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1. PREFACE

Molecular instruments are the most accurate methods in organisms’ identification and
characterization. Biologists are often involved in studies where information about ge-
netic features of organisms is fundamental and where the main goal is to identify re-
lationships among individuals. In this framework, it is very important to know and
apply the most robust approaches to infer correctly these relationships, allowing the
right conclusions about phylogeny.

Together with the establishment of new molecular techniques, scientists developed a
large number of different methods to compare individuals basing on differences among
them. In his book, Joseph Felsenstein (2004) provides a very good and deep explanation
of these techniques, together with a detailed description of phylogenetic tree building
methods.

This review will introduce the reader to the most used statistical methods in phy-
logenetic analyses, the Maximum Likelihood and the Bayesian approaches, considering
for simplicity only analyses regarding DNA sequences.

In the first section we will introduce the concept of the Maximum Likelihood and
we will apply it the phylogenetic trees, including models of molecular evolution and
explaining how to draw a tree. In the next section we will move on Bayesian statistics
applied to phylogenetic inferences: we will introduce the a posteriori concept and we
will describe how to create tree topology using the Metropolis Markov chains Mon-
tecarlo algoriths. Finally, we will show several examples of studies conducted to infer
about the evolution of pathogens.
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TABLE 1
Substitution probability matrix.

A C G T
A pAA pAC pAG pAT

C pC A pC C pC G pC T

G pGA pGC pGG pGT

T pT A pT C pT G pT T

2. LIKELIHOOD METHODS

Proposed by R. A. Fisher (1912), the most common method used to infer phylogeny
is the maximum likelihood (ML). In this section a brief introduction to ML estimation
shall be provided and its application to identify the best tree topology will be described.

Considering that the majority of biologists does not exactly know likelihood, it
is very important to introduce here some basic concepts. Given some data D and a
hypothesis H, the likelihood of that data is given by

LD = P (D|H ) (1)

which is the probability of obtaining D given H. In the context of molecular phylo-
genetic, D is the set of sequences being compared and H is the tree topology. Thus,
the problem becomes to find the likelihood of obtaining the observed sequences given
a particular tree, and the goal to find the most probable outcome or, in other words,
the tree showing the maximum likelihood. Maximum likelihood estimation requires
three elements: a model of sequence evolution, a tree and the sequences. Briefly, model
of molecular evolution are basically substitution probability matrices that indicate the
probability of change from a state i to a state j at given site. In other words, consider-
ing genetic sequences, models of molecular evolution must define the probability, at a
nucleotide position, from a nucleotide to mutate into another nucleotide (see Table 1).

Note that a phylogenetic tree (see Figure 1) depicts both the topology (order of
nodes and branches) and the branch lengths. The ML approach must solve two prob-
lems: first, for a given topology, what set of branch lengths makes the observed data
most likely. Second, which tree among all possible trees has the greatest likelihood.

Assuming that the evolution in different sites on a given tree is independent, the
likelihood can be decomposed into the product of the probabilities at each site:

L= P (D|H ) =
m
∏

i=1

P (Di |τ) (2)

where Di is the data at the i t h site and τ is the tree topology. Given a tree topology, the
likelihood of that tree for a site is the sum, over all possible nucleotides that may have
existed at the internal nodes of the tree, of the probabilities of each scenario of events.
As example, given the topology reported in Figure 1, the likelihood of each site Di of
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Figure 1 – Example tree with branch lengths and data at a single site.

the tree is given by:

P (Di |τ) =
∑

x

∑

y

∑

z

P (A,C ,G,T , x, y, z|τ) (3)

where x, y and z are the internal nodes. Assuming that differences among lineages are
independent, equation 3 can be decomposed into the following product of terms:

P (Di |τ) = P (z)P (x|z, t5)P (A|x, t1)P (C |z, t2)P (y|z, t6)P (T |y, t3)P (T |y, t5) (4)

with tα (α= 1,2, . . . , 5) being the branch lengths.
Given a model of sequence evolution, the expression still looks difficult to compute,

even if single probabilities are not hard to calculate. Problems can arise when we con-
sider real data, where a large number of sequences, including a large number of sites,
are considered. For each site, 43 = 64 terms have to be considered, but on a tree with
n individuals there are n − 1 internal nodes. So we need 4n−1 terms: for n = 10 this is
262,144, while for n = 20 it is 274,877,906,944.

It easy to understand that the exhaustive application of this method is very hard:
there are several methods (Felsenstein (1973, 1981); Gonnet et al. (1996)) to economize
the computational effort but they will be not faced in this paper.

3. BAYESIAN APPROACH TO PHYLOGENY

Bayesian methods are closely related to likelihood methods, differing only in the use of
a prior distribution of the variables to infer on, which would typically be the tree. In
this way it is possible to interpret the results as the distributions of the variable values
given the data. The use of Markov Chains Monte Carlo (MCMC) methods has recently
made possible the application of Bayes’ theorem Barnard and Bayes (1958); Price (1763)
to phylogenetic analyses. In this section a brief introduction to Bayes’ theorem will be
proposed, together with its application to the search of the best tree topology, using
Metropolis algorithms and MCMC methods.
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3.1. Bayes’ Theorem

In a very simplified version, Bayes’ theorem states how the probability of event A given
an event B depends not only on the relationship between A and B but also on the abso-
lute probability of A independent of B. In more technical terms, the posterior probability

of the hypothesis H given data D is:

P (H |D) =
P (D|H )P (H )

P (D)
(5)

where

• P (D|H ) is the conditional probability of D given H (likelihood);

• P (H ) is the prior probability or marginal probability of the hypothesis; it is
prior’ in the sense that it does not take into account any information about the
data;

• P (D) is the prior or marginal probability of the data.

In Bayes’ theorem simplest form, the denominator is the sum of the numerator over all
possible hypotheses H, the quantity that is need to normalize them.

P (H |D) =
P (D|H )P (H )
∑

H P (D|H )P (H )
(6)

3.2. Markov Chains Monte Carlo, Metropolis Algorithm and Bayes’ Theorem for Phyloge-

nies

In Bayesian inference, the denominator of equation 6 is very difficult to compute, con-
sidering that it includes all possible hypotheses H , i.e. all possible trees in the case of
phylogenies. To avoid this problem, Bayesian inference is involves a Markov Chains
Monte Carlo (MCMC) Metropolis algorithm in the evaluation of a random sample of
trees from the their posterior distribution in order to find the best candidate topology.
The Metropolis-Hastings algorithm (Metropolis et al. (1953); Hastings (1970); Green
(1995)), a variant of MCMC, works as follows:

1. Consider the tree Ti as the staring tree.

2. The tree T j is a neighbor tree of Ti .

3. Compute R, the ratio of the probabilities (or probability density functions) of T j

and Ti :

R=min









1,
f (T j )

f (Ti )
=

P (D |T j )P (T j )
∑

T P (D |T )P (T )

P (D |Ti )P (Ti )
∑

T P (D |T )P (T )

=
P (D|T j )P (T j )

P (D|Ti )P (Ti )









(7)
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4. Generate a random variable U that is uniformly distributed on the interval (0,1);
if U is smaller than R, then accept the proposed tree as current tree, otherwise,
continue with the previous tree.

5. Return to step 2.

The algorithm clearly never terminates. It is a Markov Chain since the next state in
the random process depends only on the current state and not previous ones.

The basic point is that, in this stochastic process, we do not need to know the func-
tion of Ti and T j . In particular, we can avoid to calculate their denominators. In the

acceptance of R, knowing only the numerators, we can carry out the algorithm.
Basically, the acceptance ratio reported in equation 7 is the ratio of priors probabili-

ties of the proposed and the new tree, multiplied by the likelihoods of these trees.
The main problem becomes to identify and to chose the exact prior distribution: a

proposal distribution that ‘jumps’ too far too often will result in most proposed new
trees being rejected. In contrast, a distribution that moves timidly may fail to get far
enough to explore the tree space.

Tree distribution has multiple peaks, separated by low valleys, representing best and
worse topology: in this kind of landscape the Markov chain may have difficulty in
moving from one peak to another. As a result, the chain may get stuck on one peak and
the resulting samples will not approximate the posterior density correctly.

This is a serious practical concern for phylogeny reconstruction, as multiple local
peaks are known to exist in the tree space during heuristic tree search under maximum
parsimony (MP), maximum likelihood (ML), and minimum evolution (ME) criteria,
and the same can be expected for stochastic tree search using MCMC. Many strategies
have been proposed to improve mixing of Markov chains in presence of multiple local
peaks for the posterior density. One of the most successful algorithms is the Metropolis-
coupled MCMC (MC3) (Geyer (1992)).

In this algorithm several chains are run in parallel, with different distributions. The
first chain (the cold one) is the target density, while the other ones (the heated chains)
are used to improve mixing. This approach allows heated chains to be more ‘tolerant’
to valleys; in this way, the algorithm can jump deeply through the tree space and can
find new peaks to explore. Successfully swapping states allows a chain that is otherwise
stuck on one peak in the landscape of trees to explore other peaks. For example, if the
cold chain is stuck on a peak in the posterior distribution of trees, swapping states with
another (heated) chain allows the new cold chain to jump to another peak in a single
cycle. As a result, the cold chain can more easily traverse the space of trees.

4. BAYESIAN APPROACH IN EVOLUTION INFERENCE

In biology and in epidemiology, the main goals are the identification and the characteri-
zation of individuals. Molecular epidemiology studies are conducted to infer the origin
of these individuals and researchers have found in the Bayesian approach a very useful
tool.
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Indeed the application of these methods ranges from the identification of pathogens
to the inference about spatio-temporal origins of a viral population.

Several different studies have been conducted simply looking for the best phyloge-
netic tree, in order to clearly classify a pathogen: in our experience, Bayesian methods
have been a robust approach to characterize new vector borne bacterial genospecies
(Grego et al. (2007)), or to demonstrate the circulation of potentially pathogenic viral
strains in the investigated study areas (Carpi et al. (2009)). We also described the evo-
lutionary relationships among West Nile virus isolates collected in the United States
of America, and Bayesian trees reveled the continuous evolution and differentiation
of this virus through time (Bertolotti et al. (2007, 2008), see Fig. 2). In this kind of
studies, large datasets of sequences are analyzed using Bayesian approaches in order to
identify the most correct topology and to infer the evolutionary relationship among
viral strains, considering a range of geographical scale. Bayesian approaches allowed
to highlight that WNV in the USA is a geographically panmictic viral population that
is nevertheless evolving and diversifying at a rate comparable to that of other positive
sense RNA viral pathogens, and according to a pattern of drift and purifying selection
characteristic of other arboviruses (Bertolotti et al. (2007)). Regardless of the under-
lying mechanisms, our results clearly demonstrate that WNV varies genetically over
geographic and temporal scales that are finer than has previously been appreciated. Our
study also demonstrates that fine-scale variation in habitat characteristics within an ur-
ban setting contributes to the generation and maintenance of viral diversity (Bertolotti
et al. (2008); Amore et al. (in press)).

In more complex analyses, Bayesian statistics are used to provide inferences on the
evolutionary rates and origins of individuals.

Indeed, recent studies used Bayesian tools in order to investigate viral geographical
origins and viral dispersal patterns, describing how Bayesian phylogeography compares
with previous parsimony analysis in the investigation of the H5N1 influenza A origin
and epidemiological linkage among sampling localities (Lemey et al. (2009); Fusaro et al.

(2010)).

In this kind of analyses, trees are hard to interpret, because of the large number of
included sequences. Moreover, trees are often misinterpreted, with meaning mistakenly
ascribed to the vertical proximity of taxa or clades. In cases where the vertical ordering
of taxa on phylogenetic trees is flexible, the opportunity exists to ascribe biological
meaning to this dimension (Maddison (1989)). In order to make unresolved trees more
informative, we recently proposed the use of Evolutionary Algorithms (EAs) to find
the best graphical tree representation that includes vertical information (Cerutti et al.

(2010b,a)). EAs (Eiben and Smith (2003); Tettamanzi and Tomassini (2001)) are a broad
class of heuristic optimisation algorithms, inspired by those biological processes that
allow populations of organisms (tentative solutions of the problem to be optimized)
to adapt to their surrounding environment (the problem itself): genetic inheritance
and survival of the fittest. The heuristic procedure is used to find. trees that group
samples with similar features in the vertical direction, and it generates at each time step
a new tentative solution by rotating internal nodes. Sample order was searched in order
to minimize relative distances according to their genetic distances, but this approach
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Figure 2 – Phylogenetic tree constructed by Bayesian analysis of 132 WNV envelope gene se-
quences. Reprinted from Virology, Volume 360, Issue 1, Luigi Bertolotti Uriel Kitron and Tony
L. Goldberg, Diversity and evolution of West Nile virus in Illinois and the United States, 2002-
2005, Pages 143-149, Copyright 2007, with permission from Elsevier.

could be implemented using distance matrices created from other taxon features, such
as temporal or geographical data.
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5. CONCLUSIONS

Molecular epidemiology is a branch of Science that focuses on the genetic features, iden-
tified at the molecular level, of pathogens. In order to correctly infer about pathogen re-
lationships, several statistical methods have been developed. Among them, approaches
based on posterior probability are often used to describe phylogeny and evolutionary
features. Together with new sequencing techniques, that can provide extremely large
dataset of genetic sequences, Bayesian methods in phylogenetic analyses are a very use-
ful tools in molecular epidemiology investigations. In this framework the development
of new algorithms applied to phylogeny, or more in general to sequence analyses, will
be necessary in order to obtain needed information on pathogens, such as their genetic
and evolutionary features, as well as their distribution and diffusion.
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SUMMARY

Statistical Methods in Phylogenetic and Evolutionary Inferences

Molecular instruments are the most accurate methods in organisms’identification and character-
ization. Biologists are often involved in studies where the main goal is to identify relationships
among individuals. In this framework, it is very important to know and apply the most robust
approaches to infer correctly these relationships, allowing the right conclusions about phylogeny.
In this review, we will introduce the reader to the most used statistical methods in phylogenetic
analyses, the Maximum Likelihood and the Bayesian approaches, considering for simplicity only
analyses regarding DNA sequences. Several studies will be showed as examples in order to demon-
strate how the correct phylogenetic inference can lead the scientists to highlight very peculiar
features in pathogens biology and evolution.


