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ON COMPARING THE PREDICTION VARIANCES 
OF SOME CENTRAL COMPOSITE DESIGNS IN SPHERICAL REGIONS: 
A REVIEW 

P.E. Chigbu, E.C. Ukaegbu, J.C. Nwanya 

1. INTRODUCTION 

Response surface methodology (RSM) is a common framework for many in-
dustrial experiments. It is the collection of tools in design of experiments or data 
analysis that enhances the exploration of a region of design variables in one or 
more responses, (Myers, Khuri and Carter, 1989). Fitting a second-order model 
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is common in response surface methodology, where ijy  is a measured response, 

ix , i = 1,...,k are the design variables and ij  is a random error with mean zero 

and variance, 2 . There are several second-order model designs in the literature 
which include Central Composite designs (CCD), Box-Benkhen designs (BBD), 
Hooke designs, Small Composite designs (SCD), Minimum-run Resolution V de-
signs (MinresV), Hybrid designs, etc (Box and Wilson, 1951; Myers and Mont-
gomery, 2002 and Zarhan, 2002). 

A good response surface design possesses the following features: (a) provides a 
reasonable distribution of data points throughout the region of interest; (b) pro-
vides a good profile of the prediction variance in the experimental region; (c) do-
es not require a large number of runs; etc. These attributes were identified by, 
Myers and Montgomery (2002) and Montgomery (2005) and are typical of the se-
cond-order response surface designs, some of whose performances in spherical 
regions will be investigated in this study. 

Several works have been done on response surface designs. Lucas (1976) com-
pared the performances of several types of quadratic response surface designs in 
symmetric region. He compared the Central Composite designs (CCD), Box-
Benkhen designs (BBD), Hooke designs, Pesotchinsky designs, etc, based on D- 
and G-optimality criteria. Myers, Vining and Giovanitti-Jensen (1992) presented 
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an extensive study of response variance properties of the following second-order 
designs: CCD, BBD, and Hybrid designs. These designs were studied using the 
variance dispersion graph.  

Borkowski (1995) studied the analytical properties of the Central Composite 
designs and Box-Benkhen designs in a spherical region. His studies yielded alter-
native approach to the computer-based algorithm approach for obtaining the mi-
nimum, maximum and average spherical prediction variances for the designs. 
Zarhan (2002) compared the prediction variances for the CCD, Box-Benkhen 
Designs, Small Composite designs (SCD) and Hybrid designs for 2, 3, 4, 5 and 6 
factors in both spherical and cuboidal regions. These comparisons were made us-
ing the Variance Dispersion Graphs (VDG), Fraction of Design Space Criterion 
and the G- and D- optimality criteria. Park et al (2005) evaluated the response 
variance properties of response surface designs on cuboidal region utilizing both 
the VDG and Fraction of Design Space Graph (FDSG). Borror et al (2006) com-
pared the response variance performance for the variation of the CCD in both 
the spherical and cuboidal regions. Their interest is to know how these designs 

perform when axial distance of 4= k  is employed. He used a fraction of de-
sign space as a criterion for comparison for 6 to 10 factors. 

However, in this study, we try to demonstrate that in spherical regions with ra-

dius = k  none of the designs, CCD, SCD and MinResV is uniformly supe-
rior when evaluated under the G   and I  optimality criteria as well as the 
VDG. The range of number of factors under consideration is 3 to 7 with 2, 3 and 
5 centre points. The G   and I  optimality criteria are obviously indispensable 
since the prediction variances of the designs are the objects of interest and can 
only be evaluated using these optimality criteria as will also be demonstrated later 
in section three. 

The findings of this research work have wide applications in industrial proc-
esses especially in the chemical industry. Response surface designs can be used to 
solve two types of problems in the chemical industry, as reported by Myers, Khu-
ri and Carter (1989). The first is a procedure in which a region of the best operat-
ing conditions is sought. In this case, the method of Evolutionary operation 
(EVOP) is used. Evolutionary operation was proposed by Box (1957) as a proce-
dure for the continuous monitoring and improvement of a full-scale process with 
the goal of moving the operating conditions towards the optimum. Here, re-

sponse surface methodology is applied using the k2  full factorial designs which 
form part of the three designs under consideration in this paper. In practice, 
EVOP can be applied to only two or three variables but in theory, it can be ap-
plied to k  process variables. However, Montgomery (2005) gives the procedure 
for two process variables while Box and Draper (1969) discuss in detail the three-
variable case and Myers and Montgomery (2002) investigate and discuss the com-
puter implementation of EVOP. The second problem is confirming the exact lo-
cation of the optimum in the region of interest. In this case, the class of CCD’s is 
used to a large extent to tackle this situation. 
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2. DEFINITIONS 

2.1. Central composite designs (CCD) 

This class of designs was developed by Box and Wilson (1951) and is the most 
widely used class of second-order model designs. Assuming there are k³ 2  de-

sign variables, the CCD consists of a k2  full or 12k  fractional factorial (of reso-
lution V), 2tk  axial or star runs and 0n  centre points, where t  is the number of 
replication and for this study, 1t  . 

Therefore, the CCD uses 0n = f + 2tk+ n  points to estimate the 

(k+1)(k+ 2) 2  model parameters (Atkinson and Donev, 1992). According to 
Montgomery (2005), for a spherical region of interest, the best choice of   from 

the view point of the prediction variance for the CCD is to set  = k . This 
gives the spherical CCD in which all the fractorial and axial design points are lo-
cated on the surface of a sphere. Early recommendation made by Box and 
Hunter (1957) is to choose the number of centre points, 0n  for which uniform 
information or precision is achieved. For 2k  , the structure of the CCD is  
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2.2. Small composite designs (SCD) 

This class of designs was developed by Hartley in 1959 as small and more eco-
nomical alternative to the CCD. The basic construction of SCD is similar to that 
of CCD, except that the factorial component is of resolution III instead of reso-
lution V. That is, no main effects are aliased with any other main effect, but main 
effects are aliased with two-factor interactions and two-factor interactions may be 
aliased with each other. The design matrix for 3k   (see Zahran, 2002) is 

X =
1

2
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. 

2.3. Minimum-runs resolution V designs (MinResV) 

The minimum-runs resolution V designs were developed by Ochlert and Whi-
tecomb in 2002 as fractional factorial designs in which the main effects and two-
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factor interactions are not aliased with the other main effects and two-factor in-
teractions. Rather two-factor interactions are aliased with three-factor interac-
tions. For further study of the resolution V designs, see Montgomery (2005). 

2.4. G  optimality criterion 

The G  optimality criterion minimizes the maximum prediction variance  
over the region of interest. Symbolically, it is given by { }min maxv(x)  = 

{ }/ -1 ξmin max x M ( )x , where x  is a vector of points in the region of interest and 
-1 ξM ( )  is the inverse of the information matrix of the design,  . 

2.5. I  optimality criterion 

A design is said to be I  optimal if it minimizes the normalized average inte-
grated prediction variance. 

2 R

n
I = var(x)dμ(x)

σ    (2) 

where ' -1var( ) ( )x x M x  is the prediction variance, R  is the region of interest, 
and   is uniform measure on R  with total measure 1 (Giovannitti-Jensen and 
Myers, 1989; Atkinson and Donev, 1992 and Hardin and Sloane, 1993). 

The values of the G   and I  optimality criteria were computed using the 
MATLAB program for each of the designs compared and the results are pre-
sented in Table 1 below. 

2.6. Variance dispersion graphs 

The use of the variance dispersion graphs (VDG) was introduced by Giovan-
nitti-Jesen and Myers (1989) to evaluate the properties of the prediction variance 
of a design. The VDG displays the minimum, maximum and average prediction 
variance for a specific spherical design with radius, r , from the centre of the de-
sign. Traditionally, the scaled prediction variance (SPV), discussed in section 
three, is plotted against the radius in the graph (see also Zahran, 2002 and Mont-
gomery, 2005). Comparisons among competing designs can be made easily and 
the strength and weaknesses of the designs can be assessed using the VDG. This 
type of information cannot be captured in single number criterion.  

2.7. Prediction variance 

This, according to Montgomery (2005), is the variance of the predicted re-
sponse at points of interest, x . It is given by 

2 -1v(x) = σ X (X X) X  . (3) 
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3. ANALYTICAL APPROACH 

Fitting a full quadratic response model of equation (1) where there are k  vari-
ables 1 2, , ..., kx x x ; p = (k+1)(k+ 2) 2  unknown coefficients,  , and independ-

ent error term,  , with mean 0 and variance, 2 , let the design consists of n p  

points 1 2[ , , ..., ]j j jkx x x  for 1 j n  , chosen from a spherical region of inter- 

est and let X  be the n x p  expanded design matrix ( )f x  = 

[ ]2 2
1 k 1 k 1 2 k-1 k1,x , ...,x ; x , ...,x ; x x , ...,x x  and let xM =

1
X X

n
  be the information 

matrix of the design matrix, then, the prediction variance at an arbitrary point, x , 
is 

2 -1
xvar(x) = σ f (x)M f(x)   (4) 

(see Hardin and Sloane, 1993). 
The scaled prediction variance (SPV) is obtained by multiplying the above ex-

pression by n and dividing by the error variance, 2 . The resulting expression is 
given by 

-1
x2

nvar(x)
= nf (x)M f(x)

σ
   (5) 

The scaling is used to facilitate comparison among competing designs of vari-
ous sizes (see Montgomery, 2005). Now the I  optimal design has been defined 
as one which minimizes the normalized average or integrated prediction variance, 

2 R

n
I = var(x)dμ(x)

σ  , R  and   retaining their usual meanings. This integral was 

simplified by Box and Draper (1963) as 

{ }-1I = trace S(X X) n  (6) 

where 

R
S = f (x)f(x)dμ(x)  (7) 

is the moment matrix of region of interest (see also Hardin and Sloane, 1993). 
For a second-order model with 3k   variables, the moment matrix in a spherical 
region is given below as 
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1
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where 2 =
2

2
iR

r
x dx =

k  (8) 

      4 =
4

4
iR

3r
x dx =

k(k + 2)  (9) 

      22 =
4

2 2
i jR

r
x x dx =

k(k+ 2)  (10) 

(see Giovannitti-Jensen and Myers, 1989); r  is the radius of a ball or sphere and 
is defined by Onukogu (1997) as 

r = 

1
1k 2

2 2
i

i=1

x = k
 
 
 
  =   (11) 

Hence the G  optimal design is the one that minimizes the maximum value of 
equation (5) while I  optimal design is one that minimizes equation (6). 

The prediction variance function, -1V(x) = f (x)M f(x)  can be expressed in a 

closed form which will facilitate the calculation of the maxV (G  optimal) and av-

erage pV ( I  optimal) response variances on the surface of a sphere of radius, r . 

Using the structure of the matrix, X , the information matrix, X X , for a CCD 
is obtained directly by matrix multiplication and the resulting block matrix, de-
rived by Borkowski (1995), is 
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X X =

2
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where 1  and 2  are zero matrices, kJ  is a 1k  unit column vector, L  is a 

k
×1

2
 
 
 

 unit column vector, kI  is k  dimensional identity matrix while ( )idiag d  

and ( )idiag h  are diagonal matrices such that 22id f t   for 1 i k   and 

i

k k
h = ×

2 2
   
   
   

 for 3k   or k k  matrix for 3k  . The inverse of the informa-

tion matrix is given by 

1( )X X  =

11 12
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where 
4

11
kf + 2t

=
T


 , 

( )2

12
f + 2t

=
T


  , 

( )2 2

22
nf f + 2t

=
T





 and 

( )4 2 2T = 2nt + knf - k f + 2t  . 
Borkowski (1995) used this block matrix form to study the scaled response 

variance through a theorem he proposed. From this theorem, the following are 
obtained: 

( )

    
   
     

2 4
p k

dΓ( k 2 )
V = n a + br + c + h * (p) r

2 π
 

where * k+3h (p) = h(p)/r  and the values are tabulated in Borkowski (1995). 
We can derive also the maximum value of variance: 

2 4
max

d
V = n a + br + c + r

k
  

    
 for 0d   

or [ ]2 4
maxV = n a + br +(c + d)r  for 0d  ; 
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1
b = 2 +

f + 2t



, 22
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1 1 1
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 
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4. COMPARISON OF THE DESIGNS 

4.1. Comparison using G  optimality 

From Table 1 below, for k = 3, 4 and 5, the order of performance of the de-
signs is SCDCCDMinResV according to the values of their respective vari-
ances. For 5k  , the order of performance is CCDSCDMinResV. These 
G  optimal values (ie the prediction variances) are consistent for 0 2n   centre 

runs and the radius of the sphere is = k . 

4.2. Comparison using I  optimality 

Under the I  optimality criterion, the order of performance is CCDMin-
ResVSCD for k  3, 4, 5 and 6. For k  7, the order is CCDSCDMin-

ResV. These are the results when the radius of the sphere is = k  but these 
optimum prediction variances are not consistent for 0n = 2 centre runs. 

Particularly, it can be observed that for 5k  , SCD and MinResV are opti-
mally equal with respect to the G   and I  optimality criteria. 

4.3. Comparison using variance dispersion graphs 

Comparisons done in sections 4.1 and 4.2 are with single number criteria. 
These criteria do not describe the performance of the designs throughout the re-
gion in which responses are to be estimated. This situation, as earlier stated, is 
captured using the variance dispersion graphs. 

For k  3, the VDG of Figure 1 shows that the three designs maintained stable 
response variance for 1r  , but CCD and SCD are optimally good for 1.7r  . 
For k  4, the plot in Figure 2 shows that the three designs performed equally 
when 1.5r  , but are optimally best for 2r  . For 5k  , the three designs are 
unstable for 1.6r  , but optimally good for 1.7 2.5r   as shown in figures 3, 4 
and 5. 

5. CONCLUSION 

From the foregoing, none of the designs is judged as superior in the entire 
three bases for comparison, that is the I   and G  optimality criteria as well as 
the VDG. However, the CCD is found to be at its best (gives minimum predic-
tion variance) under the I  optimality for 5 centre points and for k = 3 factors. 
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For the G  optimality, the prediction variance of the CCD increases with in-
creasing number of centre points. The SCD behaves in a similar way under the 
I  optimality criterion but achieves its minimum variance under the G  opti-
mality using two centre points. The variance deteriorates with increasing number 
of centre points. Under the I  optimality, the MinResV is at its best with 5 cen-
tre points and experiences the same deterioration with CCD and SCD under the 
G  optimality. 

Finally, using the VDG, the three designs performed well towards the centre 
of the sphere for 1 2r  . 
 
Department of Statistics POLYCARP E. CHIGBU 
University of Nigeria, Nsukka EUGENE C. UKAEGBU 
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APPENDIX 
 

TABLE 1 

Designs Examined Under the Optimality Criteria in Spherical Region for k   
 

Design k  p    f  0n  n  G opt  I opt  

CCD 3 10 3  8 2 16 10.5715 10.3048 

     3 17 11.2322 7.0031 
     5 19 13.4287 6.6652 

SCD 3 10 3  4 2 12 10.2000 16.2576 

     3 13 11.0500 10.5623 
     5 15 12.7500 9.8338 

MinResV 3 10 3  7 2 15 12.2932 11.8065 

     3 16 12.2932 10.0456 
     5 18 15.4286 8.3964 
CCD 4 15 2 16 2 26 15.5689 15.5519 
     3 27 16.1677 16.1388 
     5 29 16.3521 19.2239 
SCD 4 15 2 8 2 18 15.5250 25.5881 
     3 19 16.3875 27.0018 
     5 21 16.3333 31.0270 
MinResV 4 15 2 11 2 21 15.5806 20.8421 
     3 22 16.3226 21.8254 
     5 24 16.3603 23.0992 

CCD 5 21 5  16 2 28 23.9543 22.6246 

     3 29 24.8098 23.4519 
     5 31 26.0488 24.4189 

SCD 5 21 5  11 2 23 20.9640 80.0536 

     3 24 22.2456 83.5501 
     5 26 23.9342 85.3241 

MinResV 5 21 5  11 2 23 20.9640 80.0536 

     3 24 22.2456 83.5501 
     5 26 23.9342 85.3241 

CCD 6 28 6  32 2 46 28.8800 28.2810 

     3 47 29.5078 28.8958 
     5 49 30.7634 30.1252 

SCD 6 28 6  16 2 60 30.4886 49.2659 

     3 31 30.0411 50.9081 
     5 33 32.4374 54.5549 

MinResV 6 28 6  22 2 36 33.1145 39.6809 

     3 37 34.0343 40.7831 
     5 39 34.9479 31.5549 

CCD 7 36 7  64 2 80 42.4640 36.1917 

     3 81 43.6534 39.2222 
     5 83 44.1743 43.1010 

SCD 7 36 7  22 2 38 44.6424 41.1830 

     3 39 45.2399 53.6754 
     5 41 46.0097 57.3843 

MinResV 7 36 7  30 2 46 42.4810 42.7013 

     3 47 44.2081 43.1111 
     5 49 45.1143 41.5231 
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Figure 3 



 P.E. Chigbu, E.C. Ukaegbu, J.C. Nwanya 296 

3210

80

70

60

50

40

30

20

10

radius

V
ar

ia
nc

e

VDG for k=6

CCD
MinResV

SCD

 
Figure 4 

3210

75

65

55

45

35

25

15

radius

V
ar

ia
nc

e

VDG for k=7

CCD

SCD

MinResV

 
Figure 5 



On comparing the prediction variances of some central composite designs in spherical regions: a review 297 

REFERENCES 

A.C. ATKINSON, and A.N. DONEV (1992), Optimum Experimental Designs, Oxford, Clarendon. 
A. GIOVANITTI-JENSEN and R.H. MYERS (1989), Graphical Assessment of the Prediction Capability of 

Response Surface Designs, Technometrics, 31, pp. 159-171. 
A. ZARHAN (2002), On the Efficiency of Designs for Linear Models in Non-Regular Regions and the 

Use of Standard Designs for Generalized Linear Models. Unpublished PhD Dissertation, Vir-
ginia Polytechnic Institute and State University. 

C.M. BORROR, C. ANDERSON-COOK, and D.C. MONTGOMERY (2006), Comparing Prediction Variance 
Performances for Variation of the Central Composite Designs Using Graphical Summaries, Journal 
of Quality Technology and Quality Management, 38, pp. 1-34. 

D.C. MONTGOMERY (2005), Design and Analysis Experiments, 6th ed., John Wiley and Sons Inc, 
N.J. 

G.E.P. BOX and R.N. DRAPER  (1963), The Choice of a Second-Order Rotatable Design, Biometrika, 
50, pp. 335-352. 

G.E.P. BOX and R.N. DRAPER (1969), Evolutionary Operation, Wiley, New York. 
G.E.P. BOX and J.S. HUNTER (1957), Multifactor Experimental Designs for Exploring Response Sur-

faces, Annals of Mathematical Statistics, 28, pp. 195-241. 
G.E.P. BOX and K.B. WILSON (1951), On the Experimental Attainment of Optimum Conditions, 

Journal of Royal Statistical Society, B 13, pp. 1-45. 
I.B. ONUKOGU (1997), Foundations of Optimal Exploration of Response Surfaces, Ephrata 

Press, Nsukka. 
J.J. BORKOWSKI (1995), Spherical Prediction-Variance Properties of Central Composite and Box-

Behnken Designs, Technometrics, 37, 4, pp. 399-410. 
J.M. LUCAS (1976), Which Response Surface Design is the Best: a Performance Comparison of Several 

Types of Quadratic Response Surface Designs in Symmetric Regions, Technometrics, 18, pp. 
411-417.  

R.H. HARDIN and N.J.A. SLOANE (1993), A New Approach to the Construction of Optimal Designs, 
Journal of Statistical Planning and Inference, 37, pp. 339-369. 

R.H. MYERS and D.C. MONTGOMERY (2002), Response Surface Methodology: Process and Product Op-
timization Using Designed Experiments, 2nd ed., Wiley, New York. 

R.H. MYERS, A.I. KHURI and W.H. CARTER (1989), Response Surface Methodology: 1966-1988, Tech-
nometrics, 31, 137-153. 

R.H. MYERS, G.G. VINNING, A. GIOVANNITTI-JENSEN and S.L. MYERS (1992), Variance Dispersion 
Properties of Second-Order Response Surface Designs, Journal of Quality Technology, 24, pp. 
1-11. 

Y.J PARK, D.E. RICHARDSON, D.C. MONTGOMERY, A. OZOL-GODFREY, C.M. BORROR, and C.M. ANDER-

SON-COOK (2005), Prediction Variance Properties of Second-Order Designs for Cuboidal Regions, 
Journal of Quality Technology, 37, pp. 253-266. 

SUMMARY 

On comparing the prediction variances of some central composite designs in spherical regions: a review 

Three second-order response surface designs, namely: central composite design, small 
composite design and minimum-run resolution V design are compared for 3 to 7 factors 
in spherical regions using the G   and I  optimality criteria. The structures of the re-
sponse variances of the designs are displayed graphically using the variance dispersion 
graphs. The maximum and average response variances are determined analytically as func-
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tions of the radii of the design region. Results for the G   and I  optimality criteria are 

obtained for a spherical region of radius, k   where k  is the number of factors un-
der consideration. The results suggest that none of the designs is uniformly better than 
the others with respect to the optimality criteria and the variance dispersion graphs for 
the factors considered. 


