
STATISTICA, anno LXIX, n. 4, 2009 

SOME PROPERTIES OF KEMP FAMILY OF DISTRIBUTIONS 

C. Satheesh Kumar 

1. INTRODUCTION 

Kemp (1968) considered a wide class of univariate discrete distributions called 
the generalized hypergeometric probability distributions (GHPD), which has the 
following probability generating function (p.g.f.). 
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where ( ; ; )p qF a b   is the generalized hypergeometric series (cf. Slater, 1966 and 

Mathai and Saxena, 1973) , in which a ’ s, b ’s and   are assumed to be appropri-
ate reals and the domain of G(.) is an open interval containing the region of con-
vergence of ( ; ; )p qF a b  . (Dacey, 1972) has listed more than fifty p.g.f.’s involving 

the generalized hypergeometric series, in which more than twenty are special 
cases of (1). These special cases include several well-known discrete distributions 
such as binomial, Poisson, negative binomial, hypergeometric, inverse hyper-
geometric, negative hypergeometric, Polya, inverse Polya, Waring, Yule etc. 
(Kemp, 1968) has studied the properties of the GHPD by considering certain dif-
ferential equations satisfied by various generating functions of the GHPD. For a 
detailed account of GHPD see (Johnson et al., 2005). (Moothathu and Kumar, 
1997) introduced and studied a bivariate version of GHPD and (Kumar, 2002, 
2009) introduced extended versions of GHPD. 

Here in section 2 we show that all the moments of the GHPD exists finitely 
and obtain an expression for raw moments of the GHPD. In section 3 we derive 
certain useful and simple recurrence relations for probabilities, raw moments and 
factorial moments of the GHPD. 

Throughout the paper let us adopt the following simplifying notations, for  
i = 0, 1, ... . 

( ; ; )i p q p qH F a i b i    , 
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and 0( ) 1,a  ( ) ( 1)...( 1), 1.a a a a n nn       Further we need the following se-
ries representation in the sequel. 
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2. MOMENTS OF GHPD 

Let X  be a random variable having GHPD with the following p.g.f., in which 
for 0r  , ( ; ) ( )rP a b P X r   denote its probability mass function. 
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Now we have the following result. 
 
Result 2.1 For any positive integer r , the r -th raw moment r  of GHPD exists 
finitely. 
 
Proof. In (3),   < 1 when 1p q  . Then for    0, for any positive integer r  

and for any t in (- 1  , 1  ), ( ) ( )
( )

r
r
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  exists and is continuous. When 

p q  and/or when  = 0, obviously ( )( )rG t  exists and is continuous at every 

real number t . Thus ( )( )rG t  exists and is continuous for every t  in an open in-
terval containing unity. Hence the r -th factorial moment of GHPD is 
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which is finite, since ( ; ; )p qF a b   in (3) is assumed to be convergent. From (John-

son et al., 2005) we have 
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where ( , )S r j  are the Stirling numbers of the second kind. Hence ( )r
r E X   

exists finitely. 
Here onwards we shall denote ( ; )r r a b  . Therefore the characteristic func-

tion 
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On expanding (.)p qF  and the exponential function ite  in (5) we have the follow-

ing. 
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Equating coefficients of 1( !) ( )rr it  on right hand side expressions of (6) and (7) 
we get 
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where ( , )S r m  are the Stirling numbers of the second kind. Writing 

! ( ) ( )!mn n n m   and rearranging the terms, we obtain 
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Since ( ) ( ) ( )n m n nA A A m   , the above expression can be written as, 
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which is a simple expression for raw moments of GHPD. 

3. RECURRENCE RELATIONS 

Result 3.1. The following is a recurrence relation for probabilities of GHPD, for 
0n  . 
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Proof. Consider the following identity obtainable from (3) on differentiation with 
respect to t . 
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In (3) on replacing ,a b  by 1 , 1p qa b   respectively, we obtain 
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By using (11) in (10) we obtain 
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Equating coefficients of nt  on both sides, we get the relation (9). 
 
Result 3.2. The following is a recurrence relation for raw moments of GHPD, for 

0n  , in which 0 ( ; ) 1a b  . 
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Proof. Consider the following identity obtainable from (5) and (6) on differentia-
tion with respect to t . 
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By using (5) and (6) with ,a b  replaced by 1 , 1p qa b  , one has 
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in the light of (2). On equating coefficients of 1( !) ( )nn it  on both sides, we obtain 
(12). 
 
Result 3.3. Let [ ]( ; )n a b  denote the n-th factorial moment of GHPD with p.g.f. 

(3). Then the following is a recurrence relation for factorial moments of GHPD 
for 0n  , in which [0]( ; ) 1.a b   
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Proof. The factorial moment generating function ( )F t  of GHPD with p.g.f. ( )G t  
given in (3) is the following. 
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The relation (13) follows on differentiating the above equation with respect to t  

and equating coefficients of 1( !) nn t  on both sides, in the light of the arguments 
similar to those in the proof of Result 3.1. 
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SUMMARY 

Some properties of Kemp family of distributions 

This paper studies some important properties of the generalized hypergeometric prob-
ability distribution (GHPD) of Kemp (Sankhya-Series A, 1968) by establishing the exis-
tence of all the moments of the distribution and by deriving a formula for raw moments. 
Here we also obtain certain recurrence relations for probabilities, raw moments and facto-
rial moments of the GHPD. 


