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1. INTRODUCTION

The interest in regional convergence has been growing intensively in the last 
decade. The most widely accepted method of testing the convergence hypothesis 
is the regression or -convergence approach. This method has been discussed 
from different points of view (see Durlauf et al., 2005, for a review of the litera-
ture on economic convergence; and Magrini, 2004, for a survey focusing on re-
gional convergence studies). One of the critical points is that it focuses on the 
behavior of the representative economy. In particular, it sheds light on the transi-
tion of this economy towards its own steady state, but it does not provide any in-
sight on the dynamics of the whole cross-sectional distribution of regional per-
capita incomes. In fact, a negative relationship between the growth rates and the 
initial conditions can be associated with a rising, a declining and a stationary 
cross-section income dispersion. Clearly, a method that cannot differentiate be-
tween convergence, divergence and stationarity is of limited or no use. This fail-
ure is essentially a simple intuition of what is termed Galton’s fallacy (Quah, 
1993).

More recently, an alternative approach to the analysis of convergence has been 
proposed in order to solve this problem. Such a method, known as the intra-
distribution dynamics approach (Quah, 1996a, 1996b, 1996c, 1997, 2007), examines 
directly how the whole income distribution changes over time and, thus, it ap-
pears more informative than the regression approach. 

The intra-distribution dynamics was generally analyzed through the application 
of Markov chain methodologies (Quah, 1996b; López-Bazo et al., 1999; Fingle-
ton, 1997, 1999; Bulli, 2001) or, more recently, through the estimation of condi-
tional densities using stochastic kernel estimators (Quah, 1997; Lamo, 2000; Pit-
tau and Zelli, 2006; Magrini, 2004). All the studies using kernel estimators provide 
contour plots of the conditional density to describe the law of motion of cross-
sectional distributions. So, they treat the conditional density function as a bivari-
ate density function, while it has been noticed that the conditional density func-
tion is a sequence of univariate functions (Hyndman, 1996). Furthermore, these 



R. Basile 4

studies scantly take account of the recent developments in the statistical literature 
on conditional density estimation (Hyndman et al., 1996; Fan et al., 1996; Hall et
al., 1999; Hyndman and Yao, 2002), which have highlighted the strong bias prob-
lems associated with the widely used standard kernel estimator and have pro-
posed new estimators with better statistical properties. 

The aim of this paper is to explore alternative conditional density estimators 
and alternative graphical methods, both developed by Hyndman et al. (1996), to 
describe the law of motion of cross-regional distributions of per-capita incomes 
in Europe. In particular, Hyndman et al. (1996) have noticed that the mean func-
tion of the kernel density estimator is equivalent to the Nadaraya-Watson kernel 
smoother. Because of the undesirable bias properties of this smoother, they have 
proposed a modified conditional density estimator with a mean equivalent to 
some other nonparametric regression smoothers that have better statistical prop-
erties in terms of mean-bias. This new estimator has smaller integrated mean 
square error than the standard kernel estimator.  

The analysis performed in the paper can be interpreted as a test of the hy-
pothesis of “absolute convergence”, since it does not control for the heterogene-
ity in the structural characteristics of the regions (for example, in terms of tech-
nologies, rates of population growth, saving rates and so on) (see Galor, 1996, for 
a distinction between absolute, conditional and club convergence hypotheses). 
Yet, assessing absolute convergence across European regions in terms of per-
capita GDP is still a matter of primary importance in order to evaluate the effec-
tiveness of Cohesion Policies. This hypothesis seems to be the one that the 
European Commission is interested in, as Quah (1996a, p. 1048, footnote 4) al-
ready pointed out. 

The layout of the paper is the following. In Section 2, the most recent litera-
ture on the intra-distribution dynamics approach and on conditional density esti-
mators is reviewed. In Section 3, estimation results obtained applying different 
estimators to EU regions’ per-capita GDP data over the period 1980-2002 are re-
ported. Section 4 concludes. 

2. INTRA-DISTRIBUTION DYNAMICS AND DENSITY ESTIMATORS

2.1 The transition dynamics approach and the kernel conditional density estimator 

Danny Quah (1997, 2007) has suggested an interesting approach to the analysis 
of economic convergence based on the concept of transition dynamics. In a nut-
shell, this method consists of studying the dynamics of the entire distribution of 
the levels of per-capita income of a set of economies. In the most recent version, 
it consists of estimating univariate and conditional density functions and of com-
puting the ergodic distribution to describe the long-run growth behaviour of per-
capita income distribution. The univariate analysis allows to identify the features 
of the regional distribution of per-capita income at different points in time (for 
example, at the initial and final years of a long time period). The conditional den-
sity analysis gives information on the changes of the relative position of various 
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regions in the cross-section distribution of per-capita income over time, the so-
called ‘intra-distribution dynamics’ (IDD).1

More formally, the IDD approach consists of estimating and visualizing the 
conditional density of Y  given X , where Y  is the regional per-capita income at 
time t  and X  the regional per-capita income at time t . Denote the sample 
by 1 1{( , ), ...,( , )}n nX Y X Y  and the observations by 1 1{( , ), ...,( , )}n nx y x y ; thus, the 
aim of the researcher is to estimate the density of Y  conditional on X x . Let 

( , )g x y  be the joint density of ( , )X Y , ( )h x  the marginal density of X  and 
( | ) ( , ) ( )f x y g x y h x  the conditional density of |( )Y X x . The most ob-

vious estimator of the conditional density is the kernel estimator, firstly proposed 
by Rosenblatt (1969). Recently, Hyndman et al. (1996) have further explored its 
properties. They define:  

ˆ ˆˆ( | ) ( , ) ( )f x y g x y h x  (1) 

where 

1

1ˆ ( , )
n i yi x

i

y Yx X
g x y K

nab a b

is the estimated joint density of ( , )X Y  and 
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is the estimated marginal density.2
The two parameters a and b control the smoothness between conditional den-

sities in the x direction (the smoothing parameter for the regression) and the 
smoothness of each conditional density in the y direction, respectively. As usual, 
small bandwidths produce small bias and large variance whereas large bandwidths 
give large bias and small variance. As shown in Bashtannyk and Hyndman (2001), 
optimal bandwidths can be computed by generalized cross validation (GCV).  

The bandwidth a can either be fixed or it can vary as a function of the focal 
point x. When the data are not homogenously distributed over all the sample 
space (that is when there are regions of sparse data), a variable (or nearest-
neighbor) bandwidth is recommended. In this case, we adjust a(X) so that a fixed 

1 Within this approach, the intra-distribution dynamics is modeled as a stochastic kernel under 
the hypotheses of time invariance and first order evolution, that is the transition mechanism is as-
sumed to be time invariant and the model is assumed to be a time-homogenous Markov Chain. 

2 . x  and . y  are Euclidean distance metrics on the spaces of X and Y respectively. K(.) is a 

symmetric density function, known as the kernel function. Usually, the Epanechnikof or the Gaus-
sian kernel are used. 
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number of observations m is included in the window. The fraction m/n is called 
the span of the kernel smoother.3

Equation (1) can also be written as: 

1

1ˆ ( | ) ( )
n i y

i
i

y Y
f y x w x K

b b
 (2) 

where 

1
( )

n ji x x
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j

x Xx X
w x K K

a a
.

Equation (2) suggests that the conditional density estimate at X x  can be 
obtained by summing the n kernel functions in the Y-space, weighted by { ( )}iw x
in the X-space. In other words, equation (2) can be interpreted as the Nadaraya-

Watson kernel regression (or locally weighted averaging) of 
i yy Y

K
b

 on Xi

(see Hyndman and Yao, 2002). This estimator has two desirable properties: (i) it 
is always non-negative and (ii) integrals of the estimators with respect to y equal 1.

2.2 A kernel conditional density estimator with mean-bias correction 

Hyndman et al. (1996) have observed that the estimation of the conditional 
mean function obtained from the kernel density estimator (Equation 2) is equiva-
lent to the Nadaraya-Watson kernel regression function:  

1

ˆˆ ( ) ( | ) ( )
n

i i
i

m x yf y x dy w x Y  (3) 

As is well known, the Nadaraya-Watson smoother can present a large bias both 
on the boundary of the predictor space, due to the asymmetry of the kernel 
neighbourhood, and in its interior, if the true mean function has substantial cur-
vature or if the design points are very irregularly spaced.  

Given the undesirable bias properties of the kernel smoother, Hyndman et al.
(1996) has proposed an alternative conditional density estimator with a mean 
function equivalent to that of other nonparametric regression smoothers having 
better properties than the Nadaraya-Watson one.  

The new class of conditional density estimators can be defined as 

3 It is important to say that there is not any statistical method to choose the optimal span for the 
conditional kernel density estimation. A simple way for choosing the span, followed in this paper, is to 
start from the value of the span selected by GCV for the k-nearest-neighbor local linear smoother (see 
section 3.1) and then try with other values higher and lower than this value (see Section 3.3). 
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where * ˆˆ( ) ( ) ( )i iY x e r x l x , ˆ( )r x  is an estimator of the conditional mean 

function ( ) [ | ]r x E Y X x , ˆ( )i i ie Y r x  and (̂ )l x  is the mean of *ˆ ( | )f e x .
Since the error term ( ie ) has the same distribution of iy  except for a shift in 

the conditional mean, one may start by applying the standard kernel density esti-
mator to the points { , }i ix e  and, then, adding the values of ˆ( )r x  to the estimated 

conditional densities *ˆ ( | )f e x  in order to obtain an estimate of the conditional 

density of Y|(X=x). Since (̂ )l x  is constant under certain conditions (homoske-

dastic and independent errors), the mean-bias of *ˆ ( | )f y x  is simply the bias of 
ˆ( )r x  and the integrated mean square error is reduced.  

Obviously, setting 
1

ˆ ˆ( ) ( ) ( )
n

i i
i

r x m x w x Y  (that is the Nadaraya-Watson 

smoother) implies that *̂
ˆ( | ) ( | )f y x f y x . However, ( )r x  can also be esti-

mated by using many other smoothers having better properties than the kernel 
regression estimator, ˆ ( )m x .4 In other words, using the method developed by 

Hyndman et al. (1996), the mean function of *ˆ ( | )f y x  is allowed to be equal to a 
smoother with better bias properties than the kernel regression. In this way, we 
obtain an estimate of the conditional density with a mean-bias lower than that of 
the kernel estimator.  

3. SOME EVIDENCE ON REGIONAL CONVERGENCE IN EUROPE

3.1 Data, scatterplot smoothing and empirical strategy 

We analyze the IDD of regional per-capita incomes in Europe over the period 
1980-2002. Per-capita income levels are normalized with respect to the EU average 
in order to remove co-movements due to the European wide business cycle and 
trends in the average values. The income variable is the total gross value-added 
(GVA) computed according to the European System of integrated Accounts 
(ESA95). The total GVA figures are at constant prices 1995 and are converted to 
Purchasing Power Standards (PPS). However, only national PPS have been applied, 
since Eurostat does not possess comparable regional price levels that would enable 
us to take regional differences in price levels into account. The number of NUTS2 

4 Using ˆ( )r x  we often introduce an extra smoothing parameter, c. Notice that both c and a con-
trol smoothness in the x direction; a controls how quickly the conditional densities can change in 
shape and spread while c controls the smoothness of the mean of the conditional densities over x.
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regions included in the sample is 189 (the list of regions can be provided upon re-
quest). Data are drawn from the Cambridge Econometrics Dataset.5

In order to estimate conditional density functions ( | )f y x , evaluation at a 
large number of points is frequently required. For this reason, we fix 15 and 
exploit the panel structure of the dataset. Thus, Y and X are vectors of 1,512 ob-
servations (189 regions  8 periods).6

Figure 1 shows the scatterplot of relative per-capita income levels at time t and 
t+15. We can clearly observe three things: (1) data are distributed around the 
main diagonal, indicating a high degree of immobility; (2) at the extreme of the 
sample space data are sparser; (3) a few extreme observations appear on the right 
side of the scatterplot. These six points refer to Groningen, a region often ex-
cluded from convergence analyses, since it always appears as an outlier.7 How-
ever, in spirit of the distribution dynamics approach described by Quah (1997, p. 
34), we did not exclude regions from the dataset just because they have “performed 
extraordinary well or extraordinary poorly relative to the bulk of other macroeconomies”. They 
represent real people and real regions not just observations that might be useful 
to delete in statistical analysis. Rather, an effort has to be made to find estimation 
methods robust against outliers.  

In Figure 1 we also superimpose the estimated fit of three different scatterplot 
smoothers: (a) the Nadaraya-Watson (kernel regression) estimator (‘dotted’ curve) 
with a Gaussian kernel and a fixed bandwidth h=0.097; (b) the local linear regres-
sion smoother (‘long-dashed curve’) with a variable bandwidth (also known as the 
k-nearest-neighbor local linear smoother)8; and (c) the lowess (‘solid’ curve)9. All 

5 In alternative to the NUTS regions, some authors have used Functional Urban Regions (FURs) 
as units of analysis (Magrini, 1999) in order to take the spatial sphere of socio-economic influence 
of any basic unit into account. However, the main data sources (Eurostat and Cambridge Econo-
metrics) only provide data at NUTS level. 

6 In this kind of analysis, starting from the work of Quah (1997), it is standard to pool different 
cross-sections of the data to estimate conditional densities (see also Magrini, 2004). The choice of 

= 15 might appear as arbitrary. In Section 3.3 the results of the analyses with different values for 
 are discussed. 

7 Groningen seems to have worsened its relative economic position in the second half of the 
eighties. However, the evolution of gas prices and changes in the way in which GDP in the energy 
sector was distributed between regions are well-known reasons for this feature. Thus, Groningen 
could not be considered as an economic outlier in strict sense and might be excluded from the 
analysis. However, in the present paper we decided to keep this region within the sample in order to 
show the potential effects of outliers on the estimate of conditional densities. In Section 3.3 we re-
port the results of the analysis performed after having excluded Groningen from the sample. 

8 It is important to report that the result of the local linear regression smoother with fixed 
bandwidth is analogue to that of the kernel estimator with fixed bandwidth, while the result of the 
kernel regression smoother with variable bandwidth is analogue to that of the k-nearest-neighbor 
local linear smoother. Therefore, these two “intermediate” cases are not considered in Figure 1. 

9 The lowess can be interpreted as a tri-cube kernel scatterplot smoother, able to capture local 
fluctuations in the density function of the independent variable (Cleveland, 1979; Cleveland and 
Devlin, 1988). The combination of three features - nearest neighbours, smoothed weight function 
(the tricube kernel) and local expected value formed via locally weighted regressions - helps the low-
ess regression outperform many other scatterplot smoothers. In particular, a local linear smoother is, 
per se, not robust against outliers. Only, the lowess is very robust against ‘far out’ observations, since it 
down-weights large residuals. 
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bandwidth parameters have been selected by using the GCV method. In the cases 
(b) and (c) the span that defines the size of the neighborhood in terms of a pro-
portion of the sample size is equal to 0.15 (the width of the smoothing windows 
always contain the 15% of the data).  

As expected, the Nadaraya-Watson (or local averaging) smoother appears more 
sensitive than the other two smoothers to extreme observations (Groningen) and 
to the data sparseness at the boundary. Moreover, a difference between the local 
linear regression with variable bandwidth and the lowess emerges only at the ex-
treme right side of the sample space, confirming that only the lowess is resistant 
against isolated points.  

In the rest of this section we report the results of different conditional density 
estimators. First, we estimate 15

ˆ ( | )f y x  using a kernel estimator with a constant 
bandwidth parameter a (equation 2). In this first step we compare two alternative 
graphical techniques for visualizing the conditional density estimators: the tradi-
tional perspective and contour plots, on the one side, and the new ‘stacked’ and 
‘HDR’ plots (described in section 3.2), on the other. Then, we estimate condi-
tional densities using two alternative methods: (i) a kernel density estimator with 
variable bandwidth; (ii) a kernel density estimator with variable bandwidth and 
mean bias correction (equation 4).10
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Figure 1 – Regional per-capita income in Europe: comparing different scatterplot smoothers. 
Notes: the graph reports a scatterplot of relative per-capita income levels at time t and t+15. The 
estimated fits of three different scatterplot smoothers are superimposed: (a) the Nadaraya-Watson 
estimator (‘dotted’ curve); (b) the local linear regression smoother (‘long-dashed curve’) with vari-
able bandwidth; and (c) the lowess (‘solid’ curve). 

10 All estimations were performed using the R software. In particular, we used the code hdrcde
developed by Robert Hyndman and the code locfit (Loader, 1996). R scripts and data used in the 
paper are available upon request. 
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3.2 New graphical methods for visualizing intra-distribution dynamics 

All the studies on intra-distribution dynamics using nonparametric stochastic 
kernel density estimators provide three-dimensional perspective plots and/or the 
corresponding contour plots of the conditional density to describe the law of mo-
tion of cross-sectional distributions. Therefore, they treat the conditional density 
as a bivariate density function, while the latter must be interpreted as a sequence 
of univariate densities of relative per-capita income levels conditional on certain 
initial levels.  

Here we use new graphical methods for visualizing conditional density estima-
tors developed by Hyndman et al. (1996) and Hyndman (1996). The first graphical 
technique, called the “stacked conditional density plot” (Figures 3A), displays a num-
ber of conditional densities plotted side by side in a perspective plot.11 It facili-
tates viewing the changes in the shape of the distributions of the variable ob-
served at time t  over the range of the same variable observed at time t. In 
other words, like a row of a transition matrix, each univariate density plot de-
scribes transitions over 15 years from a given income value in period t. Hyndman 
et al. (1996) note that this plot is “much more informative than the traditional displays of 
three dimensional functions since it highlights the conditioning” (p. 13).  

The second type of plot proposed by Hyndman et al. (1996) is the “highest condi-
tional density region” (HDR) plot (Figures 3B). Each vertical band represents the 
projection on the xy plan of the conditional density of y on x. In each band the 
25% (the darker-shaded region), 50%, 75% and 90% (the lighter-shaded region) 
HDRs are reported. A high density region is the smallest region of the sample 
space containing a given probability. These regions allow a visual summary of the 
characteristics of a probability distribution function. In the case of unimodal dis-
tributions, the HDRs are exactly the usual probabilities around the mean value. In 
the case of multimodal distributions, the HDR displays different disjointed sub-
regions.

The HDR plot is particularly important to analyze intra-distribution dynamics. 
If the 45-degree diagonal crosses the 25% or the 50% HDRs, it means that most 
of the elements in the distribution remain where they started (there is ‘strong’ per-
sistence); if it crosses only the 75% or the 90% HDRs, we can conclude in terms of 
‘weak’ persistence. If the horizontal line traced at the zero-value of the period t+15
axis crosses all the 25-50% (75-90%) HDRs, we can say that there is ‘strong’ 
(‘weak’) global convergence towards equality. Finally, if some 25-50% (75-90%) HDRs
are crossed by a horizontal line traced at any value of the t+15 axis, we can say 
that there is ‘strong’ (‘weak’) local or ‘club convergence’.12 Clearly, this method is particu-
larly informative for the analysis of regional growth behavior, since it highlights 
the dynamics of the entire cross-section distribution. It remains important to ana-

11 Each univariate density plot is always non-negative and integrates to unity. Since the condi-
tional density plot has been evaluated on an equispaced grid of 100 values over the range of x and y
directions, Figure 3A displays 100 stacked univariate densities. 

12 The ‘club convergence hypothesis’ states that regions catch up with one another but only 
within particular subgroups. 
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lyze any other moment of the distribution (such as the mean and the variance) 
and any other central point. In particular, one may wish to analyze the modes, the 
values of y where the density function takes on its maximum values. In fact, espe-
cially when the distribution function is bimodal, the mean and the median are not 
very useful, since they will provide only a ‘compromise’ value between the two 
peaks. Thus, the modes may be considered as a form of robust nonparametric 
regression. In each figure, the highest modes for each conditional density estimate 
are superimposed on the HDR plots and shown as a bullet. 

3.3 Empirical evidence 

Figure 2 shows traditional perspective and contour plots for the conditional 
kernel density estimate with fixed bandwidth, describing 15-year horizon evolu-
tions of the distribution of per-capita income relative to the European average. 
As well-known, the selection of the bandwidth parameter is a crucial issue in the 
estimation of densities. Optimal bandwidths have been selected using the method 
developed by Bashtannyk and Hyndman (2001) based on GCV. The bandwidth a
for the x direction is 0.132, while the bandwidth b for the y direction is 0.127. 
This graph would suggest that over the period considered European regions have 
followed a convergence path. In fact, using the standard terminology, we observe 
a clockwise shift in mass indicating some degree of intra-distribution mobility, 
which would imply that the richer regions became poorer and the poorer became 
richer. These findings appear consistent with those reported in previous work 
(see, for example, Brasili and Gutierrez, 2004). Moreover, as it is common in 
these kinds of analyses, a ‘multiple-peaks’ property manifests. In fact, we can ob-
serve some distinct local maxima (or ‘basins of attraction’). Contour plot makes 
this clearer. 

The same estimation results discussed above are visualized in Figure 3 using 
the alternative stacked density plot and the HDR plot. From this graph, we would 
learn that regions that at the beginning of the period had a per-capita income 
level lower (higher) than the EU average would be more likely to improve 
(worsen) their relative position over the next 15 years: the 25% HDRs associated 
with relative per-capita income levels at time t lower (higher) than 1.0 (that is the 
European average) are all above (below) the main diagonal. Again, this means 
that the poorer economies would be catching up with the richer ones.  

The HDR plot allows to identify (better than the standard contour plot) the 
presence of different ‘convergence clubs’. The position of the highest modes and 
of the 25% HDRs would suggest local convergence at relative income levels of 
0.7, 1.3, 1.8 and 2.2. Moreover, signs of bimodality would appear for very high 
levels of the distribution at time t: regions that at the beginning of the period had 
a very high income level would have experienced over time either a slowdown or 
a convergence towards the relative income of 2.2. However, this evidence is mis-
leading, since a few extreme observations (all referring to Groningen) determines 
such an evidence of bimodality. 
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Figure 2 – Intra-Distribution Dynamics of regional per-capita income in Europe. 
Standard perspective plot (left hand side panel) and contour plot (right hand side panel) of condi-
tional density for transitions of 15 years between 1980-2002. Estimates are based on a kernel den-
sity estimator with fixed bandwidths (a = 0.132; b = 0.127). 

Moreover, looking more carefully at Figure 3, we may observe that the plotted 
conditional density function does not fit the scattered points very well. In particu-
lar, we suspect that the sparseness of data at the boundaries and the presence of 
extreme points (Groningen) might have affected the entire estimated conditional 
density function, as well as they have affected the conditional mean function. 
Thus, alternative estimation methods are needed. First, we try with a kernel den-
sity estimator with a variable bandwidth to accommodate the problem of data 
sparseness (Figure 4). 
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Figure 3 – Intra-Distribution Dynamics of regional per-capita income in Europe. 
Stacked density plot and HDR plot of conditional density for transitions of 15 years between 1980-
2002. Estimates are based on a kernel density estimator with fixed bandwidths (a = 0.132; b = 0.127). 
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Figure 4 – Intra-Distribution Dynamics of regional per-capita income in Europe. 
HDR plot of conditional density for transitions of 15 years between 1980-2002.  
Estimates are based on a kernel density estimator with a variable bandwidth in the x direction (span 
= 0.15) and a fixed bandwidth in the y direction (b = 0.127). 

The choice of a variable bandwidth substantially modifies the form of the con-
ditional density function.13 In particular, the evidence of mobility (and of conver-
gence) is now confined to the upper and lower tails of the distribution at time t,
while regions with a relative per-capita income between 0.7 and 1.3 at the begin-
ning of the period did not change their relative position over time. However, the 
evidence of bimodality associated with very high initial income levels is now even 
stronger and, more importantly, the position of the highest modes is more 
strongly influenced by the values of Groningen. Therefore, the choice of a vari-
able bandwidth seems to magnify the effect of outliers on the right hand side of 
the shape of the distribution. An estimator robust against outliers is definitely 
needed.

Thus, Figure 5 reports the results based on the modified conditional kernel 
density estimator with mean function specified by a lowess smoother. As it can be 
observed, after a certain threshold (about 0.6 times the European average), the 
45-degree diagonal crosses the 25% and 50% HDRs and the modal regression 
follows a straight line. This reveals a high degree of immobility or persistence: 
European regions tended to maintain their relative positions over the study pe-
riod. However, there is still some evidence of mobility at the left side of the sam-

13 The span chosen for the variable bandwidth kernel density estimation is the same as that se-
lected by GCV for the k-nearest-neighbours local linear smoother, that is 0.15. In section 5 we try 
with other span parameters to check the robustness of the results. 
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ple space: the 25% HDRs and the relative modes lie above the main diagonal for 
values of regional income lower than the threshold. This means that very poor 
regions registered higher growth rates than the other regions between 1980 and 
2002. Moreover, these regions tend to converge towards a common level of rela-
tive per-capita income of about 0.6 times the overall mean, in line with the club 
convergence hypothesis. The convergence within this poorer group is shown by 
the slope of the modal regression which is almost parallel to the horizontal axis. 
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Figure 5 – Intra-Distribution Dynamics of regional per-capita income in Europe. 
HDR plot of conditional density for transitions of 15 years between 1980-2002. 
Estimates are based on a kernel density estimator with a variable bandwidth in the x direction (span 
= 0.15), a fixed bandwidth in the y direction (b = 0.127) and a mean function specified by a lowess 
smoother (span = 0.15). 

3.3 Robustness analysis 

In this section we briefly discuss the results of a number of further analyses 
aimed at checking the robustness of the findings discussed above. First of all, we 
discuss the results of an IDD analysis performed after having excluded Gronin-
gen from the sample. As already mentioned, the observed level of per capita 
GDP for this region is an artefact: it is the direct consequence of the way the 
Dutch accounting systems recorded revenues from oil extraction carried out in 
North Sea fields. Thus, both the exceptionally high level of per capita GDP at the 
beginning of the analysed period and the exceptionally low rate of growth over 
the 15-year periods have little or nothing to do with the way the regional econ-
omy actually worked. This means that the observation corresponding to Gronin-
gen cannot be interpreted, strictly speaking, as an outlier in economic sense. In 
contrast, it is just a measurement error, thus representing a typical example of ob-
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servation that should be deleted in order to obtain sensible results. Since the aim 
of the paper is also to draw some effective conclusions on convergence dynamics 
of per capita income among European regions, here we check the robustness of 
the results reported in the previous section by replicating the last stage of the 
analysis (that is Figure 5) on a dataset that excludes Groningen. As in Figure 5, 
persistency and local convergence within a poor-regions’ club seem to be the 
main messages of this estimate (see Figure A1 in the Appendix). 

The second robustness check concerns the choice of .  We have verified 
whether the results of the IDD analysis change as the transitional period changes 
from 15 years to 10 and 20. More specifically, we have considered =10 and 

= 20. Again, the main features depicted in Figure 5 remain unchanged (see 
Figures A2 and A3). The similarity between the short-horizon and the long-
horizon intra-distribution dynamics can be interpreted as an evidence that the 
Markov property is somehow preserved (Quah, 2007). 

The third issue that might raise some doubt on the reliability of the results re-
ported in Figure 5 regards the choice of the adaptive bandwidth. In the case of 
Figure 5 we have used a variable a parameter for the estimation of conditional 
densities since the data are not homogenously distributed over all the sample 
space. That is we have adjusted a(X) so that a fixed number of observations is in-
cluded in the window. As observed in Section 2.2, there is not a statistical method 
to choose the optimal span for the conditional kernel density estimation, yet. So, 
we have proceeded by using as span parameter for the conditional density the 
same value of the span selected by GCV for the k-nearest-neighbor local linear 
smoother (that is 0.15). Also this choice might appear as quite arbitrary. Thus, in 
order to check the robustness of the analysis, we have estimated the conditional 
density function with different values of the span: namely we tried with a span 
equal to 0.05 and 0.50. The results obtained (Figures A4 and A5) suggest that the 
IDD analysis of regional per capita GDP in Europe shown in Figure 5 is not in-
fluenced by the choice of the span parameter.  

4. CONCLUSIONS

In order to describe the law of motion of cross-sectional distributions of re-
gional per-capita incomes in the EU-15 area during the period 1980-2002 and fol-
lowing the intra-distribution dynamics approach proposed by Quah (1997, 2007), 
in this paper we have used a kernel density estimator with variable bandwidth and 
mean bias correction and the Highest Density Regions plot, developed by Hyndman 
et al. (1996) and Hyndman (1996). This density estimator is more robust against 
outliers and has better properties than the kernel estimator with fixed bandwidth 
traditionally used in the literature on intra-distribution dynamics. Moreover, the 
Highest Density Regions plot is very suitable for visualizing conditional density esti-
mates, while the method generally applied in the literature (the contour plot) is 
more appropriate to display the joint distribution. 

Applying the alternative methods to European regional data, we find evidence 
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that enriches the debate on the distribution dynamics. In particular, we obtain 
evidence of strong persistency: over the period 1980-2002 most of the regions 
appear to remain where they were at the beginning; only a fraction of very poor 
regions improves its position over the time period converging towards a very low 
relative income level (‘club convergence’). These results partially contrast with 
those reported in the literature on EU-15 regions (e.g., Brasili and Gutierrez, 
2004) which indicate some degree of intra-distribution mobility, in the sense that 
poor regions become richer and rich regions grow less rapidly. 

The analysis performed in this paper is essentially based on graphical inspec-
tion of the distribution. This may be considered as a weakness, since it would be 
useful to compare the conditional densities estimated with different methods 
through some indicators which help to sum up the degree of mobility of the dis-
tribution. This kind of indicators, such as the Shorrocks (1978) mobility Index 
have been used in the literature only for discrete analyses (transition matrices), 
but not within the continuous state-space approach. Even within the discrete 
framework, however, these indicators are not free of criticisms. The problem is 
that the results depend strongly on the number of classes used to recode the vari-
ables in a discrete space. Since the number of classes is generally arbitrarily cho-
sen by the researcher, also the results of the mobility index turn out to be ad hoc.
In the future, some effort will be devoted in order to overcome these problems 
and to better compare the estimated densities. Furthermore, some effort is 
needed to investigate the causes of persistence, using counterfactual analysis 
along the lines of Basile (2009). Also an extension of the analysis to the enlarged 
European Union is important. 

ISAE (Institute for Studies and Economic Analyses) ROBERTO BASILE
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APPENDIX 
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Figure A1 – Intra-Distribution Dynamics of regional per-capita income in Europe. 
HDR plot of conditional density for transitions of 15 years between 1980-2002. Groningen is ex-
cluded from the sample. 
Estimates are based on a kernel density estimator with a variable bandwidth in the x direction (span 
= 0.15), a fixed bandwidth in the y direction (b = 0.111) and a mean function specified by a lowess 
smoother (span = 0.15). 
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Figure A2 – Intra-Distribution Dynamics of regional per-capita income in Europe. 
HDR plot of conditional density for transitions of 10 years between 1980-2002. Groningen is ex-
cluded from the sample. 
Estimates are based on a kernel density estimator with a variable bandwidth in the x direction (span 
= 0.15), a fixed bandwidth in the y direction (b = 0.075) and a mean function specified by a lowess 
smoother (span = 0.15). 
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Figure A3 – Intra-Distribution Dynamics of regional per-capita income in Europe. 
HDR plot of conditional density for transitions of 20 years between 1980-2002. Groningen is ex-
cluded from the sample. 
Estimates are based on a kernel density estimator with a variable bandwidth in the x direction (span 
= 0.15), a fixed bandwidth in the y direction (b = 0.224) and a mean function specified by a lowess 
smoother (span = 0.15). 
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Figure A4 – Intra-Distribution Dynamics of regional per-capita income in Europe. 
HDR plot of conditional density for transitions of 15 years between 1980-2002. Groningen is ex-
cluded from the sample. 
Estimates are based on a kernel density estimator with a variable bandwidth in the x direction (span 
= 0.05), a fixed bandwidth in the y direction (b = 0.111) and a mean function specified by a lowess 
smoother (span = 0.15). 
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Figure A5 – Intra-Distribution Dynamics of regional per-capita income in Europe. 
HDR plot of conditional density for transitions of 15 years between 1980-2002. Groningen is ex-
cluded from the sample. 
Estimates are based on a kernel density estimator with a variable bandwidth in the x direction (span 
= 0.50), a fixed bandwidth in the y direction (b = 0.111) and a mean function specified by a lowess 
smoother (span = 0.15). 
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SUMMARY

Intra-distribution dynamics of regional per-capita income in Europe: evidence from alternative conditional 
density estimators 

In this paper different conditional density estimators are employed to analyze the 
cross-sectional distribution dynamics of regional per-capita income in Europe during the 
period 1980-2002. First, a kernel estimator with fixed bandwidth (the method traditionally 
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applied in the literature on intra-distribution dynamics) gives evidence of convergence. 
With a modified estimator, proposed by Hyndman et al. (1996), with variable bandwidth 
and mean-bias correction, the dominant income dynamics is that of persistence and lack 
of cohesion: only a fraction of very poor regions improves its position over time converg-
ing towards a low relative income (“poverty trap”). Moreover, an alternative graphical 
technique (more informative than the traditional contour plot) is applied to visualize con-
ditional densities. 


