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IMPROVING ROBUST RATIO ESTIMATION IN LONGITUDINAL
SURVEYS WITH OUTLIER OBSERVATIONS

Roberto Gismondi!

1. OUTLIERS’ DETECTION AND TREATMENT IN SAMPLING SURVEYS

In survey sampling theory, the interest usually lies in the estimation of finite
population parameters such as the total of a variable of interest y in a given finite
population. The observed sample may include outlier observations, which are val-
ues falling in the left or right tail of the observed empirical y-distribution. The in-
fluence of extreme values on the overall estimation error could be quite danger-
ous without a specific system of detection and treatment (Searls, 1960).

As a consequence, the following problems must be faced:

a) how to identify outlier observations;
b) how to treat them after the identification, according to one (or a combination)
of these criteria:

1) outliers are excluded from further calculations (their sampling weight is put
equal to zero) or included as self-representative (the sampling weight is put
equal to one);

2) outlier data are re-estimated as they were missing observations, or accord-
ing to some trimming rule;

3) outlier data are not changed, but their sampling weight is reduced.

Good outlier detection procedures should satisfy the following conditions: a)
to be as much as possible time saving — especially when large data-sets are man-
aged (Latouche and Berthelot, 1992); to bound under a reasonable level the num-
ber of sampling units detected as outliers (Gismondi, 2002); to be founded on ob-
jective rules for fixing thresholds or applying trimming (Kokic and Bell, 1994).
Moreover, in the field of official statistics — where the use of standard rules as re-
gards the main methodological issues is recommended — strategies for dealing
with outliers should not be too heterogeneous, in order to guarantee a common
theoretical background for outliers’ treatment. As regards structural and short-
term business statistics, some late best practices are described and commented in

AAVV. (2008 20084).

1'The opinions herein expressed must be addressed to the author only, as well as possible errors
or omissions. All tables derive from elaborations on ISTAT data. A preliminary shorter version of
this work is available in Gismondi ¢z a/. (2009).
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More in details, while winsorisation downweights outliers substituting the a-
nomalous values with proper estimates, re-weighting is aimed at reducing their
sample weight according to some criterion: for instance, Chambers (1986) pro-
posed an estimator that reduces to one the weights of extreme observations. Lee
(1991) introduced a family of estimators that are robust to outliers under a model
based approach. Croux ¢t a/. (1994) introduced a new class of regression estima-
tors, called generalised S-estimators, which are focused on the optimal estimation of
the slope parameter of a linear model and can have a 50% breakdown point like
S-estimators, but attain a much higher efficiency. Hulliger (1995, 1999) analysed in
depth an estimator under a model assisted survey framework (Sdrndal ez a/., 1993),
based on weights for outliers that are reduced (but not necessarily equal to 1) with
respect to the original ones. Re-weighting is based on a standardised function,
which expresses the difference between observed and expected values. Chambers
et al. (2000) re-analysed the recourse to trimming as an alternative to re-weighting,
while Beaumont and Alavi (2004) focused more on the estimation process, evalu-
ating performances of a family of robust generalised regression estimators. Late
applications of robust methods for outlier detection can be found in Todorov e#
al. (2009).

In this context, we will deal with the Hulliget’s criterion mentioned above (sec-
tion 2), according to which outliers are identified and managed at the same time:
1) without the need of complex elaborations and ii) applying a model-based alter-
native to weights’ trimming? (Elliott and Little, 2000). In particular, we propose
some changes that may improve its efficiency: they concern both the choice of
the threshold for detecting outliers and the rule for re-weighting (section 3). We
also present and discuss the main outcomes of two empirical attempts based on
true turnover data (section 4). Perspective conclusions have been drawn in sec-
tion 5.

The main proposal consists in the choice of the acceptance threshold based on
a “calibration” approach, which can be implemented using past data of the target
vatiable that are often available in the frame of longitudinal surveys. The only ba-
sic constraint is the possibility to know (or to estimate) the correspondent past
true estimation error. Ren and Chambers (2002) already introduced the principle
of robust imputation based on calibration (reverse calibration); herein we develop an
operational strategy not just aimed at modifying or re-estimating observed values,
but at fixing an objective threshold that would have been optimal if applied to
past data. Availability of time series of historical data referred to the same subset
of units represents an information bulk not always fully exploited in the frame of
longitudinal surveys. Even though the discussion is more focused on business
surveys data, the basic criteria can be adapted to more general contexts as well.

2 However, it is worthwhile to note that reducing weights is equivalent to apply the original
weights to trimmed values, and vice-versa.
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2. THE ROBUSTIFIED RATIO ESTIMATOR

Given a population P with size N, the target is the estimation of the population
total Yp through a sample s with size # and on the basis of sampling weights .
We suppose the regression super-population model R defined as: y=fx;+¢;, with
E()=0, Vane)=c*x;, Cove,e)=0 for each (3) or (i7)), where x is an auxiliary
variable available for each unit in the population with total Xp, with § and &
unknown parameters. The one-step robustified ratio estimator proposed by Hulliger
is based on an estimate of the ratio between weighted medians’:

Bo:%,so( Jow)/ qoso(x;,w) and on the standardised absolute residuals
ﬂi:b’i—ﬁoxfl/\/;‘ Let the median of the absolute rtesiduals be

6= qos0ai»w). Then robust weights are defined as:
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where ¢ is a parameter to be chosen. The one-step robustified ratio estimator

(RRE) is:
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The RRE is a linear estimator based on weights given by (X pw 1—1;')/ wa HiX -

It is equivalent to the ordinary ratio estimator applied to couples (x, ) that, when
a; > ¢6, , modify into the new couples of fruncated values (ux, wy). It is also differ-

ent with respect to the ordinary ratio estimator, e.g. the model BLU predictor
(Cicchitelli e al., 1992, 385-387).

The RRE form and its performance strictly depend on 3 methodological is-

sues:

1) the rule linking wp to

2) the definition of correctors # in (1);
3) the choice of parameter ¢in (1).

The re-weighting system (1) can be viewed as a robust estimation criterion that
reduces the outliers” weight according to the standardised distance between the
observed and the theoretical y-value. A major advantage due to (1) consists in the
possibility to detect and treat outliers at the same time. The sum of new weights

3 A weighted median is calculated as follows: 1) order the observations yuy =< ... < (. 2) Let
be the weight of y,. The partial sums of weights of the ordered observations are defined as:

J n

k=m0 / > w;i. In fact, & is the estimate of the distribution function of y at the point y;. 3)
i=1 i=1

Find the index j; with j,=min{;: & > 0.5}. 4) The weighted median is go.s0(y;,#)=_y(/s). Note that the

weighted median may not be expressed as a simple weighted mean. For more details, see also I-

STAT et al., 2007, 58-59.
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will be lower than the sum of the original ones, but that should not produce addi-
tional bias of estimates, because in the estimator (2) weights operate both at nu-
merator and denominator.

If the corrector # in (1) is quite lower than one, the number of units in the
whole population which are represented by the sample outlier observation con-
cerned will be quite lower than the number represented by the original weight .
In other terms, the correctors modify the formal connection between the sample
and the population density distributions. On the other hand, a subjective choice
of a fixed threshold parameter ¢ may lead to wrong conclusions, especially in the
frame of short-term statistics, where seasonal effects may be better managed us-
ing different parameters, depending on the month concerned and/or other strati-
fication criteria.

A limit of the Hulliger’s criterion — as well as of many other outlier detections
techniques — is that a second iteration of the procedure (with the same parame-
ters) which uses the truncated y and x values in place of the original outliers
(¢, ,-/ a; and ¢G,x;/ a; tespectively in place of y; and x;) might generate these

effects: a) these units are still detected as outliers and/or b) new outliers are
found.

3. POTENTIAL IMPROVEMENTS

3.1 Weights w

We propose the alternative transformation ; =1+ #;(w; —1), because when

#;—>0 (very anomalous unit) »; —> 1 (the iz unit is self-representative). This is
a less extreme option with respect to the alternative wp; — 0 (the unit disap-

pears) and may be preferred especially in case of representative outliers. On the
other hand, it is still reasonable to reduce as much as possible (even toward zero)
the weight of suspicious non-representative outliers. The difference between wp;

and »; may be neglected only when N is quite larger than 7.

3.2 Correctors u

Correctors # in (1) can be defined on the basis of a lightly different position.
The basic idea consists in the introduction of a parameter a aimed at increasing or
decreasing the quickness of the change of the original weights ». We still suppose
that #=1if a;<¢o,. Moteover, we can put:

nai=(c64/ai) if a;>co,. 3

When a=1, then #,=#. When a>1 (a<1), #, tends more (less) quickly to zero than
u;, as well as the corresponding weights . Since each weight expresses the num-
ber of not observed units in P represented by the corresponding sample unit, the
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option a>1 implies that the extreme observations (very large or very small) in-
cluded in the observed sample are considered more rare in the whole population
rather than when a=<1, and vice-versa.

3.3 Selection of ¢

As regards this crucial aspect, a calibration approach may improve the RRE effi-
ciency, reducing the risk of additional bias due to subjective choices of ¢ In par-
ticular, too low levels of ¢ may lead to the identification of outliers even when
true outliers do not exist. The basic hypothesis consists in the availability of his-
torical data, e.g. the possibility to evaluate the relationship between y and x using
a past sample drawn from a past population — both referred to a time (1) —
whose y total is known at the time # when current estimates must be released. The
procedure follows the steps listed below:

a) at time # we observe a sample including 7 units. We suppose to know y values
of each sample unit referred to time (1), as well as the total Yp at time (#1),
say Yp(H).

b) If we suppose to apply the same sample weights at times 7 and (#1), the RRE
calculation at time (%1) is carried out trying a set of values for ¢ For each ¢
the absolute error of estimates is calculated, according to the formula:

AE -1y = |TH<H) - Y1><H)| . That can be also defined as calibration error.
c) We choose the particular optimal ¢*(#1) such that: AFE -1y = m[in {AE -1},

d) The optimal ¢*(#1) is applied for implementing (1) and (2) at time % Let’s note
that, of course, at time 7 the optimal (unknown) ¢*( minimising 4FE., may

be different from ¢*(1), which can be defined as “pseudo-optimal”.

The method — derived by the calibration approach as a tool to reduce bias of
sample estimates (Lundstrom and Sirndal, 1999) — is founded on the idea that the
optimal ¢ that would have guaranteed a near-calibration of sample estimates with
respect to the population total at time (#1) should work fine at time # as well.
There are 2 ways for implementing the procedure. If at times 7 and (#1) the vari-
ables under study are given by, respectively, y; and y.1), then:

1) at time 7 the auxiliary variable x is given by y1), while at time (#1) it is given by

D2
2) at time 7 the auxiliary variable x is given by x (), while at time (#1) it is given by

X(;.1).

For instance, in the frame of business surveys, if y is turnover (monthly, quar-
tetly or yearly), the option 1) can be carried out using as auxiliary variable the cot-
respondent turnover of the previous year, while the option 2) can be imple-
mented using as auxiliary variable the yearly turnover referred to the year before,
derived from a business register. The choice strictly depends on the knowledge of
the amount Yppy: if it is not available, then the second option might be the only
one useful in practice.

The calibration approach should be particularly useful if the number and the
relative magnitude of outlier data as regards the y and x empirical distributions are
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quite similar. Moreover, this approach may be used for fixing an objective thre-
shold in the frame of other outliers’ detection methods as well.

However, the calibration approach may lead to the identification of a quite
large number of outliers, due to the need of satisfying the calibration constraint.
In these circumstances one may guess if all these units are real outliers. The prob-
lem could be managed imposing the additional condition that the optimal solu-
tion minimizes the calibration error and, at the same time, guarantees that the
outliers’ relative incidence is not larger than a given percent of the whole ob-
served sample (say, 10%).

Even though the recourse to different parameters ¢ for different estimation
domains is recommended, especially in a short-term survey context one may de-
cide to use a more steady ¢ whatever is the reference month or quarter. The choi-
ce of a unique ¢ can be driven by various criteria:

e minimization of the average calibration error;

e minimization of the real average estimation error calculated on previous peri-
ods;

e minimization of the variability of ¢ estimates evaluated through a given number
of attempts (for instance, different months);

o the “minimax” approach evaluated on: i) the average calibration error; ii) the
number of periods for which a particular ¢ is optimal.

One may note that the use of calibration as a robust estimation technique may
be carried out without the recourse to the Hulliger’s criterion, but through the
ordinary identification of the new calibration weights which minimise the squared
difference with respect to the original weights and satisfy the calibration con-
straint (see section 4 for some empirical efficiency comparisons). If Dy is the sum
of squared differences between new and original weights derived from the Hul-
liger’s criterion (1) when ¢ is determined using calibration, while D¢ is the analo-
gous sum related to ordinary calibration, by definition we have Dc=Dp.

Another operational solution derived from (1) may consists in applying the
transformation of weights proposed in (1) — but for outlier units only — to a/ the
units, so that wp; = #w; for each unit 7 € 5. We can indicate as Dy the sum of
squared differences between new and original weights derived from this criterion
when ¢ is still determined using calibration. As a consequence, we must have
Dy=Dp, that is the main reason justifying this alternative approach. Of course,
we still have Dc=Dy by definition.

It is worthwhile to underline that the optimal ¢level derived from a calibration
approach can not be determined on the basis of an explicit formula. If we use a
generic calibration variable x whose known population total is Xp and the total
amount Yp is known?, labelling as So and S¢ the 2 sub-samples including, respec-
tively, the outlier and the non outlier units (“good” units), the calibration ap-
proach would imply this equality:

4 A further relevant issue concerns the risk due to the use of the optimal ¢, selected applying ca-
libration to the variable x in place of the optimal ¢, referred to the target variable j.
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As a consequence, the exact calibration (4) depends af the same time on the sub-
sample So and the correspondent «.. As a matter of fact, this rule is not opera-
tional, because the selection of So is not independent from the value of ¢ and
vice-versa. For instance, for each sub-sample So the particular ¢, which would
satisfy (4) may be such that for some units that do not belong to the sub-sample So we
have a;> ¢, even though they should be included in So since they are out-
liers by definition.

4. EMPIRICAL ATTEMPTS

4.1 Application to retail trade turnover data

The monthly retail trade sample survey is carried out by ISTAT, is based on a
stratified random design and is aimed at estimating monthly turnover indexes. In
this context, we have supposed to focus on the estimation of total turnover, con-
sidering the preliminary quick sample — available after 30 days from the end of the
reference month — as the observed sample (size #), and the final sample observed
after 52 days as the population (size IN). This approach is justified by the random
nature of quick respondents and the possibility to know the value of the true pa-
rameter, e.g. the total turnover of the final sample. A database of monthly turn-
over data including — on monthly average — 1,507 enterprises has been built up,
on the basis of the units always respondent in the same month of the years 2007
(9, 2006 (#1) and 2005 (+2). Domains of interest have been given by D1: Modern
Jfood distribution (on average of 2007 months, N=326 and #=240), D2: Modern non
Jood distribution (IN=37, n=28), D3: Small and medium food shops (IN=179, n=122),
D4: Small and medium non food shops (IN=965, n=T729).

The pseudo optimal levels of the parameter ¢ used in order to develop the va-
rious options of the Hulliget’s criterion have been determined according to the
option 1) in section 3.3 (so that x;=y.1). Given the quick sample observed in a gi-
ven month in 2007, in each domain we have imposed that the final sampling
weights to be used for estimation are able to reproduce the final estimate avail-
able for the same month 2006. The final sampling weights are the original ones
for non outlier units and have been modified according to (1) for outliers. The
pseudo optimal ¢ has been defined as ¢*(20006), while ¢*(2007) is the real optimal ¢,
not known at the estimations stage (ex ante), but known ex post.

Estimation criteria have been compared in table 1. On average, the sampling
rate is equal to 74.3%. According to the general estimator (2), the option »=N/#
corresponds to the ordinary ratio estimator (ORE), that is the simplest tool for
reducing outliers’ effect (Gwet and Rivest, 1992; Gwet and Lee, 2000). Six ver-
sions of the RRE derive from combinations between options for weights (wy and
»*) and a (1, 0.5, 2). All figures are averages of 2007 monthly results; levels of ¢
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TABLE 1

Comparison among estimation strategies — Average of monthly 2007 estimates for the retail trade turnover

L Parameter ¢ MAPE Number of outliers
Criterion
DI D2 D3 D4 DI D2 D3 D4 DI D2 D3 D4
w=N/n - - - - 226 247 195 142 - - -
werand =1 2063 69 168 1914 186 101 070 133 9 8 5 2
1293 9.5 151 1220 453 250 229 339 23 6 21 66
1293 95 151 1220 561 200 173 6.56 1 2 2 1
w*and a=1 953 48 111 1345 098 202 107 123 21 11 25 26
140 39 55 271 1.86 220 143 168 60 12 42 198
140 39 55 271 175 222 147 178 15 6 10 6
wrrand ¢=0.5 1855 5.0 135 1870 192 127 081 135 25 14 15 3
1136 70 121 1150 438 218 197 260 57 9 31 67
1136 7.0 121 1150 463 218 146 403 2 3 3 1
w*and #=0.5 766 3.5 87 1166 108 214 117 123 30 15 32 30
160 3.1 51 770 1.60 224 [ 141 | 1.64 62 16 57 127
160 3.1 51 770 157 | 226 143 [ 141 13 7 12 2
wrand a=2 2184 75 180 1808 1.84 087 062 130 8 6 6 16
151.8 111 182 1259 438 263 249 468 20 5 13 66
151.8 111 182 1259 6.27 216 9.33 1 2 2 1
w*and a=2 683 58 145 881 0.94 189 098 1.22 64 8 14 37
168 44 106 654 191 213 154 181 31 10 19 84
168 44 106 654 1.87 218 148 167 12 5 3 2

The 3 ¢listed are: ¢¥(2007), ¢*(2006) and avg[¢*(2006)]. MAPE = Mean of Absolute Percent Errors.
Bold: MAPEs lower than MAPE obtained with =N/ z. In box: the lowest MAPE for each domain.

are: ¢%(2007), ¢%2006) and awg[c*(20006)]>, where the last option (average of 12

¢*(2006)) implies the use of a not seasonal steady ¢ in each month of 2007. Let’s

note that, by definition, M.APE got using ¢%(2007) is not larger than MAPE ob-
tained using the other two optionsS, while we could obtain a lower MAPE using
avg|¢*(2006)] instead of ¢*(2000).

All MAPES in bold identify cases where the RRE improves the correspondent

ORE. In particular:

1) that happens for all domains and several options, with the partial exception of
D4.

2) The use of w* instead of wy is quite useful, because it always leads to lower lev-
els of MAPE, except for D2, using avg[¢*(2006)] and ¢*(2006) coupled with
a=0.5.

3) When wy is used, the option a=0.5 always improves the standard a=1, except
for D2 and avg[¢*(2006)], while the option a=2 is not useful, except for D1
with ¢%(2006) and for D2 with azg[¢*(2000)].

4) When »* is used, the option ¢=0.5 still improves the standard a=1 — with a
light exception for D2 — while the option a=2 is less useful, because it reduces
MAPE only for D2 and D4 using arg[¢*(2000)].

5 In the table ¢%(2006)=ang[¢*(20006)], since the reported ¢*(2006) are means of 12 monthly pa-
rameters.

¢ The evaluation of the MAPE got applying ¢*(2007) — even though not useful in practice — is
helpful in order to assess the lowest limit of AMLAPE under a given strategy coupled with the RRE.
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On the whole, for each domain the best strategy (bold figures in boxes) is ba-
sed on the use of »* and a=0.5 with ayg[¢*(2006)], since the average M.APE (mean
of 4 domains) would be 1.67, against 2.03 got using the ORE.

4.2 Application to wholesale trade turnover data

The quarterly wholesale trade sample survey carried out by ISTAT is character-
ised by a methodological background quite similar to the retail trade survey’s one.
Also in this case, we have supposed to focus on the estimation of total turnover,
considering the preliminary quick sample — available after 60 days from the end of
the reference quarter — as the observed sample (size #), and the final sample ob-
served after 180 days as the population (size IN). A database of quarterly turnover
data — including, on a quarterly average, 5,020 enterprises — has been built up on
the basis of the units always respondent in the same quarter of the years 2007 (),
2006 (#1) and 2005 (~2). In this context, domains of interest have been given by
D1: Food products in large enterprises (on average of 2007 months, N=121 and
#=111), D2: Non food products in large enterprises (IN=3,070, n=2,805), D3: Food prod-
ucts in small and medinm enterprises IN=594, n=492), D4: Non food products in small and
medinm enterprises (IN=1,235, #n=1,055). The average sampling rate is equal to
88.9%, that is quite higher with respect to the retail trade context. The selection
of the pseudo optimal ¢ parameter has been carried out on the basis of a method-
ology analogous to the retail trade case.

Estimation criteria have been compared in table 2, that keeps the same formal
structure of table 1. In this case, we have the following outcomes:

TABLE 2

Comparison among estimation strategies — Average of quarterly 2007 estimates for the wholesale trade turnover

L. Parameter ¢ MAPE Number of outliers
Criterion
DI D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4
w=N/n - - - - 075 091 101 277 - B B _
wrrand a=1 180 522 208 528 012 000 073 251 3 5 30 5
151 364 276 201 087 156 3.83 6 337 6 58
5 364 276 201 113 089 105 396 2 6 2 18
w*and =1 14.6 88 170 280 064 072 094 261 8 368 53 14
78 140 197 169 075 079 098  2.68 15 278 7 41
7.8 140 197 169 076  1.08  3.74 6 46 3 11
wiand =05 169 339 181 473 014 005 078 254 4 190 53 5
174 273 248 186 .00 121 097 384 6 344 7 152
174 273 248 186 0.90 1.07 347 2 10 2 9
w*and #=0.5 14.2 43 161 238 067 076 093 265 14 376 96 19
9.6 178 9.8 130 076 081 095 271 13 395 94 178
9.6 178 98 130 075 081 107 270 5 29 11 17
werand o=2 188 468 181  57.6 010 001 080 246 2 135 52 5
157 306 145 212 116 173 114 386 5 125 50 48
157 306 145 212 131 117 171 447 2 8 5 6
w*and o=2 156 135 182 325 061 069 093 258 4 82 30 8
108 217 160  20.0 0.80  1.00 29 219 64 28
108 217 160 200 076 073 112 [ 2.67 4 20 6 18

The 3 ¢listed are: ¢*(2007), ¢*(2006) and azg[¢*(2006)]. MAPE = Mean of Absolute Percent Errors.
Bold: MAPEs lower than MAPE obtained with »=N/z. In box: the lowest MAPE for each domain.
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1) the RRE improves the ORE in each domain, but in a lower number of cases
with respect to retail trade.

2) The use of »* instead of wyy is quite useful, because it always leads to lower lev-
els of MAPE, except for D2, using arg[¢*(2006)] coupled with ¢=0.5, and D3
using a=1.

3) In the most part of cases, the use of wy should be coupled with the standard
option a=1.

4) On the other hand, the recourse to »* leads to lower MAPEs with respect to
the standard option a=1 when the alternative option 4¢=0.5 is used, while the
option a=2 quite always leads to worst results. This result is similar to the one
obtained in the retail trade context.

On the whole, as regards wholesale trade a real best strategy does not exist
(bold figures in boxes), because one should prefer »* for D1 and D4 and wy for
D2 and D3. Three strategies — all based on the new proposal »* — might be pre-
ferred: w* and a=2 (6 bold figures and 3 boxes), »* and a=1 (5 bold figures and 1
box), »* and a=0.5 (5 bold figures).

Finally, optimal levels of ¢ are more steady with respect to the retail trade case
(that may depend on the higher response rate), while both for retail and wholesale
trade the lowest number of outliers is obtained using a»g[¢*(2006)].

The overall percent gain due to the use of the best RRE with respect to the
ORET is equal to 10.1% for wholesale, while for retail trade it is 19.7%. Since the
corresponding sampling rates are, respectively, 88.9% and 74.3%, one may con-
clude that 14.6 percent points less in response rate correspond to a 9.6% larger
gain, e.g. that 1.5 percent points less in response rate correspond to a 1% larger
gain due to RRE.

Parameters ¢ are quite unsteady depending on the option used and the do-
main concerned. Moreover, they are extremely heterogeneous comparing retail
trade with wholesale: the only partial exception regards domain D3, for which
all the ¢ parameters range from 5.1 up to 27.6. That confirms how it may not be
convenient to use a fixed level of ¢ whatever is the month and/or the reference
domain.

4.3 Non responses’ randomisation and comparison with respect to other criteria

In order to better evaluate efficiency of the various ratio estimators compared,
for both retail trade and wholesale trade a lower response rate has been simulated
according to a random selection of 1,000 samples in each domain. Each new
simple random selection produced a new sample containing 50% of units, used as
it were the real (quick) sample available for further calculations.

Moreover, two additional criteria for outlier detection have been evaluated, us-
ing both the real samples analysed in section 4.1 and 4.2 and the simulated ones
mentioned above. These criteria are:

71t is given by 100 minus the average of the percent ratios between the bold MAPE in box and
the MAPE obtained with the ORE for each of the 4 domains.
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1) ordinary calibration: outlier data are not identified, while re-weighting is ap-
plied to all the sample units, imposing the same constraint used for finding the
pseudo optimal ¢ parameters in the Hulliget’s criterion context;

2) the bias ratio criterion exposed in the Appendix, using a 10% threshold and
excluding outliers found from further calculations.

We have put in direct comparisons the main outcomes derived from tables 1
and 2 and the average M.APEs derived from sample randomisation, adding re-
sults obtained using calibration and bias ratio (tables 3 and 4).

As regards retail trade (table 3), if the response rate is lower than in the real
context (50%), the RRE enforces its usefulness, because: a) it always improves
the ORE for domains D1, D2 and D3; b) it improves the ORE in D4 as well, us-
ing wy with a=1 or a=2. Moreover, the relative efficiency gain is larger with re-
spect to the real context: for instance, as regards domain D1 the average MAPE
decreases from 2.49 (ORE) to 0.64 (RRE), while using the real quick response ra-
tes we pass from 2.26 to 1.60. A similar result occurs for D3: MLAPE lessens from
2.13 to 1.07, much more than when the real quick responses are used (from 1.95
to 1.41).

Broadly speaking, taking into account results obtained with both real and ran-
domised samples, we can conclude that »* should be preferred to i and that it is
more realistic to suppose a#1, even though in the randomised context the option
a=2 should be preferred.

As regards calibration and bias ratio, the former leads to better results in the
real contexts, while the latter should be preferred in the randomized frame. In
particular, bias ratio is the only criterion able to lessen significantly MLAPE as re-
gards D2, since it passes from the original 4.21 referred to the ORE to 1.45. In all
the other cases, both calibration and bias ratio can be improved by the RRE cou-
pled with a proper choice of .

TABLE 3

Comparison between results obtained using the real response rates and simulated 50% response rates (1,000 random
replications8); results derived from calibration and bias ratio criteria (retail trade: average of 2007 estimates)

Criterion MAPE — Real response rates MAPE-1,000 random replications
D1 D2 D3 D4 D1 D2 D3 D4
W=N/n 2.26 247 1.95 1.42 2.49 4.21 213 2.21
wrand o=1 (1) 453 2.50 2.29 3.39 2.39 415 131
w*and =1 1.86 2.20 1.43 1.68 0.58 4.10 174 2.76
werand #=0.5 438 2.18 1.97 2.60 2.37 413 1.61 2.54
w*and a=0.5 [ 160 | 224 [ 141 | 1064 1.26 4.05 1.88 2.69
wrrand =2 438 2.63 2.49 4.68 2.35 4.12 1.07 2.02
w*and =2 191 1.54 1.81 0.64 378 1.63 3.05
Calibration 2.22 2.35 2.56 1.89 2.74 4.44 2.05 2.49
Bias ratio (2) 2.89 3.55 3.30 2.05 2.53 1.45 1.92 2.21

(1) Results of the Hulliger’s criterion are based on ¢%2006). MLAPE = Mean of Absolute Percent Errors.
(2) As exposed in the appendix. Without imputation: outliers are excluded from calculations.
Bold: MAPEs lower than MAPE obtained with »#=N/z. In box: the lowest MAPE for each domain.

8 Each MAPE is the mean of 12,000 estimates for retail trade (1,000x12 monthly MAPEs) and
of 4,000 estimates for wholesale trade (1,000x4 quarterly MAPEs).
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As regards wholesale trade (table 4), conclusions similar to retail trade can be
drawn. The RRE still improves the ORE for domains D1 and D2, performs better
than for retail trade in domain D4 (it does not improve the ORE only using »* and
a=0.5) and improves the ORE in D3 as well, using »* with a=1 or a=0.5. With re-
spect to retail trade, the relative efficiency gain is lower, even though it is quite large
in D3 (MAPE passes from 1.67 to 0.38). Moreover, on average #* should be pre-
ferred to wy at least when a=1 or ¢=0.5, while when a=2 both options improve the
ORE and, in particular, » leads to the lowest MLAPE for D1 (0.78). As regards cali-
bration and bias ratio, the former leads to the lowest MLAPE for D4 (in particular, in
the randomized context MAPE is only 0.09, against the original 3.21 obtained using
the ORE), while the latter is optimal in D1 using real response rates (MAPE=0.21).

According to these outcomes, a caution strategy may be based on the joint use
of different criteria for detecting and treating outliers, depending on the particular
domain under study. However, empirical attempts confirm that the recourse to a
RRE strategy would often be the best solution, even though, in some particular
cases, other criteria may improve its efficiency.

A more synthetic resume of results has been reported in table 5, which con-
tains, for each criterion, the overall average MAPE — calculated as mean of
monthly or quarterly MAPESs in each domain and for each sample replication in
the randomised context — separately for retail trade and wholesale trade.

The best strategy is the one based on the RRE with »* and ¢=0.5: as a matter
of fact, this strategy leads to the lowest average M.APE for retail trade using real
response rates (MAPE=1.72) and for wholesale trade in the randomised context
(MAPE=1.61). Moreover, that improves the ORE also for retail trade in the ran-
domised context (MAPE=2.47 against 2.76 obtained with the ORE) and for
wholesale trade using real response rates (M.APE=1.31 against 1.36 obtained with
the ORE). However, in the last 2 cases the best criterion is the bias ratio, whose
only bad performance concerns retail trade using real response rates (its MAPE is
equal to 2.95, quite larger with respect to 2.03 obtained with the ORE). Finally,
the RRE with »* and a=1 is a good strategy as well, because it leads to 3 second
best performances and it always improves the ORE.

TABLE 4

Comparison between results obtained using the real response rates and simulated 50% response rates (1,000 random
replications); results derived from calibration and bias ratio criteria (wholesale trade: average of 2007 estimates)

Criterion MAPE — Real response rates MAPE - 1,000 random replications
D1 D2 D3 D4 D1 D2 D3 D4
w=N/n 0.75 0.91 1.01 2.77 2.32 0.99 1.67 321
wrand o=1 (1) 0.87 1.56 3.83 1.54 0.87 2.21 31
wrand a=1 0.75 0.79 0.98 2.68 1.75 1.36 3.4
wirand =05 1.00 1.21 0.97 3.84 147 0.88 1.87 313
w*and a=0.5 0.76 0.81 0.95 2.71 1.90 0.91 324
wrand a=2 1.16 1.73 1.14 3.86 0.95 3.07 3.03
w* and a=2 0.74 1.00 2.67 1.69 0.97 216 2.94
Calibration 0.76 1.42 1.06 3.18 0.97 293
Bias ratio (2) 0.21 0.93 1.01 2.81 2.23 1.05 1.82 318

(1) Results of the Hulliger’s criterion are based on ¢%2006). MLAPE = Mean of Absolute Percent Errors.
(2) As exposed in the appendix. Without imputation: outliers are excluded from calculations.
Bold: MAPEs lower than MAPE obtained with =N/ z. In box: the lowest MAPE for each domain.
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TABLE 5

Final comparison among criteria based on the average MAPE in 4 domains: D1, D2, D3, D4 (real response rates
and simulated 50% response rates for retail trade and wholesale trade: average of 2007 estimates)

Criterion MAPE — Real response rates MAPE-1.000 random replications
Retail trade Wholesale trade Retalil trade Wholesale trade
w=N/n 2.03 1.36 2.76 2.05
wrand o=1 (1) 3.18 1.80 2.45 1.93
w*and o=1 179 1.30 2.30 177
wrand «=0.5 2.78 1.76 2.66 1.84
w*and «=0.5 172 1.31 2.47 1.61
wrrand =2 3.55 1.97 2.39 1.96
w*and =2 1.85 1.30 2.28 1.94
Calibration 2.26 1.46 2.93 1.79
Bias ratio (2) 2.95 1.24 2.03 2.07

(1) Results of the Hulliger’s criterion are based on ¢%2006). MAPE = Mean of Absolute Percent Errors.
(2) As exposed in the appendix. Without imputation: outliers are excluded from calculations.
Bold: the lowest (best) MAPE. Underlined: the second best MAPE.

5. CONCLUSIONS

In this framework, robust alternatives to the ratio estimator in order to deal
with outliers under a model assisted approach have been evaluated. We first de-
fined the robustified ratio estimator. Then we introduced some potential im-
provements, concerning both the rule linking the original and the robust weights
and the choice of the threshold beyond which a unit is detected as outlier — with
the consequent reduction of its sampling weight. In particular, choice of the
threshold could be driven by a calibration approach that may reduce the risk of ad-
ditional bias due to a too subjective choice. This approach is particularly useful
when a longitudinal database of micro-data is available, as it is common in short-
term business surveys as those taken into account in the empirical attempts.

One of the most relevant features of the RRE technique is that it guarantees a
direct link between the preliminary treatment of micro-data and the original wei-
ghting system derived from the sampling design and/or the model. This implicit
property should preserve from the risk of very biased estimates due to inconsis-
tency between the logic underlying treatment of outlier data and the final estima-
tion process.

The empirical attempts based on real data confirmed that, in the most part of
case studies, the new technical proposals guarantee: i) low levels of MAPE and,
in particular, a generalised reduction of MAPE with respect to the ordinary ratio
estimator; ii) better performances with respect to the use of ordinary calibration
applied to all the available data (without any preliminary treatment of outliers); iii)
on average, performances better or at most lightly worst with respect to those ob-
tained using the bias ratio criterion. The original robustified ratio estimator can be
improved both in cases when response rates are large enough to contain the ef-
fect of extreme observations on the estimation error (as in the two empirical at-
tempts based on real response rates) and when lower response rates occur (as in
the randomised simulation).
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Future work should concern:

a) the search for a quick operational algorithm able to find the optimal level of
the threshold avoiding a huge number of iterations;

b) the estimation of the mean squared error of the robustified ratio estimator —
given the sampling design and the model — under the methodological changes
herein introduced and discussed;

¢) the replication of simulation studies to other real populations in contexts char-
acterised by low response rates — e.g. not larger than 50%;

d) The choice of different thresholds in a multivariate context.

6. APPENDIX: THE BIAS RATIO CRITERION FOR OUTLIERS’ DETECTION

The bias ratio criterion derives from an adaptation of the classical theory of
confidence intervals. If ) is an estimator of the population total Yp based on all
the # units of the sample, we can suppose to exclude from estimations a given
sub-sample .4 composed by 74 units, so that §=§ _,Us_,, where S_; is the
sub-sample used for estimation. If y_, is the estimator based on S_4, then the

bias ratio (br) of this estimate is:
b =lye= WG ©)

If sample estimates approximately follow a normal distribution, the bias ratio
is approximately N(0,1). We can also define the coverage probability, that is the
probability that the unknown mean is contained within a confidence interval
derived from the standardised normal distribution Z. This probability is:
Pr[—@_a/z—br(j_/l) <Z <z1_a/2—br(j/_A)], where zi1.4/2 is the percentile of

the standardised normal cumulated distribution leaving on the right tail a prob-
ability equal to a/2. The coverage probability equals the nominal, desited confi-
dence level, (1-a), only if the bias ratio is equal to zero. However, according to
Cicchitelli e# al. (1992, 65-66) and Sirndal ez a/ (1993, 163-165), we can consider
that a bias ratio lower than 10% results into a loss of coverage probability lower
than 1%, which is therefore negligible if compared with other shortcomings of
common variance estimates.

The underlying idea related to the use of (5) as regards the outliers problem
consists in testing the significance of the difference between the Yp-estimates ba-
sed on the complete data set and the data set which does not include a certain
sub-set of units. On the basis of a slight adaptation of (5), the selctive choice of
units detected as outliers can be driven by the evaluation of how much bias one
should accept at each step. If the estimate y substitutes the original (unknown)
parameter Yp, the operational rule is based on the following algorithm:

a) for each unit 7 € § we evaluate the approximate bias ratio br:

br(5_)=|i= i |War(G_ ™ ©)



Improving robust ratio estimation in longitudinal surveys with outlier observations 37

and we label with [1] the unit with the largest &7, while j/_m is the estimate ba-

sed on the sub-sample excluding the unit [1]. If br(j/_m) <A — where A may be

equal to 0.10 or to another threshold — no unit is identified as outlier and the
procedure stops, otherwise the unit labelled with [1] is detected as outlier and
the procedure skips to the step b).

b) If we indicate with the label [2] the unit with the second largest bias ratio after
unit [1], we evaluate:

br(jlflu]) = ‘YP - JA/,“)ZJ‘[Vdr(j/im)zj)]*oﬁ (7)

where j_,,, is the estimate based on the sub-sample excluding bozh units [1]

1,2]
and [2]. If br(y_;,) <4, the unit [2] is not detected as outlier and the proce-

dure stops, otherwise the unit labelled with [2] is detected as outlier and the
procedure skips to step c).
¢) The procedure goes on as in the step b), until we find the unit labelled as

[#70] which is the last unit such that br(j_[lz_“ﬂo])>}t — meaning that

br(j_[l 2mon) S A — s0 that the procedure stops with 7o outliers.

It is worthwhile to note that, as for the Hulliget’s criterion, the choice of the
threshold A may be based on a calibration approach similar to the one described
in section 3.3.

ISTAT, Italian National Statistical Institute ROBERTO GISMONDI
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SUMMARY

Tmproving robust ratio estimation in longitudinal surveys with outlier observations

The Hulliger’s robust estimation technique consists in the re-weighting of units identi-
fied as outliers through a Robustified Ratio Estimator (RRE), according to which outliers
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contribute to the final estimate with a sample weight reduced with respect to the original
one. Outlier observations are identified through a standardised function founded on the
difference between observed and expected values. A crucial aspect concerns the choice of
the acceptation threshold, which plays a role in the re-weighting process as well. In this
context, we propose some potential improvements of the RRE, concerning the use of an
objective criterion for fixing the threshold and the re-weighting rules. Results of two em-
pirical attempts based on real data derived from longitudinal surveys show that, in the
most part of case studies, the proposed changes contribute to improve efficiency of esti-
mates with respect to the ordinary ratio estimator.



