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NORMAL SAMPLE UNDER MOVING RANKED SET SAMPLING 
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1. INTRODUCTION 

In a distinguished article aiming to estimate the population mean, (McIntyre, 
1952) introduced a very clever idea for selecting a sample from the population of 
interest that appeared to be more representative than the Simple Random Sample 
(SRS) in carrying out the estimation process of the population mean. As a corner-
stone in the literature of sampling theory, McIntyre’s work has been referred to as 
the Ranked Set Sampling (RSS). The motivation of RSS in applied fields arises in 
certain situations where ranking is considered to be easy compared to the high 
cost of the traditional sampling techniques. On the other hand, the handiness, 
flexibility and robustness of the RSS compared to its counterparts are considered 
additional advantages of the RSS scheme. Numerous articles and several books 
discussed the idea of RSS and its modifications over the last five decades (Taka-
hasi and Wakimoto, 1968; Dell and Clutter, 1972; Martin et al., 1980; Kaur et al.., 
1995; Muttlak, 1997; Alodat and Al-Saleh, 2001; Alodat et al., 2009, Alodat et al., 
2010). To shed more light on the RSS approach, we describe the steps leading to 
an RSS of size m as follows. First we draw m independent random samples of size 
m from the target population. Accordingly, using a visual inspection or any other 

cheap method, we detect the thi  order statistic of the thi  sample for actual quan-
tification. The resulting quantified ordered statistics constitute an RSS of size m. 
Recently, the RSS technique has taken the attention of a large number of re-
searchers in ecology, wildlife and agriculture where ranking units, using a visually 
inspection, has a negligible cost relative to their quantification. Despite the fact 
that perfect ranking is considered in this article, yet we conduct a pair wise com-
parison between perfect and imperfect ranked set sampling and we elaborate on 
its importance during the course of this article. 

Although the idea of RSS was introduced by (McIntyre, 1952), the theoretical 
and rigorous statistical framework of ranked set sampling was outlined for the 
first time by (Takahasi and Wakimoto, 1968). Compared to a simple random 
sample with the same size, the ranked set sample seems to be more representative 
for the population of interest and it produces estimators that are more efficient 
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(Chen, 2000). In fact, two factors may affect the efficiencies of estimators ob-
tained via the RSS scheme namely, the set size (m) and the ranking error. (Al-
Saleh and Alomari, 2002) showed that the larger the set size, the larger the effi-
ciency of the estimator. On the other hand, increasing the set size, leads to tangi-
ble difficulties in visual ranking of the sampled units. Carrying out the RSS pro-
cedure may result in some kind of ranking errors. (Takahasi and Wakimoto, 1968) 
studied the performance of RSS when the ranking is perfect while ranking errors 
and its implications have been studied later by (Dell and Clutter, 1972). It has 
been shown that ranking errors do not affect the superiority of RSS over SRS 
while estimating the population mean as well as other vital parameters (Presnell 
and Bohn, 1999). On the other hand, the advantage of RSS will faint in the case 
of imperfect sampling and eventually if the ranking process is assumed to be 
completely random; it will yield equal variances using RSS and SRS techniques 
(Dell and Clutter, 1972; Cobby et al., 1985). Moreover, (Evans, 1967) noted that 
there is no practical difference between visual-type ranking and the actual detailed 
quantification of the units. For these reasons, modifications of RSS were pre-
sented in the literature to study the effect of ranking errors that the experimenter 
makes (Alodat and Al-Saleh, 2001; Al-Saleh and Alomari, 2002; Samawi et al., 
1996). Moreover, (Presnell and Bohn, 1999) pointed out some of the common 
errors presented in the RSS literature regarding perfect and imperfect ranking. 
They provided examples and counterexamples to show the possibility of obtain-
ing more efficient results using imperfect ranking. They provide some theoretical 
detailed work to support their claims. 

 
(Alodat and Al-Saleh, 2001) introduced the moving ranked set sampling 

(MRSS) which can be described as follows: 
1. Select m simple random samples of sizes 1, 2, ..., m, respectively. 

2. From the thj  sample,  1,  2,  ,j m   quantify the thj  order statistic af-
ter detecting it via a visual inspection or any other crude method. 

3. Repeat steps 1 and 2, but by quantifying the minimum i.e., the first order 
statistic from each sample. 

4. The steps (1)-(3) could be repeated several times to increase the sample size 
for fixed m. 

In this sampling scheme, we select ( 1)m m   sampling units but we quantify 
only 2m  units that will be used to obtain prediction intervals for future charac-
teristics of a future sample from normal distribution. Moreover, this modification 
has an advantage over the ordinary RSS, since visual detection of the extremes 
order statistics of samples is easier than detecting other order statistics. (Alodat 
and Al-Saleh, 2001) showed that the probability of making errors while ranking 
the samples via MRSS is smaller than its counterpart in RSS. This procedure was 
also studied by (Al-Saleh and Al-Hadrami, 2003) and (Alodat et al., 2010). The 
rest of the article is structured as follows. In section 2, we present the notation 
and the theoretical setup of the moving ranked set sampling scheme. The predic-
tion intervals for the sample mean as well as the extreme order statistics of a fu-
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ture sample is constructed in section 3 and 4 based on MRSS and SRS, respec-
tively. In section 5, we conduct numerical comparisons between MRSS and RSS 
using the length of the prediction interval as our main comparison criterion. The 
ranking error effect is discussed in section 6. Finally, we provide an overview ap-
plication to grassland biodiversity data set in section 7 and conclude our work in 
section 8. 

2. NOTATION AND THEORETICAL SETUP 

Let 1 1 1
1 2{ ,  , ..., }j j jjX X X  and 2 2 2

1 2{ ,  , ..., }j j jjX X X ,  1,  2,  ,j m   be a  

collection of 2m  random samples from 2( , )N    and define 1 jY  and 2 jY   

to be an MRSS sample such that 1 1 1
1 1 2min{ ,  , ..., }j j j jjY X X X  and 

2 2 2
2 1 2min{ ,  , ..., }j j j jjY X X X . Also, let ( )x  and ( )x  denote the density and 

the cumulative distribution functions of the standard normal distribution. The 
fundamentals of the order statistic theory indicate that the random variables 1 jY  

and 2 jY  have the following distribution functions (Arnold et al., 1992) 
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respectively, for 1,  2,  ,j m  . The corresponding probability density functions 
are 
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respectively. For simplicity, we may use the transformation y     to show 
that 
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1 1E( ) ( ; , )j j jY yf y dy A   



   , 

where 

1 ( ;0,1)j jA yf y dy



  . 

Similarly, we may obtain the expected value of 2 jY  as follows 

2 2E( ) ( ; , )j j jY yf y dy B   



   , 

where 

2 ( ;0,1)j jB yf y dy



  . 

One may notice that the random variables 1 jY  and 2 jY  have the same dis-

tribution when 0   implying that j jB A   for all 1,  2,  ,j m  , (Arnold et 

al., 1992). 

3. PREDICTION INTERVALS USING MRSS 

In this section, we focus our attention on developing prediction intervals for a 
new future observation as well as the sample mean and the extreme order statis-
tics of a future sample under the normality assumption. To accomplish this mis-
sion, we define 1 1 2( , , ..., )mS Y Y Y  to be a statistic based on a future sample ob-

tained from 2( , )N    while 1 2, , ..., nX X X  represents an observed random 

sample from 2( , )N   . To derive the prediction interval of the statistic 

1 1 2( , , ..., )mS Y Y Y , we define another ancillary statistic 3 1 2( , )S S S , where 2S  is 

only a function of 1 2, , ..., nX X X . Since the distribution of 3S  does not depend 

on   and 2 , then for a confidence level 1 21    , we have 

1 23 1 2 1 1 2( ( , ) ) 1P a S S S a         

where 
1

a  and 
21a   denote the 1100  and 2100(1 )  quantiles of the distribu-

tion of 3 1 2( , )S S S , respectively. A 1 2100(1 )%    prediction interval of 1S  

can be obtained by solving the following inequality for 1S : 

1 23 1 2 1( , )a S S S a    (1) 
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Let *Y  be a new observation distributed as 2( , )N    and consider the statistic 

*
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  . Since the original 

data belongs to a location-scale family, we may write the random variable ijY  as 

ij ijY Z   , where ijZ  has the pdf ( ;0,1)ijf z  for 1, 2i   and 1,  2,  ,j m  . 

Also, we may notice that the probability density function ( ;0,1)ijf z  does not de-

pend on the parameters   and   which implies that the distribution of the sta-
tistic (2) does not depend on μ and σ too. Hence, equation (2) may be written as 
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where 1 1
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   and *Z  is distributed as 

(0,1)N . Eventually, the distribution of the statistic F  could be found via Monte 
Carlo simulation method. 

Similarly and based on a given future sample say 1 2, , ..., nW W W , we may define 

new statistics that correspond to the average (W ), the minimum ( (1)W ) and the 

maximum ( ( )nW )  To elaborate more on this idea, we define the random variable 

k kW V   , for k 1,  2,  ,n   which allows us to construct the following 
parameter-free distribution statistics: 
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Theorem 1. Suppose that we have an MRSS, say ijY , 1, 2i   and 1,  2,  ,j m  , 

then based on the previously listed variables and assumptions we have 

1. A 100(1 )  prediction interval of *Y  is 

2 2
2 * 2

/2 1 /2
1 1 1 1

( ) ( )
m m

ij ij
i j i j

Y F Y Y Y Y F Y Y 
   

      
. 

2. A 100(1 )  prediction interval of W  is  

2 2
2 2

/2 1 /2
1 1 1 1

( ) ( )
m m

ij ij
i j i j

Y G Y Y W Y G Y Y 
   

       . 

3. A 100(1 )  prediction interval of (1)W  is 

2 2
2 2

/2 (1) 1 /2
1 1 1 1

( ) ( )
m m

ij ij
i j i j

Y H Y Y W Y H Y Y 
   

       . 

4. A 100(1 )  prediction interval of ( )nW  is 

2 2
2 2

/2 ( ) 1 /2
1 1 1 1

( ) ( )
m m

ij n ij
i j i j

Y E Y Y W Y E Y Y 
   

       , 

Where , ,F G H    and E  are the th  quantiles of the random variables 
, ,F G H  and E , respectively. 
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Proof. The 100(1 )  prediction interval of *Y  will be derived using equations 

(1) and (2) and assuming that that *
3 1,  S F S Y  , 1 2

2 2

Y Y
S


  and 

1 2 /2    . Similar approaches allow us to conclude the results presented in 
parts 2, 3 and 4. 

4. PREDICTION INTERVAL USING SRS 

To better illustrate the performance of the MRSS in obtaining the prediction 
intervals and for the sake of comparing these results to those using SRS, we plan 
to derive the aforementioned prediction intervals using the SRS scheme. To carry 
out this mission, we assume that 1 2 2, , ..., mX X X  is a random sample of size 2m  

from 2( , )N    and 1 2, , ..., nU U U  is a future sample distributed as 2( , )N   . 

Once again we make use of the standardization of the random variable jX  as 

j jX R   , where jR  has a standard normal distribution. Accordingly, we 

may introduce the following variables that represent a parameter-free distribution 
statistics 

a. To predict a new observation 1( )U , we define the random variable I  as fol-
lows 

1

2 2
2 2

1 1

( ) ( )
m m

j j
j j

U X V R
I

X X R R
 

 
 

  
, 

where 
2

1

1

2

m

j
j

X X
m 

   and 
2

1

1

2

m

j
j

R R
m 

  . 

b. To predict the sample mean ( )U  of a future sample of size n, we define the 
random variable J as follows 

2 2
2 2

1 1

( ) ( )
m m

j j
j j

U X V R
J

X X R R
 

 
 

  
 

c. Similarly, to predict the minimum ( (1)U ) of a future sample, we define the fol-

lowing random variable 
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(1) (1)

2 2
2 2

1 1

( ) ( )
m m

j j
j j

U X V R
K

X X R R
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 
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  
 

 
d. Finally, to predict the maximum ( ( )nU ) of a future sample, we need to define 

the following random variable L 

( ) ( )

2 2
2 2

1 1

( ) ( )

n n

m m

j j
j j

U X V R
L

X X R R
 

 
 

  
 

 
Theorem 2. Based on the SRS scheme and considering the random variables 

, ,I J K  and L , we may construct the prediction intervals for 1U , U , (1)U  and 

( )nU  as follows: 

1. A 100(1 )  prediction interval for 1U  is 

2 2
2 2

/2 1 1 /2
1 1

( ) ( )
m m

j j
j j

X I X X U X I X X 
 

       . 

2. A 100(1 )  prediction interval for U  is  

2 2
2 2

/2 1 /2
1 1

( ) ( )
m m

j j
j j

X J X X U X J X X 
 

        

3. A 100(1 )  prediction interval for (1)U  is 

2 2
2 2

/2 (1) 1 /2
1 1

( ) ( )
m m

j j
j j

X K X X U X K X X 
 

        

4. A 100(1 )  prediction interval for ( )nU  is 

2 2
2 2

/2 ( ) 1 /2
1 1

( ) ( )
m m

j n j
j j

X L X X U X L X X 
 

       , 

where , ,I J K    and L  are the th  quantiles of the random variables , ,I J K  
and L , respectively. Moreover, the distributions of these random variables can 
be obtained using Monte-Carlo simulation setup. 
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TABLE 1 

The upper and lower quantiles of F, G, H, E, I, J, K and L when 5n   and 0.05   

m F G H E I J K L 
2 -1.9702 

 1.9671 
-1.1186 
 1.1296 

-3.2073 
 0.2517 

-0.2292 
 3.1208 

-2.0723 
 2.1067 

-1.2467 
 1.2218 

-3.3517 
 0.3091 

-0.2939 
 3.3427 

5 -0.6259 
 0.6279 

-0.3162 
 0.3133 

-0.8699 
 0.0382 

-0.0469 
 0.8557 

-.8089 
 0.8043 

-0.4144 
 0.4128 

-1.1126 
 0.0716 

-0.0813 
 1.1237 

8 -0.4087 
 0.4044 

-0.1945 
 0.1971 

-0.5505 
 0.0194 

-0.0222 
 0.5429 

-0.5695 
 0.5658 

-0.2813 
 0.2831 

-0.7809 
 0.0418 

-0.0438 
 0.7701 

12 -0.2931 
 0.2879 

-0.1339 
 0.1338 

-0.3845 
 0.0128 

-0.0118 
 0.3851 

-0.4351 
 0.4459 

-0.2140 
 0.2076 

-0.5958 
 0.0217 

-0.0289 
 0.6022 

 
 
5. SIMULATION STUDY 
 

To compare the MRSS prediction intervals with the SRS prediction interval us-
ing the aforementioned procedures, we use the expected lengths of the prediction 
intervals as a comparison criterion. To do so, we let T denote a random variable 

in the set {F, G, H, E, I, J, K, L} where T  denotes the th  quantile of the ran-
dom variable T . The results concerning the previously mentioned random vari-
ables are presented in Tables 1 and 2 for different set size (m) and assuming the 
significance level 0.05  . More precisely, Table 1 gives the lower and upper 
quantiles for 5n   future samples while Table 2 presents these quantiles for 

10n   future samples. The results of Tables 1 and 2 will be used to obtain the 
length of the prediction intervals using the two schemes, namely SRS and MRSS. 

TABLE 2 

The upper and lower quantiles of G, H, E, J, K and L when 10n   and 0.05   

m G H E J K L 
2 -0.9659 

 0.9641 
-3.7409 
-0.0789 

0.0872 
3.7266 

-1.0959 
 1.0962 

-3.9786 
-0.0604 

0.0655 
3.9673 

5 -0.2516 
 0.2399 

-0.9647 
-0.1064 

0.1035 
0.9692 

-0.3355 
 0.3361 

-1.2662 
-0.1049 

0.1030 
1.2548 

8 -0.1485 
 0.1458 

-0.6026 
-0.0859 

0.0859 
0.6101 

-0.2296 
 0.2129 

-0.8534 
-0.0963 

0.0957 
0.8615 

12 -0.0999 
 0.0972 

-0.4251 
-0.0650 

0.0667 
0.4252 

-0.1674 
 0.1572 

-0.6479 
-0.0858 

0.0842 
0.6550 

 
To obtain the expected interval length, we need to define Q  as follows 

2
2

1

2
2

1 1

( ) , if  SRS scheme is used,

( ) , if MRSS scheme is used.

m

j
j

m

ij
i j

X X

Q

Y Y



 





 
 





 

Then the expected length of any interval has the form 

1 /2 /2E(Interval length) = ( )E( )T T Q   . 
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It is possible to obtain E( )Q  in a closed form in the case of SRS while the 
mission might not be feasible in MRSS case. As a result, we use simulation to ob-
tain the values of the expected interval length. Since the normal distribution be-
longs to the location scale family, then without loss of generality, we may assume 

0   and 1  . Table 3 contains the expected length of the prediction intervals 
for SRS and MRSS for different values of m  and n  based on 5000 Monte-Carlo 
simulations. It can be seen from Table 3 that the MRSS intervals are shorter than 
the SRS intervals in terms of their expected length. Moreover, the larger the sam-
ple size, the smaller the expected length.  

TABLE 3 

The expected interval length of prediction intervals when 0.05   

n m F G H E I J K L 
5 2 6.4590 3.6893 5.6793 5.4940 6.6891 3.9512 5.8596 5.8209 
 5 4.3635 2.1903 3.1603 3.1409 4.6997 2.4099 3.4501 3.5106 
 8 4.1074 1.9779 2.8790 2.8548 4.3165 2.1460 3.1278 3.0944 
 12 4.0220 1.8538 2.7504 2.7474 4.1770 1.9989 2.9246 2.9922 
 m         

10 2 6.4590 3.1671 6.0069 5.9697 6.6891 3.5088 6.2716 6.2454 
 5 4.3635 1.7104 2.9867 3.0126 4.6997 1.9566 3.3833 3.3556 
 8 4.1074 1.4868 2.6099 2.6476 4.3165 1.6824 2.8796 2.9116 
 12 4.0220 1.3635 2.4924 2.4816 4.1770 1.5390 2.6654 2.7063 

 
 
6. EFFECT OF RANKING ERRORS 
 

In ranked set sampling, the resulting sample is obtained under the assumption 
that the error in personal judgment is absent. However, we can not ignore the 
ranking errors in an RSS sample. As mentioned in section 1, many authors have 
studied the effect of ranking errors on the efficiency of the RSS estimation ap-
proach. To name a few, (Dell and Clutter, 1972; Stokes, 1976 and Nahhas et al., 
2004) proposed some models for visual ranking errors. In this section, we con-
sider the model proposed by (Dell and Clutter, 1972) where they assumed that 

the thi  visual score for the thi  observation in RSS set is defined as i i iV X   , 

where 1 2, , ..., n    are independent and identically distributed as 2(0,  )N   inde-

pendent of the iX ’s. To obtain an RSS sample with ranking errors, according to 
the additive model, we adopt the following steps: 
 
1. Obtain i i iV X   , where 1 2, , ..., n    are independent and identically 

2(0,  )N  . 
 
2. Rank the iV ’s in an ascending order so that we may obtain 

(1) ( 2 ) ( )... nV V V   . Also, let [ ]iX  denote the value of X  associated with the 
thi  value ( )iV . 
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3. The values [1] [ 2 ] [ ], , ..., nX X X  represent an RSS sample with raking errors. 

TABLE 4 

Values of E( )Q for different values of 2
  and m  

E( )Q  2


    m

 

With ranking errors Without ranking error 

0.1     2 
          3 
         5 
         8 
        12 

1.6217 
2.3227 
3.4766 
5.0514 
6.9109 

1.6406 
2.3017 
3.4608 
5.0560 
6.91263 

0.5     2 
          3 
          5 
          8 
        12 

1.6229 
2.2668 
3.3814 
4.8278 
6.5332 

1.6330 
2.3016 
3.4919 
5.0492 
6.9138 

1.0     2 
          3 
          5 
          8 
        12 

1.6281 
2.2991 
3.1270 
4.4728 
5.9191 

1.6363 
2.2992 
3.4993 
5.0554 
6.9250 

 

To obtain an MRSS with ranking errors, we adopt the above model and re-
place n  by j . Accordingly, we use the [ ]jX ’s in stead of ( )jX ’s. Since 1 /2T   

and /2T  are obtained from the exact distribution via simulation without ranking 

errors, then it is sufficient to make the comparison only based on the values of 

E( )Q . Table 4 contains the values E( )Q  for different values of 2
  and m . It 

can be clearly seen that the larger the value of 2
 , the larger the difference be-

tween the two values of E( )Q . Also for small values of m , the difference be-
tween the two values of E( )Q  gets smaller.  

To elaborate more on this idea, we highlight some of the recent work related 
to imperfect ranking errors. (Frey, 2007) proposed a model for imperfect ranking 
that assumed to be valid and flexible to cover a wide range of judgment ranking 
errors. On the other hand, (Presnell and Bohn, 1999) have considered the model 
of (Dell and Clutter, 1972) in addition to an artificial model for judgment ranking 
error. As an illustration, they showed that the imperfect ranking has asymptotic 
efficiency of 8/3 relative to perfect ranking if their judgment ranking is consid-
ered such that 

2 1
1

1, | 0.5|  | 0.5|

2, otherwise

X X
J

  
 


 

where 1X  and 2X  are identical and independently distributed as (0,1)U  and 

1 1J   if the first order statistic is ranked without error. This example led them to 
conclude that the efficiency induced based on perfect ranking versus imperfect 
ranking can not be decisive to either of the two sides. In our simulation study, we 
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see that the numerical results are comparable for small values of 2
  and they are 

not far away when 2
  is large. It is important to note that small values of 2

  

imply more accurate ranking, while large values of 2
  imply more ranking errors.  

According to these studies in addition to the findings of this article, we may 
conclude that the imperfect ranking may have positive or negative effect on esti-
mation accuracy depending on the model that is considered for judgment ranking 
errors. For this, the numerical results presented in this section lie among the find-
ings of (Presnell and Bohn, 1999) and therefore we expect to have an effect on 
the expected length of the prediction intervals due to ranking errors. 
 
 
7. APPLICATION TO GRASSLAND BIODIVERSITY DATA 
 

Since the introduction of the RSS concept by (McIntyre, 1952), the idea has re-
ceived an extensive attention due to its tremendous valuable applications in ap-
plied fields including but not limited to engineering, communications and ecology 
(Patil, 1995). For example, (Halls and Dell, 1966) utilized the RSS technique to 
estimate the weights of browse and herbage in a pine-hardwood forest of east 
Texas. They concluded that RSS is more efficient than SRS. Similarly, RSS was 
found to be more robust when applied for estimating the shrub phytomass in fo-
rest stands (Martin et al., 1980). Further applications of RSS can be found in (Ev-
ans, 1967 and Cobby et al., 1985). 
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Figure 1 – Histogram with normal curve and normal probability plot for the number of species data. 
 

In our study, we used a data set on grassland biodiversity in central Europe to 
illustrate the usefulness of our statistical method. This data was collected based 
on a biodiversity project carried out in the Thueringer Schiefergebirge/Fran- 
kenwald, a plateau-like mountain range at the Thuringian/Bavarian border in cen-
tral Germany with a maximum height of 870 meters. The average annual tem-
perature in this area varies between 68F and 78F and the average annual precipi-
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tation varies between 950 and 1099 mm (Perner et al., 2005). The studied plant 
communities located between 11.018º and 11.638º eastern longitudes and be-
tween 50.358º and 50.578º northern latitudes comprising a total of one hectare. 
We used grassland biodiversity in 78 sites. The data set was considered by (Alodat 
et al., 2011) for estimating the mean and the standard deviation using MRSS. The 
histogram and the normal probability plot are given in figure 1. The histogram 
suggests a normal distribution while the normal probability plot shows a p-value 
larger than 0.15. So, the data provides us with no evidence to reject the normality 
assumption. In this section, we apply the MRSS procedure to the 78 observations 
and we divide the first 35 observations into 7 sets of sizes 2, 3,…, 8, and the last 
35 observations into 7 sets of sizes 2, 3, …,8. Our plan is carried out by selecting 
the minimum of each set in the first group while we selected the maximum of e-
ach set in the second group (see table 5). 
 

TABLE 5 

Illustration of MRSS for the Grassland Biodiversity 

Group Set   Minimum Maximum 
1. {9, 21}       9 
 {15, 22, 17}   15 
 {18, 17, 19, 19}   17 
 {8, 33, 22, 33, 23}     8 
 {23, 19, 20, 19, 17, 12}   12 
 {18, 23, 26, 24, 13, 10, 15}   10 
 {23, 13, 22, 13, 19, 16, 21, 24}   13 
 
2. {22, 13}     22 
 {16, 22, 31}    31 
 {23, 14, 13, 19}    23 
 {16, 22, 20, 18, 21}    22 
 {20, 25, 30, 28, 21, 27}    30 
 {25, 14, 28, 33, 20, 22, 21}    33 
 {27, 25, 27, 29, 26, 14, 25, 32}    32 

 
 

Accordingly, we obtain the set of minima {9, 15, 17, 8, 12, 10, 13} and the set 
of maxima {22, 31, 23, 22, 30, 33, 32}. On the other hand, a simple random sam-
ple of size 14 is also obtained and the elements of this SRS are {9, 21, 15, 22, 17, 
18, 17, 19, 19, 8, 33, 22, 33, 23}. The data set obtained via MRSS provides the 

values 19.786Y   and 32.594Q   while the SRS data set gives the following 

results: 19.714X   and 25.862Q  . Also, we used simulation to obtain the 
quantiles of F, G, H, E, I, J, K and L for 7m  and the results are summarized in 
table 6. From this table, we see that the length of each prediction interval using 
MRSS is smaller than the length of each prediction interval using SRS. 



 M. Al-Rawwash, M.T. Alodat, K.M. Aludaat, N. Odat, R. Muhaidat 150 

TABLE 6 

Prediction intervals for species data using SRS and MRSS 

Statistic Prediction Interval Length 
F (4.8092, 34.6155) 29.8063 
G (12.4632, 26.9784) 14.5153 
H (-0.33706, 20.2945) 20.6315 
E (18.6707, 40.2393) 21.5686 
I (3.60571, 35.655) 32.0493 
J (11.6388, 35.655) 24.0162 
K (-2.71866, 20.8626) 23.5812 
L (18.5213, 41.1684) 22.6471 

 
 
8. CONCLUSIONS 
 

In this paper, we considered the problem of constructing classical prediction 
intervals for new observation, mean, minimum and maximum of a future sample 
from the normal distribution under the MRSS scheme. In terms of the interval 
expected length, we produced prediction intervals that are shorter than those ob-
tained via the SRS scheme. This kind of prediction can be easily extended to 
other distribution families. Moreover, prediction intervals concerning characteris-
tics of a future sample obtained via different ranked set sampling schemes could 
be considered. So we leave this to future research. 
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SUMMARY 

Prediction intervals for characteristics of future normal sample under moving ranked set sampling 

In this article, we derive prediction intervals for the characteristics of a future sample 
from normal population when the sample is selected via moving extreme ranked set sam-
pling. We conduct a simulation study to compare these intervals with their counterparts 
using simple random sampling. Finally, we apply our findings on grassland biodiversity 
real data set in central Europe. 




