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1. INTRODUCTION 

In recent years sample surveys have been characterized by a growing demand 
for estimates of population descriptive quantities for domains (or 'areas') obtained 
classifying the target population according to geography or other criteria. As the 
sample portion pertaining to domains is often too small to allow for reliable esti-
mation using standard design-based estimators, small area estimation methods 
have become a relevant research topic (see Rao, 2003 or Lahiri and Jiang, 2006 
for a general introduction). Empirical and hierarchical Bayes methods are an im-
portant chapter of small area estimation theory and are also widely applied in 
practice (see Rao, 2003 Chapters 9 and 10 and the references therein). The basic 
idea behind these methods is to treat domain descriptive quantities of interest 
(e.g. means, totals, proportions) as random and to estimate them using some 
summary of their posterior distribution, typically the posterior mean, often re-
ferred to as 'Bayes estimator' (Ghosh, 1992). 

Bayes estimators may be very effective in improving the precision (sampling 
Mean Square Error) of 'direct' design-unbiased (or design-consistent) estimators, 
but this improvement is often achieved at the cost of shrinking the estimates to-
ward a synthetic estimator which is obtained pooling together data from all areas 
under study. For this reason, Bayes estimators may be proven to be poor for esti-
mating the actual distribution function of a population ('ensemble') of small area 
parameters (Louis, 1984, Heady and Ralphs, 2004). The interest in the distribution 
function may be crucial when small area estimates are used in substantive applica-
tions such as the analysis of regional disparities in the distribution of economic in-
dicators of poverty and income inequality (Fabrizi et al. 2005). A proper representa-
tion of the distribution of the ensemble of the parameters is, for these purposes, as 
important as to dispose of reliable estimates for each sub-national region. 

In this paper we discuss the popular Fay-Herriot model (Fay and Herriot, 1979) 
and a set of adjusted estimators associated to it. With adjusted estimators we mean 
estimators of the small area parameters that enjoy acceptable properties with re-
spect to the estimation of empirical distribution function (EDF) or other nonlinear 
functionals of the population ('ensemble') of small area parameters. 
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The main goal of the paper is to review adjusted estimators within the frame-
work of hierarchical Bayesian modeling and to compare their frequentist proper-
ties by means of a Monte Carlo exercise. In particular we focus on: i) the distance 
between the estimated and the true distribution function; ii) efficiency as meas-
ured by mean square error; iii) robustness with respect to the failure of the as-
sumption of normality of the random effects. We emphasize frequentist proper-
ties since these are usually relevant for practitioners and more familiar to final 
data users. Moreover, we will use the same simulation exercise to evaluate 
whether posterior mean square errors, a natural measure of uncertainty associated 
to adjusted Bayes estimators, are also good frequentist measures of variability.  

As anticipated, we consider the effects of misspecification concerning the ran-
dom effects: in particular we focus on wrong distributional assumptions. This 
type of misspecification is quite likely in practice since random effects are not di-
rectly observable and departures from normality are difficult to detect (see Sin-
haray and Stern, 2003). We explore the properties of the adjusted estimators 
when the models assume normality but the random effects are actually generated 
by an alternative distribution. 

The paper is organized as follows. In section 2, we shortly discuss the failure of 
Bayes estimators associated to the univariate Fay-Herriot model as estimators of 
the variance (and thus of the EDF) of the 'ensemble' of parameters. Among the 
many adjusted estimators discussed in the literature we focus on constrained 
Bayes estimators (Ghosh, 1992), constrained linear Bayes estimators (Spjøtvoll 
and Thomsen, 1987) and a simultaneous estimation method proposed by Zhang 
(2003). These estimators are reviewed in section 3. The simulation exercise and 
the tools used in comparisons are introduced in section 4. Although all simula-
tions use populations generated under normality, we will focus on the accuracy of 
EDF estimation and not just on mean and variance (as in Judkins and Liu, 2000) 
since with a finite number of areas, the EDF of the population of area parameters 
may show some slight deviation from normality.  

Section 5 focuses on simulation’s results; the behaviour of adjusted estimators 
when the normality of random effects fails is discussed in Section 6. Concluding 
remarks are provided in Section 7. 

2. FAILURE OF BAYES ESTIMATORS AS ENSEMBLE ESTIMATORS IN THE FAY-HERRIOT 
MODEL 

The Fay-Herriot model may be described by the following set of assumptions: 

i i iy e   (1) 

t
i i iv  x  (2) 

(0, )
ind

i ie N   (3) 
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2(0, )
ind

i vv N   (4) 

where { }iy  1 i m   is a collection of 'direct' design-unbiased (or approximately 

design-unbiased) estimators of a set of small area population parameters { }i ; 

{ }i  is the set of assumed known design-based variances associated to direct es-

timators and ix  a 1k  vector of auxiliary information accurately known for area 
i. Moreover it is assumed that 

( ) 0i iE e v  . (5) 

Small area analyses are somewhat idiosyncratic as they mix randomization and 
model based probability spaces. More precisely, once denoted ( )DE , ( )DV  the 
expectation and variance with respect to the randomization (design) distribu- 
tion and ( )ME , ( )MV  the moments related to the model or data generating 

process, assumptions (1) – (4) imply that ( | ) ( )M i i D i iE y E y    and 

( | ) ( )M i i D i iV y V y   , that is the first two moments of iy  according to the 

model (conditional on i ) and randomization distributions are the same. To be con-

sistent in notation let's also write ( ) t
M i iE   x , 2( )M i vV    and ( ) 0M i iE e v  . 

Assuming   and 2
v  as known, the posterior means of i  under model (1) – 

(5) are given by ˆ (1 )B t
i i i i iy      x , where 2 2 1( )i v v i       is a shrinkage 

factor that gives to the direct estimator a weight that is a decreasing function of 
its sampling variance. 

We have that direct estimators { }iy  are overdispersed with respect to the un-

derlying { }i  and the small area estimators are under-dispersed. The following 
proposition holds. 

Proposition 1 

Under model (1) – (5) and assuming i   we have that: 
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A proof may be found in the appendix. Note that i   does not represent a 
restrictive condition but is helpful to obtain simple formulas. We may observe 
that the shrinkage factor rules both overdispersion of direct estimates and under-
dispersion of posterior means. 

3. ADJUSTED BAYES ESTIMATORS 

We consider three different adjusted Bayes estimators associated to the Fay-
Herriot model : i) the constrained Bayes, ii) the constrained linear Bayes (Spjøt-
voll and Thomsen method), iii) the estimators based on a simultaneous estima-
tion method proposed by Zhang (2003). These estimators will be reviewed within 
a hierarchical Bayes framework; that is, we do not assume the hyperparameters 

 , 2
v  as known but specify a prior distribution for them. In what follows we 

denote the data on which the analysis is conditioned as 1{ , , }i i i i my   z x . 

We anticipate that all adjusted estimators ˆ
i
  are summaries of the posterior 

distributions ( | )ip  z  different from the posterior mean ˆ ( | )HB
i iE  z  and are 

therefore suboptimal with respect to quadratic loss. Uncertainty associated to 
these alternative posterior summaries may be measured by the posterior mean 
square error:  

* * 2ˆ ˆ ˆ( ) ( | ) ( )HB
i i i iPMSE V     z  (9) 

We denote ( )E  the expectation with respect to the model omitting the sub-
script M , since randomization moments are no longer involved.  

Of course, *ˆ( ) ( | )i iPMSE V  z ; the better representation of the Empirical 
Distribution Function of the population of Small Area parameters is paid at the 
price of some loss of efficiency. 

3.1 The Constrained hierarchical Bayes estimator 

Constrained Bayes estimators have been introduced and discussed by Louis 
(1984) under normality and by Ghosh (1992) under less restrictive distributional 
assumptions. The aim is to obtain a set of estimators { }it , 1,...,i m , optimal 
under quadratic loss and satisfying the following constraints: 

1) ˆ HBt   

2) 1 2 2

1 1

( 1) ( ) ( ) |
m m

i i
i i

m t t E  

 

 
    

 
  z  

The constrained hierarchical Bayes (CHB) estimators (see Rao, 2003, section 
10.13) are given by: 
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The posterior mean square error ˆ( )CHB
iPMSE   may be used to evaluate the 

uncertainty associated to this estimator. 

3.2 The constrained hierarchical linear Bayes Estimator 

Let's suppose, for the moment, that the hyperparameters  , 2
v  are known. 

The Constrained Linear Bayes estimator of i  is a summary of the posterior dis-

tribution in the form ˆL
i i i ia y b    satisfying the constraints: 

1) ˆ( )L t
i iE   x , 

2) 2 2ˆ( )L t
i i vE    x . 

Note that when the posterior mean may be expressed in linear form, the distri-
bution enjoys posterior linearity (Goldstein, 1975), a condition that holds for a 
variety of conjugate models. The constrained linear Bayes estimator is given by: 

1/2 1/2ˆ (1 )CLB t
i i i i iy      x  (11) 

with 2 2 1( )i v v i       (see Spjøtvoll and Thomsen, 1987 and Rao, 2003, sec-

tion 9.8). This estimator owes its popularity to its similarity to ˆB
i : it is still a lin-

ear combination of iy  and t
i x  that, with respect to ˆB

i , puts more weight on 

the 'direct' estimator iy , whereby leading to a set of estimates less shrunken to-
ward the synthetic component. 

The estimator (11) may be thought as conditional on (  , 2
v ). We simply pro-

pose to define the Constrained Hierarchical Linear Bayes (CHLB) estimator as 

2( , )
ˆ ˆ( )

v

CHLB CLB
i iE

 
 

z
 (12) 

where 2( , | )v
E

  z
 is the expectation taken with respect to the posterior distribution 

of  , 2
v . An explicit formula for (12) depends on the chosen prior distributions 



 E. Fabrizi 274 

and may be in general difficult to work out. Nonetheless (12) may be easily ap-
proximated using the output of Markov Chains Monte Carlo (MCMC) algorithms 
of common use for the analysis of hierarchical models. 

3.3 The simultaneous estimation method proposed by Zhang  

Given the set { }i  of the area parameters of interest, let ( ){ }i  be the associ-

ated ordered set (1) ( 2 ) ( )( ... )m     . Then ( )( | )i iE  z  is the best predictor 

of  i  under quadratic loss and { }i  is the best 'ensemble' estimator of { }i  un-

der quadratic loss. The set of estimators { }i  is not area specific in that its single 

elements are not associated to specific areas. To match the { }i  with the small 
areas Zhang (2003) proposes, under an empirical Bayes estimation approach, to 
estimate the ranks of { }i  using those of the { ( | )}iE  z  set. By the way, the 
ranks of the posterior means may be poor estimators of actual ranks, especially if 
there is considerable variability in the posterior variances. Following Ghosh and 
Maiti (1999) we propose ˆ ( ( | ))i ir E rank  z , the posterior expectation of ranks, 

as the estimator of ranks required in order to match the ensemble estimator { }i  
with the areas. In the context of hierarchical Bayes modeling, this estimator of 
ranks may be easily approximated from the output of MCMC algorithms. More 
specifically, we can rank the ( )|i s z  from any draw s  of the Markov Chain after 

convergence. Then we can approximate îr  averaging the ranks ( ( )| )irank s z  

over all draws, obtaining 1
1

ˆ ( ( )| )
SMC

i is
r S rank s


  z  where S  is the number of 

iterations of Markov Chain after convergence used for the estimation of the pos-
terior distribution. 

To summarize, the estimator based on Zhang ideas implemented in the con-
text of hierarchical Bayes modeling is given by: 

ˆ
ˆ

i

ZHB
i r   (13) 

with îr  approximated by ˆMC
ir  when the posterior distributions are obtained using 

MCMC algorithms. 

4. A SIMULATION EXPERIMENT UNDER THE ASSUMPTION OF NORMALITY FOR THE RAN-
DOM EFFECTS 

In this section we introduce a simulation experiment whose aim is to compare 
the effectiveness of the adjusted estimators discussed above in correcting the 
overshrinkage. We compare also their efficiency and consider whether the 
PMSE  are adequate estimators of their frequentist mean square errors. More 
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specifically, we compare the direct estimators ˆ { }DIR
iy  , the posterior means 

ˆ ˆ{ }HB HB
i   and the various adjusted estimators ˆ ˆ{ }CHB CHB

i  , 
ˆ ˆ{ }CHLB CHLB

i   and ˆ ˆ{ }ZHB ZHB
i  . 

The simulation is based on R=1,000 Monte Carlo (MC) samples, and all com-
parisons are referred to the empirical distribution of the various estimators in this 
replication space. 

Data are generated according to the Fay-Herriot model (1) – (5) setting for 

simplicity 0t
i   x . 

We consider both the case of moderate and large number of areas setting 

30,  100m  . We set 2 1v   and consider three different configurations of de-
sign variances. They are chosen in the following way: we divide the set of areas in 
five groups. Variances vary across groups but are constant within them. All con-
figurations are illustrated in Table 1. They differ according to informativeness of 

direct estimators, as measured by 2 2 1( )i v v i      . We evaluate the informa-

tiveness of direct estimators in comparison to the dispersion of the i  values 
around the synthetic component  . 

Population 1 describes a situation where direct estimators show a wide range 
of informativeness ( [0.11,0.91]i  ); Population 2 describes a situation in which 

direct estimators are poorly informative ( [0.11,0.5]i  ), while in Population 3 
we study the case of rather strongly informative direct estimators 
( [0.5,0.91]i  ). 

TABLE 1 

Different configurations of design variances for the simulation 

Design variances 

 1,...,
5

m  2
1,...,

5 5

m m


 2 3
1,...,

5 5

m m


 3 4
1,...,

5 5

m m


 4
1,...,

5

m
m




 

Population 1 0.1 0.333 1 3 10 
Population 2 1 1.333 2 4 10 
Population 3 0.1 0.25 0.5 0.75 1 

 

We do not consider equal sampling variances, i.e. i   since this is seldom 

the case in practice; moreover it may be proven that, for t
i  x  and  , 2

v  

known, ˆ ˆCHB CHLB
i i   for m   (Rao, 2003, section 9.6). As a consequence, 

even if we do not assume   and 2
v  as known and work with a finite number of 

areas, we may expect the two estimators to show close performances. 

When modeling, it is assumed that   and 2
v  are unknown with prior  

distributions 2 2( , ) ( ) ( )v vp p p     with (0, )N K  , (0, )v Unif L   where 
100K   and 20L   are large constants with respect to the scale of the data. 
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This priors guarantee properness of the posterior distributions, very mild impact 
on posterior distributions and good behavior (fast convergence and good mixing) 
of MCMC algorithms (Gelman, 2006). 

To compare estimators, we consider the indicators described below. 
i) Overshrinkage correction. Let's define 

* 1 2 *

1

ˆ ˆ( ) ( )
R

r
r

AV R v 



   (14) 

where 2 * 1 * * 2
,1

ˆˆ ˆ( ) ( 1) ( )
m

r i r ri
v m  


   , and * { ,  ,  ,  ,  }DIR HB CHB CHLB ZHB . 

Since we set t
i  x  and 2 1v  , we expect this indicator to be larger than 1 for 

ˆDIR , less than 1 for ˆHB  and close to 1 for the remaining estimators. 
ii) Kolmogorov-Smirnov distance. For each iteration r , the Kolmogorov-Smirnov 

distance between the EDF of the adjusted estimator *
,

ˆ ˆ{ }r i r   and that of  

the ‘true values’ ,{ }i r  denoted respectively as *F  and TF  is calculated as 
*

* , ,
ˆ( , ) max ( ) ( )r r r j j r T j rD F u F u     where 1,..., 2j m  and *ˆ( , )r r r u  is the 

2m  vector obtained pooling together the ‘true values’ and those obtained with 
the adjusted predictor for the r-th MC replication. The distances calculated at 
each iteration are then averaged over MC replications to obtain 

* 1 *
1

ˆ ˆ( , ) ( , )
R

r r rr
D R D   


  . For the ease of comparison we report 

*
*

ˆ
ˆ

ˆ
( , )

( , )
( , )HB

D
D

D

 
 

 
  (15) 

whereby assuming the non adjusted hierarchical Bayes estimators as a benchmark. 
iii) Anderson-Darling distance. Anderson and Darling (1954) introduced a good-

ness-of-fit statistic that can be used to evaluate the distance of an EDF from a 
continuous reference distribution. Compared to the Kolmogorov-Smirnov dis-
tance, it is known to be influenced to a greater extent by the discrepancies in the 
tails of the distribution. In our particular context the 'empirical' Anderson-Darling 
distance is defined as follows 

 
2

* , ,2 *
(0,1) ,

1 , ,

ˆ ( ) ( )1
( , ) ( ( ))

4 ( )[1 ( )]

m
j r T j r

r T j r
j T j r T j r

F u F u
A F u

F u F u
 






 1  

The computed distances are then averaged over all R replications, and  

2 *
2 *

2

ˆ
ˆ

ˆ
( , )

( , )
( , )HB

A
A

A

 
 

 
  (16) 

is reported in results. 
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iv) Frequentist efficiency. We evaluate the average impact of the adjustment on the 
unconditional frequentist MSE of small area predictors defined as 

* * 2ˆ ˆ( ) ( )i i iMSE E     (see Rao, 2003, section 6.2). We estimate the *ˆ( )iMSE   

by means of its Monte Carlo approximation * 1 * 2
, ,1

ˆ ˆ( ) ( )
R

MC i r i r ir
mse R  


  . 

These quantities are area-specific. We just focus on the mean of their distribution 
across areas:  

* 1 *
1

ˆ ˆ( ) ( )
m

MC MC ii
amse m mse 


   (17) 

v) Frequentist evaluation of PMSE. Frequentist properties of (9) are evaluated us-
ing the following measure of relative bias:  

1 *
,* 1

*
1

ˆ
ˆ

ˆ

( )1
( )

( )

R
m

MC r ir

i MC i

R pmse
apmse

m mse











   (18) 

where *
,

ˆ( )MC r ipmse   is the *ˆ( )MC ipmse   calculated using data from the r-th draw 

of the Monte Carlo exercise. Moreover note that ˆ( )HB
MC ipmse   error reduces to 

posterior variance. 
Codes are written in R (R Development Core Team, 2006). For MCMC calcu-

lations we used the Brugs package (Thomas and O'Hara, 2006) which recursively 
calls the MCMC dedicated software OpenBUGS (Thomas et al. 2006). As for 
technical details concerning MCMC calculations, we generate samples of size 
20,000 for all chains deleting a conservative 'burn in' sample of size 5,000. In fact, 
the relatively simple normal models employed in the simulations have all shown 
very fast convergence rates. Convergence has been checked by means of standard 
convergence statistics (Cowles and Carlin, 1996). 

5. SIMULATION RESULTS 

For brevity, we report results for the case 100m   and discuss the case 
30m   only when differences are remarkable or the comparison highlights im-

portant points. Results about the shrinkage correction are displayed in table 2. It 
is apparent that direct estimates are overdispersed, with overdispersion increasing 
with the average variance of direct estimators; hierarchical Bayes estimators are 
underdispersed in all situations, and more seriously so when the direct estimates 
convey little information (Population 2). More important, all adjusted estimators 
approximately eliminate the overshrinkage. Fluctuations of values around 1 do 
not seem to follow any significant pattern. The correction of overshrinkage does 
not seem to be influenced by the number of areas. 
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TABLE 2 

Overshrinkage correction as measured by the indicator *ˆ( )AV  , 100m   

 ˆDIR  ˆHB  ˆCHB  ˆCLHB  ˆZHB  
Population 1 3.86 0.51 1.02 1.01 1.00 
Population 2 4.65 0.33 1.03 1.00 0.97 
Population 3 2.35 0.69 0.95 1.00 0.99 

 

Table 3 shows results based on the Kolmogorov-Smirnov distance. All ad-

justed estimators clearly improve the performances of ˆHB  and the improvement 
is larger when 100m   with respect to the case of 30m  . Among adjusted esti-

mators, ˆZHB  emerges clearly as the best. Note that, given the size of Monte 
Carlo (MC) errors, all observed differences appearing in table 3 can be taken as 

95% significant. Moreover, note that the advantage of ˆZHB  over the other ad-
justed methods is less pronounced for Population 2 (poorly informative direct 
estimates). This makes sense since the estimation of individual ( )i  requires more 

information than the global adjustment on which ˆCHB  and ˆCLHB  are based. 
ˆCHB  and ˆCLHB  perform closely and none of the two seems preferable. 

TABLE 3 

Ratio of the Kolmogorov-Smirnov distances between estimated and actual EDF averaged over MC replications 

divided by the same quantity calculated for the ˆHB  estimators, i.e. *ˆ( , )D   , 100m   

Population ˆDIR  ˆHB  ˆCHB  ˆCLHB  ˆZHB  
Population 1 0.97 1 0.66 0.61 0.49 
Population 2 0.89 1 0.57 0.57 0.50 
Population 3 0.97 1 0.81 0.81 0.64 

 

Table 4 presents the results related to the Anderson-Darling distance. We note 

that ˆHB  is in an intermediate position between the direct estimators (that are the 
worst performers over all settings) and the adjusted estimators that are better. 

Among adjusted estimators ˆZHB  is clearly better than the other two except for 
Population 2, characterized by poorly informative direct estimates where, by the 
way, it still performs a little better. We may then conclude that the estimation 
method proposed by Zhang turns out to be the best with respect to both consid-
ered measures of distance and it gives its best when the number of areas is large 
and the direct estimates are not too imprecise. 

TABLE 4 

Ratio of the Anderson-Darling distances between estimated and actual EDF averaged over MC replications 

divided by the same quantity calculated for the ˆHB  estimators, i.e. 2 *ˆ( , )A   , 100m   

Population ˆDIR  ˆHB  ˆCHB  ˆCLHB  ˆZHB  
Population 1 2.63 1 0.34 0.31 0.22 
Population 2 2.04 1 0.30 0.30 0.28 
Population 3 1.20 1 0.49 0.49 0.37 
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The results related to the repeated sampling efficiency, as measured by the em-
pirical unconditional Mean Square Error are shown in Table 5, where the adjust-

ment of ˆHB  has, as expected, a cost in terms of efficiency. The increase in Mean 
Square Errors depends on the precision of direct estimators. When the precision 

is high (Population 3), the rise is around 10%, but when it is low, *ˆ( )MCamse   are 

20% or even 30% (in the case of ˆCLHB ) higher than in the case of ˆHB . None-
theless we may note that the improvement with respect to the direct estimators 

remains substantial. Moreover ˆCHB  and ˆZHB  show similar performances, while 
ˆCLHB  turns out to be a little less efficient. 

TABLE 5 

Efficiency of the considered estimators as measured by ˆ*( )MCamse  , 100m   

 ˆDIR  ˆHB  ˆCHB  ˆCLHB  ˆZHB  
Population 1 2.82 0.51 0.60 0.68 0.61 
Population 2 3.59 0.72 0.91 0.94 0.90 
Population 3 0.51 0.31 0.34 0.35 0.34 

 

A more detailed analysis of the distribution of *ˆ( )MCamse   across areas (for 

which we do not show tables) highlights the very different behavior of ˆCLHB  

with respect to ˆCHB  and ˆZHB : it performs clearly better when direct estimates 
are more precise than the average and far worse in the case of areas characterized 
by the most imprecise direct estimates. This behavior depends on the nature of 

the estimator. From (11) we may note that, with respect to posterior mean, ˆCHB  
gives less weight to the synthetic component and more to the direct one. When 

iy  is very precise, this leads to more efficient estimators than other adjusted 

methods; unfortunately iy  receives more weight even when it is unreliable, thus 
producing a large loss in efficiency with respect to and the other adjusted meth-
ods.  

TABLE 6 

Average ratio of the estimated PMSE to the MSE : ˆ*( )apmse  , 100m   

 ˆHB  ˆCHB  ˆCLHB  ˆZHB  
Population 1 1.01 1.00 1.00 1.00 
Population 2 0.98 0.99 0.98 0.98 
Population 3 0.99 1.00 1.00 1.00 

 

Table 6 reports an evaluation of frequentist properties of the Posterior Mean 
Square Error defined in (9). It is apparent that this Bayesian uncertainty measure, 
represents a sensible measure of variability also with respect to repeated sampling; 
in fact in all cases it is approximately unbiased; although it should be noted that 
this property holds ‘on average’ with respect to the set of areas being studied. The 
property, that was known to hold for the posterior variances as frequentist vari-
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ability measures of ˆHB  under careful choice of the priors (Ganesh and Lahiri, 
2008), is then extensible to the case of posterior mean square errors, at least for 
the prior distributions chosen in our simulation exercise. 

6. PROPERTIES OF THE ADJUSTED ESTIMATORS UNDER FAILURES OF THE NORMALITY OF 
RANDOM EFFECTS 

In this section we compare the performance of adjusted estimators already 
considered when the assumed normality of random effects does not hold, that is, 
we evaluate whether they are ‘robust’ with respect to this departure from the as-
sumptions under which they are obtained. 

We generate population data according to the same simulation experiment dis-
cussed in Section 4, changing the distribution assumed for the random effects. 

We consider: 1) (0,1/ 2 )iv Laplace  and 2) (1)iv Exp . In both cases 

( ) 1iV v  , so the interpretation of Population 1, Population 2, Population 3 in 
terms of informativeness of the direct estimators remains unchanged. Case 1) 
represents a mild deviation from normality while case 2) represents a more seri-
ous departure from this assumption. 

We note that the performances of hierarchical Bayes estimators of the area 
means i  remain approximately unchanged when random effects are generated 
by a Laplace distribution but a normal model is assumed. This robustness with 
respect to moderate failures of the assumptions on the distribution of the random 
effects is noted in Sinharay and Stern (2003) and Fabrizi and Trivisano (2009) . 
When random effects are generated from an Exponential distribution, the dete-

rioration of the performances of HB  is substantial, even though not catastro-
phic. Under the assumption on the direct estimators’ variances of ‘Population 1’ 
the Kolmogorov-Smirnov distance grows by a 30%, the Anderson-Darling by a 
60%, while the Mean Square Error averaged over the set of all the areas only by 
10%. In Table 7 results about the Kolmogorov-Smirnov and the Anderson-
Darling distance are reported for 100m  . Results related to other indicators and 

30m   are not reported since they are substantially similar. From Table 7 we may 
note that all adjusted predictors provide smaller improvements with respect to 

HB  than in the case of normality; this means that the estimation of the Empirical 
Distribution Function of the area averages or some of its features is more sensi-
tive to wrong distributional assumptions than the estimation of individual area 
averages.  

The performance of the adjusted predictors are now closer than under normal-

ity of random effects. ˆZHB  remains slightly better in terms of Kolmogorov-

Smirnov distance, while ˆCHB  is a little better if we consider the Anderson-

Darling distance and *ˆ( )MCamse  . Since ˆZHB  turned out to be better under 
normality, we may conclude that its performances deteriorate more when this as-
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sumption fails with respect to other adjusted estimators. This makes sense, since 
ˆZHB  makes an heavier use of the assumption of normality in the estimation of 

( ){ }i  than the other predictors, whose corrections are based on the estimation of 

moments. Note, however, that the performances of ˆZHB  remain always compa-
rable to those of other adjusted predictors even under big departures from nor-
mality of random effects. 

TABLE 7 

Comparison of adjusted estimators under failures of the distributional assumption on random effects, 100m   

Actual distribution of the iv  Population ˆDIR  ˆHB  ˆCHB  ˆCLHB  ˆZHB  
*ˆ( , )D    

Population 1 1.241 1 0.799 0.844 0.763 
Population 2 1.093 1 0.696 0.719 0.667 Laplace 
Population 3 1.254 1 1.023 1.022 0.956 
Population 1 1.108 1 0.793 0.766 0.761 
Population 2 1.038 1 0.720 0.713 0.703 Exponential 
Population 3 1.146 1 0.921 0.915 0.951 

2 *ˆ( , )A    

Population 1 3.558 1 0.494 0.582 0.531 
Population 2 2.580 1 0.414 0.449 0.436 Laplace 
Population 3 2.115 1 0.903 0.920 0.923 
Population 1 1.490 1 0.469 0.431 0.434 
Population 2 1.412 1 0.387 0.391 0.406 Exponential 
Population 3 0.793 1 0.653 0.638 0.661 

7. CONCLUSIONS 

In this paper we discuss and compare three different methods for adjusting a 
set of small area estimators in order to improve estimation of the EDF of the 'en-
semble' of small area parameters. Two of these predictors (CHB and CLHB) are 
well known in the literature, while the third (ZHB) is more recent. The evaluation 
of the performances of the three estimators is based on a simulation exercise 
covering a range of situations which are potentially relevant for small area practi-
tioners.  

A first conclusion from this analysis is that all the methods considered meet 
the goal of correcting overshrinkage and leading to more realistic estimates of 
EDF of the 'ensemble' of small area means. On the other hand, adjusted estima-
tors are less efficient than posterior means, but their gain in precision with re-
spect to direct estimators remains substantial. 

Zhang’s predictor seems as better than the other two when the normality of 
random effects holds. We also considered failures of this assumption, generating 
populations with Laplace and Exponentially distributed random effects. In this 
latter cases Zhang’s predictor and the better known CHB predictor show close 
performances. Thereby Zhang’s predictor is more sensitive to the failure of dis-
tributional assumptions. 

We studied the frequentist behavior of measures of uncertainty associated to 
adjusted hierarchical Bayes estimators, finding that, at least for the prior distribu-
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tions chosen in the simulation exercise, the posterior MSEs have good frequentist 
properties and may be assumed by practictioners as acceptable measures of fre-
quentist variability. 
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APPENDIX 

Proof of (6). Now 
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SUMMARY 

A comparison of adjusted Bayes Estimators of an ensemble of small area parameters 

With “ensemble properties” of small area estimators, we mean their ability to repro-
duce the Empirical Distribution Function (EDF) characterizing the collection of underly-
ing small area parameters (means, totals). Good “ensemble properties” may be relevant 
when estimation of non-linear functionals of the EDF of small area parameters (such as 
their variance) is needed. Small area estimators associated to the popular Fay-Herriot 
model are considered. “Bayes estimators”, i.e. posterior means, do not enjoy of good en-
semble properties. In this paper three different adjusted predictors are compared, by 
means of a simulation exercise, under the assumption of correctly specified model. As the 
distributional assumptions on the random effects are difficult to assess, the considered 
predictors are compared also with respect to their robustness to the presence of failures 
in the distributional assumptions on the random effects. 


