomial of order 

r in x are obtained by assigning values to rc , that defines the function y(x) in 
terms of Hermite polynomials: 

r ra T cr . (10) 

As Tr is a triangular matrix (r + 1)  (r + 1) it is ever invertible, therefore it is 
possible to obtain the estimations of the rc  parameters, if the ra  parameters, 
have been estimated by the proposed procedure: 

1r rc T ar . (11) 

In particular, for r from 0 to 5: 
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where the T0, T1,..., T4 matrixes are the sub matrixes of T5. For example T3 =  
{tks = tks  T5, for k, s = 1, ..., 4}. 

2.1. The first-order linear model 

For r = 1 the regression function is y1(x) = a01 + a11x and the corresponding 
random variable is Y = a01 + a11 X + . 

Under the assumption of normal distribution of X and , the random variable 
Y is normally distributed, too: Y  N(Y, Y2), with Y = a01 + a11X and Y2 = 
a112X2 + 2. 

The bidimensional random variable (X, Y), whose observations {(xi, yi), i = 1, 
2, ..., n} give a random simple sample of size n, is binormally distributed N2[(X, 
Y), (X2, Y2, XY = XY)] with covariance XY = a11X2. Therefore, the pa-
rameters of the regression function y1(x) are given as function of those of the bi-
normal random variable (X, Y): 

01 11
Y

Y X Y X
X

a a


    


          11
Y

X

a





 . (12) 
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In this case the data set Sn, ordered for increasing value of X, is partitioned in 
two subsets (m = 2) of equal size (nearly n/2). Then a straight line is drawn 
through the two points ][ jP  , j = 1, 2: considered the ordered “mean” values [ ]jP  

or the “median” ones [ ]jP . 

To verify the statistical properties of the estimators 01â  and 11â , for (X, Y) a 
standardised binormal distribution with X = Y = 0 and X2 = Y2 = 1 is as-
sumed, having XY = , a01 = 0 and a11 = . 

Moreover, replacing the Y with the X and ordering the data set Sn for increas-
ing values of Y, the estimations of the regression coefficients of the straight line 
x1(y) = b01 + b11y can be obtained. 

The estimation of  results 

11 11 11

11 11 11 11 11

11 11

ˆ

ˆˆ ˆ1  (or 1)                     if     sign( )( ) 1  (or 1)

ˆ ˆˆ ˆ ˆsign( )         if      0 1

ˆˆ0                                 if      sign( ) sign( ) 0 

a a b

a a b a b

a b



     
    


 

 

where sign( ) /   for  0a a a a  . 

2.2. The second-order linear model 

For r = 2 the regression function is y2(x) = a02 + a12x + a22x2 and the corre-
sponding random variable is Y = a02 + a12X + a22X2 + . Under the given distri-
bution assumption for the random variable X and the error component , with-
out loss of generality, we can assume X = 0 and X2 = 2 = 1; applying the sim-
plified procedure for ordered “means” or “medians”, the data set Sn is partitioned 
into three subsets (m = 3) of equal size (nearly n/3) and the three points result 

[ ]jP  for j = 1, 2, 3. 

2.3. Statistical properties of the regression coefficients obtained by the simplified procedure 

In this section, some considerations on the consistency of the estimators of the 
regression coefficients, obtained by the proposed procedure, are given. 

We know that to verify the consistency, the variances of the estimators need to 
tend to zero, when n diverges, and under the stated distributive assumption, it oc-
curs. Therefore, we only verify the asymptotic unbias of the estimators. 

In particular, when r = 1 and n diverges, the two ordered data subsets [1]S  and 

[ 2]S  show higher or lower values, respectively, than the threshold value, that for 

the random variable X corresponds to the 50th percentile. Moreover, since X fol-
lows a standardised normal distribution, the threshold value is equal to zero. The 
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abscissas of the points [1]P  and [ 2]P  ( [1]x  and [ 2]x ) are, when n diverges, means 

of a truncated random variable: 

   [1] [ 2 ]| 0 ;    | 0x E X X x E X X    . 

For the properties of the normal distribution of a standardised truncated ran-
dom variable we have 

(0) 2 2 2
{ | 0}        { | 0}

(0) 2
E X X E X X


 

        (13) 

where (z) and Φ(z) are the probability distribution function and the cumulative 
distribution function of the standardised normal random variable, respectively. 

The ordinates of the points [1]P  and [ 2]P  ( [1]y  and [ 2]y ) are, when n diverges, 

the conditioned means of the random variable Y: 

[1] 01 11

01 11 01 11 [1]

{ | 0} { ( | 0) }

( | 0)

y E Y X E a a X X

a a E X X a a x

      

    
 

with E{} = 0, and 

[ 2] 01 11 [ 2 ]{ | 0}y E Y X a a x    . 

The simplified procedure allows to obtain the convergence values of the esti-
mators 01â  and 11â  as the solutions of the system of the equations: 

[1] 01 11 [1]

[ 2 ] 01 11 [ 2 ]

ˆ ˆ

ˆ ˆ .

y a a x

y a a x

  


 
 

They coincide with the parameters a01 and a11 of the model, so the estimates 
are consistent. 

When r = 2 and n diverges, the three ordered data subsets [1]S , [ 2 ]S  and [3]S  

are characterised by two values of threshold corresponding to the 33.3th percen-
tile and to the 66.7th percentile. By the given assumption of X as standardised 
normal random variable, the threshold values are, respectively: 

x33.3% = Φ(0.333) = - 0.43073 = - zs and x66.7% = Φ(0.667) = 0.43073 = zs.  

The abscissas [1]x , [ 2 ]x  and [3]x  of the three points [1]P , [ 2 ]P  and [3]P , when n 

diverges, correspond to the expected values of the truncated normal random 
variables: 
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[1] [ 2 ] [ 3]{ | };   { | };  { | }s s sx E X X z x E X X z x E X X z       . (14) 

Furthermore, for the properties of the standardised truncated normal distribu-
tions (Johnson, Kotz and Balakrishnan, 1994-1995), we have 

( )
{ | }  -1.0908 

1/3

{ | } 0  

{ | } 1.0908.

s
s

s

s

z
E X X z

E X X z

E X X z

 
    

 

 

 

Hence: 

[1] [ 2 ] [ 3]1.0908          0         1.0908x x x    . (15) 

The second order moments of the three truncated normal random variables 
are 

2
2 2

2
2

3 3 3
{ | } { | } , 1.4698

2 2 2

2 3
{ | }  , 0.0603 

2 2/3

s
s s

s
s

z
E X X z E X X z

z
E X X z





 



            
    

  
    

   

 (16) 

where Γ(a) and Γ(a, u) are the Gamma and incomplete Gamma functions, respec-
tively. 

The [1]y , [ 2 ]y  and [3]y  ordinates of the three points [1]P , [ 2 ]P  and [3]P , when 

n diverges, correspond to the expected values of Y = a02 + a12X + a22X2, where 
the conditioned means of X and X2, before defined, have placed instead of X and 
X2: 

2
[1] 02 12 22

2
[ 2 ] 02 12 22

2
[3] 02 12 22

{ | } { | } { | }

{ | } { | } { | }  

{ | } { | } { | }.

s s s

s s s

s s s

y E Y X z a a E X X z a E X X z

y E Y X z a a E X X z a E X X z

y E Y X z a a E X X z a E X X z

          
       


      

 (17) 

The 02â , 12â  and 22â  regression estimator coefficients are obtained by the 
“ordered means” procedure as solutions of the following linear system: 

2
[1] 02 12 [1] 22 [1]

2
[ 2 ] 02 12 [ 2 ] 22 [ 2 ]

2
[ 3] 02 12 [3] 22 [ 3]

ˆ ˆ ˆ 

ˆ ˆ ˆ  

ˆ ˆ ˆ .

y a a x a x

y a a x a x

y a a x a x

   
   


  

 (18) 
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Subtracting the respective equations of the (17) from the (18) and remember-
ing the results of the (15): 

2 2
02 02 12 12 [1] 22 [1] 22

2
02 02 22

2 2
02 02 12 12 [1] 22 [1] 22

ˆ ˆ ˆ( ) ( )  { | } 0

ˆ( ) { | } 0

ˆ ˆ ˆ( ) ( )  { | } 0.

s

s

s

a a a a x a x a E X X z

a a a E X X z

a a a a x a x a E X X z

        
    
        

 

Furthermore, when n diverges, from (16) it is possible to obtain the estimators 

02â , 12â  and 22â , as function of 02a , 12a  and 22a : 

2
02 02 22 02 22

12 12

2 2 2
22 22 [1] 22

ˆ { | } 0.0603

ˆ

ˆ [ { | } { | }/ ] 1.1846 .

s

s s

a a a E X X z a a

a a

a a E X X z E X X z x a

     
 
      

 (19) 

We note that the estimators 02â  and 22â  do not result consistent, while 12â  
converges to the corresponding parameter, when n diverges.  

So we have to evaluate the bias of the estimators.  
In particular, if the Hermite coefficients are c0 = c1 = 0 and c2 = 1, correspond-

ing to the parameters 02 2a   , 12 0a  , 22 4a   and the mean values of the es-

timators 02â , 12â  and 22â  are equal to: 

02â = - 1.7587 

12â = 0  

22â = 4.7385. 

3. NUMERICAL SIMULATION: SOME RESULTS 

In order to give not only methodological indications, but also operative ones, a 
Monte Carlo numerical simulation has been carried out. 

The aim is to obtain the distribution of the estimator parameters of the poly-
nomial model, to evaluate their properties and to compare them with the corre-
sponding parameters obtained by the least square method. 

To underline the properties of the simplified procedure N = 1000 replications 
have been made. Moreover, to emphasise the bias and the dispersion of the esti-
mated parameters, we have considered low sample size n = 10, 20, 30.  

This simulation has been carried out considering a sample size reduced with 
respect to a large data set, because from one side we have no problems relating to 
the number of the terms in calculating means or medians and on the other side 
the reduced number emphazises the possible biases in the estimations of the pa-
rameters of the regression models. 
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The models and the basic assumptions are those specified in the second para-
graph, with particular reference to the polynomial models of order r = 1 and r = 2. 

3.1. The first-order linear model 

For the polynomial of the first order, we have considered  equal to 0, 0.25, 
0.5 and 0.751. The simplified procedure is the one given in paragraph 2.1.. 

In particular, for n = 30 and  = 0.5 the following Figure 2 shows the esti-
mated models, considering the results obtained by the “means” procedure and by 
the “medians” procedure, with a comparison with the results obtained by the or-
dinary least square method. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 – The proposed simplified procedure: an example for n = 30, m = 2, r = 1. 
 
 

In the graphs we can observe the partition in two subsets (m = 2) of size n/2 
and the mean and the median points of each subset that define the models. 

                
1 The results obtained by simulations for  > 0 are equivalent to the corresponding ones for  

 < 0 and therefore it is not necessary to analyse them. 
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To verify the fitness of the proposed procedure, the tables 1, 2 and 3 give, for 
some values of n and , the bias and the standard deviations (SD) of the esti-
mated parameters for the ordered means procedure, the ordered medians proce-
dure and the least square method, respectively. 

The tables give only the values of the estimates of the regression coefficients 
for the function y1(x) = a01 + a11x, because those referred to the function x1(y) = 
b01 + b11y are quite similar. 

TABLE 1 

Synthesized results of the simulation referred to the simplified procedure based on ordered means: N = 1000, r = 1 

  01â  11â  ̂  

n  BIAS SD BIAS SD BIAS SD 
0 0.009 0.352 0.000 0.483 0.003 0.353 

0.25 0.008 0.341 0.000 0.467 -0.030 0.344 
0.5 0.009 0.294 0.000 0.328 -0.019 0.257 

10 
10 
10 
10 0.75 0.006 0.233 0.000 0.319 -0.031 0.232 

0 0.005 0.236 0.006 0.299 0.004 0.241 
0.25 0.005 0.228 0.006 0.289 -0.021 0.236 
0.5 0.004 0.204 0.006 0.259 -0.022 0.221 

20 
20 
20 
20 0.75 0.003 0.156 0.004 0.197 -0.013 0.149 

0 0.004 0.188 0.009 0.237 0.008 0.192 
0.25 0.004 0.182 0.009 0.229 -0.013 0.199 
0.5 0.004 0.163 0.008 0.205 -0.008 0.172 

30 
30 
30 
30 0.75 0.003 0.124 0.006 0.157 -0.006 0.115 

TABLE 2 

Synthesized results of the simulation referred to the simplified procedure based on ordered medians: N =1000, r = 1 

  01â  11â  ̂  

n  BIAS SD BIAS SD BIAS SD 
0 0.018 0.452 0.019 0.745 -0.006 0.485 

0.25 0.018 0.446 0.064 0.737 -0.009 0.470 
0.5 0.012 0.421 0.105 0.683 0.006 0.416 

10 
10 
10 
10 0.75 0.010 0.345 0.119 0.556 0.020 0.296 

0 0.011 0.280 0.011 0.424 0.007 0.355 
0.25 0.011 0.274 0.055 0.413 0.021 0.327 
0.5 0.010 0.255 0.087 0.385 0.037 0.284 

20 
20 
20 
20 0.75 0.005 0.215 0.103 0.327 0.054 0.183 

0 0.004 0.237 0.015 0.354 0.010 0.300 
0.25 0.001 0.236 0.065 0.347 0.032 0.286 
0.5 -0.002 0.221 0.100 0.327 0.058 0.242 

30 
30 
30 
30 0.75 0.002 0.185 0.120 0.286 0.074 0.150 

TABLE 3 

Synthesized results of the simulation referred to the ordinary least square method: N = 1000, r = 1 

  01â  11â  ̂  

n  BIAS SD BIAS SD BIAS SD 
0 0.010 0.340 0.000 0.378 -0.002 0.329 

0.25 0.010 0.329 0.000 0.366 -0.013 0.310 
0.5 0.009 0.294 0.000 0.328 -0.019 0.257 

10 
10 
10 
10 0.75 0.007 0.225 0.000 0.250 -0.018 0.169 

0 0.006 0.232 0.000 0.232 -0.002 0.219 
0.25 0.005 0.225 0.000 0.224 -0.005 0.205 
0.5 0.005 0.201 0.000 0.201 -0.008 0.169 

20 
20 
20 
20 0.75 0.004 0.153 0.000 0.153 -0.008 0.106 

0 0.005 0.186 -0.010 0.180 0.000 0.177 
0.25 0.005 0.180 -0.001 0.175 -0.161 0.087 
0.5 0.004 0.161 -0.001 0.156 -0.006 0.135 

30 
30 
30 
30 0.75 0.003 0.123 -0.001 0.119 -0.005 0.083 
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We can observe that the estimator parameters defined by the means procedure 
present a smaller bias than those based on the medians. Moreover in the three 
tables there are two particular situations in which the value assigned to the  es-
timates has conventionally defined: 

1. when the product of the estimated regression coefficients exceed the unity: 
in this case ̂  is assumed equal to  1 according to the common sign of 
the two coefficients; 

2. when the product of the estimated regression coefficients is negative: in 
this case ̂  is assumed equal to 0. 

The distribution of the  estimators, obtained by simulation, has characteristics 
referring to a mixture variable with two components: one continuous and one 
discontinuous. Furthermore, it allows to evaluate the fraction of simulations 
number in which the situations 1. and 2., corresponding to the discontinuous 
variable, happen. 

In Table 4 the quantities in the N = 1000 simulations with ̂  equal to – 1, 0, 
1, referred to the two simplified procedures by ordered means and medians, are 
given. 

TABLE 4 

Simulations number with ̂ = -1, 0, 1 for N = 1000 

  Procedures by ordered means Procedures by ordered medians 

n  ̂  = -1 ̂  = 0 ̂  = 1 ̂  = -1 ̂  = 0 ̂  = 1 

0 4 289 13 4 0 16 
0.25 0 251 20 0 0 30 
0.5 0 119 41 0 0 80 

10 
10 
10 
10 0.75 0 19 150 0 0 266 

0 0 289 0 0 178 0 
0.25 0 184 1 0 120 1 
0.5 0 51 3 0 43 7 

20 
20 
20 
20 0.75 0 0 15 0 5 76 

0 0 267 0 0 0 0 
0.25 0 144 0 0 0 0 
0.5 0 13 0 0 0 2 

30 
30 
30 
30 0.75 0 0 0 0 0 38 

 

We observe that, considering models with theoretical values  > 0, for ̂  = -1, 
the number of simulations is nearly zero for both the proposed procedures, since 
only for n = 10 and  = 0 there is a number of simulations equal to 4 on 1000. 
Instead, for ̂  = 1 we observe that the number of simulations notably decreases 
at the increasing of n and at the decreasing of the correlation coefficient . In par-
ticular, for  = 0.75 and n = 10 the number of simulations is 150, for the ordered 
means procedure, and 260 for the ordered medians procedure. For n = 30 the 
number of simulations is reduced to 0 and 38, respectively. 

For ̂  = 0 the simulation values are different in the procedure based on or-
dered medians at n = 10 and 30 in respect of n = 20: in the first two cases the 
number of simulations is null, while for n = 20 it is notable. The different behav-
iour is due to the occurrence that in the first two cases the number of subsamples 
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is odd (n/2 = 5 and 15, respectively), hence the medians of the subgroup (in 
terms either of x and y) are directly located by a point in the plane (x, y). On the 
contrary, for a number of subsamples as n = 20, the median point is located by 
the half-sum of the two central values, observed for the x and for the y, in the 
subsamples themselves. Such different behaviour can be observed in Table 5, in 
which the number of simulations is considered for ̂  = 0, n/2 = 5, 6, ..., 15 and 
 = 0 and 0.75, that confirms the results in Table 4. 

TABLE 5 

Simulations number with ̂ = 0 for N = 1000 and n/2 = 5, 6, ..., 15 

n/2 =2 k+1  ̂  = 0  n/2=2k  ̂  = 0 

0 0  0 218 5 
5 0.75 0  

6 
6 0.75 26 

0 0  0 185 7 
7 0.75 0  

8 
8 0.75 4 

0 0  0 178 9 
9 0.75 0  

10 
10 0.75 5 

0 0  0 157 11 
11 0.75 0  

12 
12 0.75 2 

0 0  0 147 13 
13 0.75 0  

14 
14 0.75 0 

0 0     15 
15 0.75 0     

 

Moreover, referring to the most important parameter a11, the relative efficien-

cies 2 2/OLS   are calculated, where 2  is the variance of the estimator 11â , ob-

tained by the proposed procedure, and 2
OLS  is the variance of the same estimator 

obtained by the ordinary least square method. 
The results are given in Table 6. 

TABLE 6 

Relative efficiencies of 11â  obtained by the proposed procedure (means or medians) in comparison 

with the ordinary least square method 

n  
Relative efficiency obtained 

by the mean procedure 
Relative efficiency obtained 

by the median procedure 
0 0.612 0.257 

0.25 0.614 0.247 
0.5 0.616 0.231 

10 
10 
10 
10 0.75 0.614 0.202 

0 0.602 0.299 
0.25 0.601 0.294 
0.5 0.602 0.273 

20 
20 
20 
20 0.75 0.603 0.219 

0 0.577 0.259 
0.25 0.584 0.254 
0.5 0.579 0.228 

30 
30 
30 
30 0.75 0.575 0.173 

 

We observe that the proposed procedure presents less efficiency in respect of 
the least square method. In particular the procedure based on means is more effi-
cient than the one based on medians. 
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The next figure, that gives the distributions of the estimations of the parameter 
a11 obtained by the three methods when n = 30 and  = 0.5 and 0.75, confirms 
those data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 – Empirical distribution of 11â  for N = 1000, n = 20 and  = 0.5 and 0.75. 

 
 
3.2. The second-order linear model 

We consider only some situations because we have observed asymptotic dis-
torsions, as shown in paragraph 2.3.. In particular, the results of the simulation 
for N = 1000 and n = 30, assuming as model the Hermite polinomial of the sec-
ond order with c0 = c1 = 0 and c2 = 1, corresponding to 02 2a   , 12 0a  , 

22 4a   are given. 
The Figure 4 shows an example of a model estimated by the proposed proce-

dure, considering the ordered means and the ordered medians in comparison 
with the values obtained by the least square method. 
 

n=30;  =0.75

-0,5 0 0,5 1 1,5 2

procedure based on means procedure based on medians

ordinary least square method

n=30;  =0.5

-0,5 0 0,5 1 1,5 2

procedure based on means procedure based on medians
ordinary least square method
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Figure 4 – The proposed simplified procedure: an example for n = 30, m = 3 and r = 2. 
 
 

Specifically, we note the data partitioned in three subsets (m = 3) of size n/3, 
the mean and the median points of each subset that define the model. 

Moreover, Table 7 gives some statistics referred to the estimations of the 
model parameters obtained by the ordered means procedure and the ordinary 
least square method.  

TABLE 7 

Synthesised results of the simulations referred to the simplified procedure based on the ordered means  
and to the ordinary least square method for N = 1000 and r = 2 

 
Simplified procedure based  

on ordered means   
Ordinary least square method 

 02â  12â  22â    02â  12â  22â  

     Mean -1.6939 0.0085 4.6625       Mean -1.9957 0.0011 3.9889 
     Median -1.7009 0.0063 4.6535       Median -1.9958 0.0046 3.9907 
     Variance 0.1357 0.2994 0.3604       Variance 0.0567 0.0452 0.0294 
     SD 0.3684 0.5472 0.6003       SD 0.2382 0.2126 0.1714 
     BIAS 0.3061 0.0085 0.6625       BIAS 0.0043 0.0011 -0.0111 
     MSE 0.2294 0.2995 0.7993       MSE 0.0568 0.0452 0.0295 

Simplified procedure based on ordered means

procedure based on means Poli. (dispersione)

[1]P
[3]P

[2]P

 ordinary least  square

Simplified procedure based on ordered medians

procedure based on medians Poli. (dispersione)

[3]P

[2]P
[1]P

ordinary least square
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We observe that the bias of the estimates of the regression coefficients ob-
tained by the proposed procedure are confirmed. In this case the estimates of 02a  

and 22a  have values particularly high: 0.3061 and 0.6625 with respect to those 
obtained by the least square method: 0.0043 and – 0.0111. The last values are 
only due to the casualness of the simulation procedure and to the dimension of 
the replications N = 1000. In fact, if we compare the mean values of the regres-
sion coefficients obtained by simulation with those obtained in asymptotic condi-
tions (see paragraph 2.3.), we have 0.0648 for a02 and – 0.0760 for a22. These val-
ues are really reduced, and therefore due only to the casualness of the simulation. 

4. FINAL REMARKS AND CONCLUSIONS 

The proposed simplified regression procedure can be useful in a preliminary 
stage to choose the polynomial regression model, because the partition of the 
data (x, y), referred to the explicative variable X, is defined relating to the number 
of the parameters of the chosen model. Hence in the general case the complete 
polynomial model is formed by m = r + 1 subsets, of size n/m. Therefore it is 
possible to start from the same data set to obtain the estimates of the regression 
models of order 1, 2, ..., r and to stop the procedure when the estimate of the re-
gression coefficient arr has to be considered small ( ˆrra  0). 

To state the order r of the regression polynomial, the “step-wise” procedure 
can be made like in the ordinaty least square method. In particular it is possible to 
apply the Student’s t test or of the Snedecor’s F test to verify the null hypothesis 
arr = 0. Note that to use this procedure, the variance of the estimeted parameter 
arr has to be obtained by numerical simulations. 

The preliminary study to evaluate the inferential properties of the proposed 
procedure, by ordered means or medians and restricted to the polynomials of or-
der 1 and 2 , has already shown some characteristics of the estimators, but it 
seems necessary to verify the extension for polynomial models of higher order. 

For the model of order r = 1, we do not observe a bias of the estimators and 
comparatively, there is a higher relative efficiency of the procedure based on the 
means in respect of that based on the medians. So, in this first study we have 
verified for the polynomial model of order r = 2 only the ordered means proce-
dure. In such a situation, we have numerically found that the coefficient estima-
tors are generally biased and we have given a theoretical demonstration. 

Some observations, relating to the possibility to estimate the correlation be-
tween the explicative variables X and Y, not only in the linear function y = a01 + 
a11x but also in the analogous model x = b01 + b11y, by means of the simplified 
procedure, are given in the paper. 

Finally, we think that this study could be complete with: 
 the analysis of polynomial models of order higher than two; 
 a study about alternative assumptions in respect of the normal distribution for 

the explicative variable and, eventually, for the error component, that in this 
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research has considered normally distributed, independent of the explicative 
variable and homoscedastic; 

 the extension of the comparison to the use of a loss function of order 1 and 
comparing the inferential properties of the model parameter with the one ob-
tained by the quantile regression; 

 the extension of the proposed methodology to the situation with more than 
one explicative variable. 
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SUMMARY 

A simplified procedure of linear regression in a preliminary analysis 

The analysis of a statistical large data-set can be led by the study of a particularly inter-
esting variable Y – regressed – and an explicative variable X, chosen among the remained 
variables, conjointly observed. The study gives a simplified procedure to obtain the func-
tional link of the variables y = y (x) by a partition of the data-set into m subsets, in which 
the observations are synthesized by location indices (mean or median) of X and Y. Poly-
nomial models for y (x) of order r are considered to verify the characteristics of the given 
procedure, in particular we assume r = 1 and 2. The distributions of the parameter estima-
tors are obtained by simulation, when the fitting is done for m = r + 1. Comparisons of 
the results, in terms of distribution and efficiency, are made with the results obtained by 
the ordinary least square methods. The study also gives some considerations on the con-
sistency of the estimated parameters obtained by the given procedure. 




