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SOME PROPERTIES OF A GENERALIZED 
TYPE-1 DIRICHLET DISTRIBUTION 

E.V. Mayamol 

1. INTRODUCTION

In this paper we study properties of some new generalizations of Dirichlet 
densities. Johann Peter Gustav Lejeune Dirichlet in (1839) evaluated an integral 
which later gave rise to the well-known probability density which now bears his 
name. Wilks (1962) was the first to use the terminology “Dirichlet Distributions” 
for random variables which have the density function in (1). Dirichlet distribution 
is the generalization of beta distribution. Standard real type-1 and type-2 beta dis-
tributions are extended to standard type-1 and type-2 Dirichlet distributions. 
These Dirichlet distributions are further extended in various directions. The stan-
dard Dirichlet distribution can be found in textbooks on mathematical statistics. 
The standard real type-1 Dirichlet density with parameters 1 1( , ; )k k  is 
given by 
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1 1 1

(1 )  for  0, 1, , ,
( , ..., ) c                                1,   0, 1, 1

0                             elsewhere

k k
k k i

k k k j

x x x x x i k
f x x x x j k  (1) 

In statistical problems the parameters are real and hence the parameters are as-
sumed to be real. But the integrals and corresponding results will hold for com-
plex parameters. In that case, for example 0j  is to be replaced by 

( ) 0j  where (.)  denotes the real part of (.). Complex parameters are 
needed if inverse Mellin transform is used to establish the uniqueness of the cor-
responding densities. 

The standard real type-2 Dirichlet density with parameters 1 1( , ; )k k  is 
given by 
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( , ..., ) c                                       1, , ,   0, 1, 1

0                             elsewhere

k k
k k i

k k j

x x x x x
f x x i k j k  (2) 

This distribution is also known as inverted Dirichlet distribution. In (1) and (2) 
the normalizing constant ck  is the same as the one given in (3), and it is evalu-
ated by integrating out variables one at a time. 
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1 1

( ) ( )c ,   0,  1, , 1.
( )

k
k j

k
j k  (3) 

The Dirichlet density is used in a variety of contexts. Here we discuss mostly 
the type-1 Dirichlet density and its generalizations and hence when we state 
Dirichlet density it will mean a type-1 Dirichlet density. It has found applications 
in order statistics, reliability and survival analysis, Bayesian analysis etc. Use of 
Dirichlet distribution for approximating multinomial probabilities may be seen 
from Johnson (1960). Mosimann (1962, 1963) obtained several characterizations 
of Dirichlet density and utilized this distribution as the prior for the parameters 
of the multinomial and negative multinomial distributions. Spiegelhalter et al.
(1994) used Dirichlet density as a prior model to study the frequencies of con-
genital heart disease. Applications of Dirichlet distribution in modeling the buy-
ing behavior was discussed by Goodhardt, Ehrenberg and Chatfield (1984). Its 
application in the distribution of sparse and crowded cells in occupancy models 
were considered by Sobel and Uppuluri (1974). Lange (1995) used Dirichlet dis-
tribution to model the contributions from different ancestral populations in 
computing forensic match probabilities. Applications of Dirichlet models in ran-
dom division and other geometrical probability problems may be seen from 
Mathai (1999). Several applications involving linear combinations of the compo-
nents of a Dirichlet random vector are pointed out by Provost and Cheong 
(2000). Generalized Dirichlet in Bayesian analysis may be seen from Wong 
(1998).

In this paper, Section 2 briefly introduces different generalized models of the 
Dirichlet density. In Section 3, we discuss different structural representations of 

1x  in one of the generalized Dirichlet models and its applications to geometrical 
probability problems are pointed out. In Section 4, multiple regression and Bayes-
ian estimates are given. 

2. GENERALIZATIONS OF THE DIRICHLET MODEL

There are different generalizations of the Dirichlet distributions in the litera-
ture, some of them are reviewed here. Connor and Mosimann (1969) introduced 
a generalization of the Dirichlet density based on the neutrality principle of pro-
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portions. Let 1( , , )kx x  be the vector of proportions and x1, x2/(1-x1),...,(xk/(1-
x1-...-xk-1)) be indepenently beta distributed with parameters ( ,  ),  1, .i i i k
Then 1( , ..., )kx x  has the joint density function, 

1 ( ) 11
11

1 1
1 11

( , , ) [B( , )] 1  1
i i i k

i
k i k

k i i i j i
j ii

g x x x x x  (4) 

where 

i i
( ) ( )B( , ) ,   0,  0.
( )

i i
i i

i i

Wong (1998) studied this generalized Dirichlet distribution (4) and showed 
that it has a more general covariance function than the Dirichlet distribution. As 
well as the Dirichlet distribution, Wong has also shown that the generalized 
Dirichlet distribution (4) is conjugate to multinomial sampling. It is of interest to 
note that the construction (4) also has interesting applications in Bayesian non-
parametric inference; see e.g. Ishwaran and James (2001). 

In some problems in reliability and survival analysis, the need for considering 
sums of Dirichlet variables arises. Hence, Mathai (2003) introduced a general 
multivariate density of the following form: 
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                        (1 ) (1 )
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The densities in (4) and (5) can be shown to be identical. 
Here we consider a generalization of the Dirichlet density to the following 

form:

1 2

1

1* 1
3 1 1 1 2 1
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k k

k

k k k k

k

f x x x x x x x x

x x
 (6) 

for 10 1,  1, ,  0 1.i kx i k x x  The normalizing constant *Ck  can 
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be obtained by changing the variables to 1 1 2 1 2 1k ku x , u x x ,  , u x x
and integrating variables successively. We can show that 

1 1 1 2 2
*

1 2 1 2 3 2

1 1 2 1

1 2 1

1 2

1 1 2

( ) ( ) ( )1
( ) ( )C
( )           
( )
( )           

( )

k

k

k k

k k

k k

k k

 (7) 

for 0, 1, , 1j j k , 1 1 2 0,  1, ,j j j k . When 

02 k  we have the Dirichlet density. A sample of the surface for 
2k  is given in figure 1. 

Figure 1 – Generalized Dirichlet density with 1 2 3 22,  5,  3,  2,  2.k

Here the proposed work is based on the generalized model given in (6). 

3. STRUCTURAL REPRESENTATIONS OF 1x

This section contains structural representations of 1x  when 1( , , )kx x  has 
the generalized Dirichlet density in (6). Let us consider the joint product moment 
for some arbitrary 1( , , )kt t  when 1( , , )kx x  has the joint density in (6). This 
can be easily seen to be the following, which can be written down by observing 
the normalizing constant in (7). 
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for 1 1 2 10,   0,  1, ,j j j j jt t t j k  where 
Ck* is the same quantity appering in (7). 
In (8) put t1=h and t2=t3=...=tk=0 then we get, 
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1
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1 2 1 2

1 2 1 2
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E( )

( )
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k
j jh

j j j

j j
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 (9) 

This is the thh  moment of 1x . The random variable 1x  has some interesting 
structural properties, that are of interest in many situations. Note that (9) is noth-
ing but the thh  moment of a product of independent type-1 beta random vari-
ables. That is 1 1 2E( ) E( )E( ) E( )h h h h

kx v v v , where jv  is a type-1 beta variable 

with parameters .,,1),,( 12j21 kjjj

Hence it is worth studying 1x  further. Theorems 1 and 2 show the transforma-
tions needed for connecting a set of type-2 beta random variables to 1x . A type-2 
beta density is the following: 

1 ( )

3

( ) (1 )  ,   0 ,   0, 0
( ) ( )( )

0                                 elsewhere.

x x x
g x

Theorem 1. Let 1( , ..., )kx x  have a generalized Dirichlet distribution (6) and 

1 , ..., kz z  be k  independently distributed type-2 beta random variables with pa-
rameters 1 2 1( , ),   1, ,j j j j k  Consider 
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then we can write 1x  as the product of 1, , ky y  in terms of the type-2 beta 
variables 1, , kz z  and further, 1 , , ky y  are independently distributed type-1 
beta random variables with parameters 1 2 1( , ),j j j

j=1,...,k.

Proof. Let us consider the joint moments 1E(( , , ) )h
ky y  for an arbitrary h .

Since 1, , kz z  are independently distributed we can write 
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Now, integrating out over the joint density of 1, , kz z  we have 
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= gamma product in (9). 
Observe from the gamma product in (10) that it is of the form 

1 2E( )E( ) E( )h h h
ky y y  where 1, , ky y  are type-1 beta random variables with 
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parameters 1 2 1( , ),  1, ,j j j j k . Hence 1x  has a struc-

tural representation of the form 1 1 kx y y  where 1, , ky y  are type-1 beta 
random variables. 

Theorem 2. Let 1( , , )kx x  have a generalized Dirichlet distribution (6) and 

1, , kz z  be k  independently distributed type-2 beta random variables with pa-
rameters 1 1 2( ,  ),  1, ,j j j j k  Consider 
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1
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y
z

y
z

then we can write 1x  as the product of 1 , , ky y  in terms of the type-2 beta 
variables 1, , kz z  and further, 1 , , ky y  are independently distributed type-1 
beta random variables with parameters 1 2 1( , ),j j j

j=1,...,k.

Proof. The proof is similar to that of theorem 1. 

Thomas and George (2004) considered a “short memory property”. Let 
1 , ..., kx x  be such that 10 1,  1, ,  0 1.i kx i k x x  and let 

1 11 1 2
1 2 1 1

1 2 1 2 3 1

,  ,  , ,  
( ) ( )

k
k k k

k

x xx x xy y y y x x
x x x x x x x

(11)

be independently distributed. This will be called short memory property. It  
is shown in Thomas and George (2004) that if 1 , , ky y  are independently  
distributed beta variables with parameters 1 2( ,  ), 1 2 2 3( ,  ), ,

1 2 1( ,  )k k k  respectively, then the joint density of 

1( , ..., )kx x  is that given in (6). Thomas and Thannippara (2008) established a 
connection of the criterion for sphericity test to this generalized Dirichlet 
model.
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3.1. Application to Geometrical Probability

We see that 1x  can be represented as the product of type-1 beta random vari-
ables. Now we try to find a geometrical interpretation for 1x  and its applications. 
Let ,  1jX j p , be an ordered set of random points in the Euclidean n-space 

,nR n p . Let O  denote the origin of a rectangular co-ordinate system. Now 

the n1  vector jX can be considered as a point in nR . If 1 , , pX X  are line-
arly independent then the convex hull generated by these p-points almost surely 
determines a p-parallelotope in nR  with the sides 1 , , pOX OX . The random 

volume or p-content ,p n  of this random p-parallelotope is given by 

1
2, 'p n XX

where 
1

p

X
X

X

 is a matrix of order p n , 'X  is the transpose of X  and  

|(.)| denotes the determinant of (.). 
Let the joint distribution of the elements in the real ,p n n p , matrix X

have an absolutely continuous distribution with the density function ( )f X  which 
can be expressed as the function of 'XX . Let 

( ) ( ')f X g XX (12)

where ( ')g XX 0 with probability 1 on the support of 'XX . Let the rows of 
X  be linearly independent so that X is of full rank p . If the density of X  can 
be expressed as in (12) then X  has a spherically symmetric distribution. The 
density of a spherically symmetric distribution remains invariant under orthogo-
nal transformations, (see Mathai, 1999, 1997). Then, writing 'S XX  we have 
the following; where ( )f X  is a density and its total integral is 1. We can convert 
X  into S  and a semi orthogonal matrix, (see Mathai, 1997) then the last step in 
the following line will follow. 

12
2 2

' 0
1 ( ) d ( ) d ( )d  .

2

np
pn

S S
X X

p

f X X g S X S g S S
n

Now let us consider the following results that are given in Mathai (1999). Let 
the p n , n p  real random matrix X  of full rank p  have the density 
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tr( ')
1 1( ) C ' e BXXf X XX   for 'XX >0, ' 0  ( ) 1B B , (13) 

which is the density of a real rectangular matrix-variate gamma, where 1C  is the 
normalizing constant and B  is a constant positive definite parametric matrix of 
order p p .
Then 

12E [ ] ,  
2 2

2

p
h h

n X

p

n h
pnS B h

n
  with 'XXSX

where the real matrix-variate gamma function is given by 

( 1)
4 1 11( ) ( )  ,  ( )  .

2 2 2

p p

p
p p

Here the variable XS  has a real matrix-variate density. A general matrix-variate 
gamma density has the following form 

1
tr( )2( )  e ,

( )
X

p
BS

X X
p

B
f S S  (14) 

10,  ' 0,  ( )
2X X

pS S B B , where the matrix-variate gamma vari-

able is the p p  real symmetric positive definite matrix XS  and the real p p
positive definite matrix B  is a constant parameter matrix,  is a scalar parameter 

and ( )p  is the real matrix-variate gamma function. When we put 1
2

p

and 11
2

B  in (14), then the variable XS  has Wishart density with n degrees 

of freedom. 

-111 -tr( )
22 2

2 2

1( )  e
2

2

X
pn S

X Xnp n

p

f S S
n

, 0,  ' 0,XS

where  is usually a nonsingular covariance matrix. 
Let the ,p n n p , real random matrix Y  of full rank p  have the density 

tr( ')
2 2( ) C ' e BYYf Y YY   for 'YY >0, '  0,   ( ) 1B B . (15) 



E.V. Mayamol 104

Here 12E [ ] ,  
2 2

2

p
h h

n Y

p

n h
pnS B h

n
 with 'YS YY .

Theorem 3. Let the real random matrices X and Y have densities as in (13) and (15) 

respectively. If |SY| and X

Y

S
S

 are independently distributed, then 1x  obtained 

from (6) with the specified set of parameters 1 2 3( ,  
2
n

2 3
1,  ( ))
2p p  can be structurally represented as 

X

Y

S
S

. Thus 1x can be represented as the ratio of square of the volumes of two 

parallelotopes.

Proof. If |SY| and X

Y

S
S

 are independently distributed then we can write 

X
X Y

Y

S
S S

S

So thh  moment of XS  is given by 

E [ ] E [ ] E
h

h h X
n X n Y n

Y

S
S S

S
 (16) 

due to independence. Therefore we can write it as 
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2 2 2 2                1 1( )  ( )
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j jn nh

j jn n h
. (17) 
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Consider (6) with p  variables and let 1 2 3 2,  ,
2 p
n

3
1( )
2p . Then from (9) we get 

1
1

1 1( )  ( )
2 2 2 2E ( ) .1 1( )  ( )
2 2 2 2

p
h

j

j jn nh
x j jn n h

 (18) 

Since (17) and (18) are the same we may conclude that 1x with the specified set 

of parameters can be written as X

Y

S
S

 if YS and X

Y

S
S

 are independently dis-

tributed. 
From (17) we can get 1x  as the product of p independent real type-1 beta ran-

dom variables. This type of structure appears in many situations such as distribu-
tion of random volume (see Mathai, 1999, 1999a, 2007), the distribution of the 
likelihood ratio test statistics when testing the hypotheses on the parameters in 
multivariate normal and other distributions, likelihood ratio criterion for testing 
hypotheses concerning multivariate analysis of variance (MANOVA), multivariate 
analysis of covariance (MANCOVA) etc. The importance of this result is that  
we can study all the above structural representations, likelihood ratio tests, ran-
dom volumes etc by studying 1x . For example, consider a one-one function of 
the -criterion of the likelihood ratio test of the above mentioned hypotheses, 
denoted by . Let 

2

1 2

S
S S

where S1 and S2 are independently distributed Wishart matrices with parameters 
( , )m  and ( , )n  respectively, where m, n are degrees of freedoms and  is a 
symmetric positive definite matrix. It is known that Wishart density is a particular 
case of a real matrix-variate gamma density. So we may note that S1 follows a ma-

trix-variate gamma, that is, 1
1

1~ ,
2 2p
mS G  and 1

2
1~ ,

2 2p
nS G .

When S1, S2 are independently distributed then many general properties follow. 

For example, S1+S2 and 
1 1
2 2

1 2 2 1 2( ) ( )S S S S S are independently distributed, 

which means 1 2S S  and 2

1 2

S
S S

 are independently distributed. Therefore 
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2
2 1 2

1 2

E[ ] E[ ] E
h

h h S
S S S

S S
 (19) 

2 2

1 2 1 2

E[ ]
E

E[ ]

h h

h

S S
S S S S

. (20) 

It is noted that (19) has the same form of (16); the difference is that, in (19), 
the denominator YS  is represented as a sum. 

4. STATISTICAL APPLICATIONS

In this section regression of kx  on 1 1, ..., kx x  and Bayes’ estimates are calcu-
lated, since these can be obtained explicitly. In order to simplify the calculations 
we use hypergeometric series. Some basic results and notations used in the deri-
vations are the following: 
(i) A hypergeometric series with p upper parameters and q lower parameters is de-
fined as 

1
1 1

0 1

( ) ( )
F ( , ; , ; )

( ) ( ) !

r
r p r

p q p q
r r q r

a a za a b b z
b b r

 (21) 

where ( )j ra  and ( )j rb  are the Pochhammer symbols. For example, for a non-
negative integer r,

0( ) ( )( 1) ( 1);   ( ) 1,  0,  ra a a a r a a
( ) ,

( )
a r

a
when ( )a  is defined (22) 

The series in (21) is defined when none of the bj’ s, j=1,...,q, is a negative integer 
or zero. Its convergence properties are available from books on special functions. 

(ii) For 1z

1 0
0

( )(1 ) F ( ;  ; ).
!

a rr

r

az z a z
r

This is the binomial series. 
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4.1. Regression

Let 1, ..., kx x  have the joint density as in (6). Then the joint density of 

1 1( , ..., )kx x  denoted by 4 1 1( , ..., )kf x x  is given by 

1 11 2

1 1 1

1* 1
4 1 1 1 1 1 2 1 1

1 1 1
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                       ( ) (1 ) d

k k

k k k k
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x x

k k k kx

f x x x x x x x x

x x x x x x
 (23) 

Now we can write 
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( ) (1 (1 ))
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!

k k
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k k

r

x x x x

x x x x
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Using this result and (21) we obtain 
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1 10
( ) (1 ) dk k k k
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x x
k k k kx

x x x x x x

                         1 1 1
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k k kx

r
x x x x
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                         1 11
1 1
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k
r k k

r x x
r r
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1 1
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2 1 1 1 1 1
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( )

 F ( , ; ;(1 )).

k kk k
k
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k k k k k

x x

x x

 (24) 

Substitute (24) in (23) then we get 

1 11 2

1

1* 1
4 1 1 1 1 1 2 1 1

11
1 1

1

2 1 1 1 1 1

( , , ) C ( ) ( )

( ) ( )                        (1 )
( )

                       F ( , ; ;(1 )).

k k

k k

k k k k

k k
k

k k

k k k k k

f x x x x x x x x

x x

x x

If the regression function of kx on 1 1( , ..., )kx x  is needed then that can be easily 
obtained. 
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Here the integration procedure is the same as above. Finally, we obtain 

1 1 1 1
1

2 1 1 1 1 1
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E( | , , ) (1 )

F ( , ; 1;  1 )
                             .

F ( , ; ;  1 )

k
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k k k k k

k k k k k

x x x x x

x x
x x

 (26) 

Hence the best predictor of kx at preassigned values of 1 1, ..., kx x is given in 
(26).

4.4. Bayesian analysis

Dirichlet distribution is usually used as the prior distribution for multinomial 
probabilities. Let 1( , ..., )kx x  follow multinomial distribution with probability 
mass function 

1
5 1 1

1

!( , , )
! !

kxx
k k

k

nf x x
x x

 (27) 

for 0,  0,  1, , ,   1, , ,i ix n i n  such that 1 ... kx x n  and 

1 ... 1k .
Let the prior distribution of 1( , ..., )k  be a generalized Dirichlet density in (6). 

Then the posterior density is given by the formula 

1

3 5

3 5 1

( ) ( | )( | ) .
( ) ( | ) d d

k

k

f f xh x
f f x

Now
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for 1 10 1,  0,  1, ,  0k i i kx i k , 1 1j x

2 0,  1, ,j jx j k .

If we replace j jx  by , 1,j j k , then it can be seen that the posterior 
density (28) has the form of generalized Dirichlet density (6) with different pa-
rameters. Therefore we can say that generalized Dirichlet density in (6) is conju-
gate to multinomial density. 
Now the Bayes’ estimate for 1 , with quadratic loss, is 

1 1

1

1 1
1 1 10 0

1 1 1 2 3 1 2 2

1 2 1 2 1 2 3 1 2 3 2

1 1 2

1 1 1 2

E( | ) ( | ) d d

( )( )            
( )( )

( )             
( )

k

k
k

k k k

k k k

x h x

x x x
x x x x x

x x
x x
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Bayes’ estimate for 2  is 

2 2 1 2 3 1 2 2
2

1 2 1 2 1 2 3 1 2 3 2

1 1 2

1 1 1 2

( )( )E( | ) 
( )( )
( )             ,

( )
k k k

k k k

x x xx
x x x x x

x x
x x

and so on, and finally Bayes’ estimate for k  is 

1 1 2 1

1 1 2

1 1 1 2

( )E( | ) 
( )
( )             .

( )

k k
k

k k k

k k k

k k k

xx
x x
x x
x x
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SUMMARY

Some properties of a generalized type-1 Dirichlet distribution 

This paper deals with a generalization of type-1 Dirichlet density by incorporating par-
tial sums of the component variables. We study various proportions, structural decompo-
sitions, connections to random volumes and p-parallelotopes. We will also look into the 
regression function of kx  on 1 1, ..., kx x , Bayes’ estimates for the probabilities of a mul-
tinomial distribution by using this generalized Dirichlet model as the prior density are 
given. Other results illustrate the importance of the study of variable 1x  in this model. It 
is found that the variable 1x  in this model can be represented as the ratio of squares of 
volumes of two parallelotopes. Under certain conditions, 1x  can be used to study the 
structural representations of the likelihood ratio criteria in MANOVA, MANCOVA etc. 


